

Are Software Engineers’ Responses to Incomplete Requirements Related to

Project Characteristics?

Özlem Albayrak
Department of Computer

Technology & Information

Systems, Bilkent University

06800 Bilkent, Ankara/ Turkey

ozlemal@bilkent.edu.tr

Duygu Albayrak
Department of Computer

Technology & Information

Systems, Bilkent University

06800 Bilkent, Ankara/ Turkey

duygua@bilkent.edu.tr

Tuna Kılıç
STM, Ankara Technology

Development Region

5th Avenue No:2/3,

06800 Bilkent, Ankara/ Turkey

tkilic@stm.com.tr

Abstract

Software requirements quality affects software

product quality. For high-quality software products,

software requirements must be complete. When faced

with incomplete requirements, software engineers

attempt to fill the requirements’ gaps differently,

either by getting feedback from the user or by making

assumptions. Assumptions may be explicit or implicit.

Explicit assumptions are preferable to implicit

assumptions as explicit assumptions can be validated.

We conduct an empirical study to determine whether

the number of explicit assumptions made by software

engineers is related to a project’s characteristics.

Using data from two CMMI Level 3 companies and 16

projects, we investigated the responses of 92 software

engineers to the same incomplete software

requirement. Our findings show possible relationships

between projects’ characteristics and the number of

explicit assumptions.

1. Introduction

Every software organization aims to develop
software that meets functional needs with acceptable
levels of quality, within budget, and on schedule [13].
Unfortunately, not all succeed. Deficient and low-
quality requirements may be the major reason for
software project failures [3, 4, 7, 8, 14, 21, 23].
Software requirements quality is related to correctness,
unambiguity, completeness, consistency, ranking,
verifiability, modifiability, and traceability [9, 13].

In this study, we concentrate on the completeness
attribute of software requirements. The complete
software requirement should contain all necessary
information, including constraints and conditions.

When software engineers face incomplete
requirements, they attempt to fill the gaps by
information from the stakeholders or by assumptions.
The assumptions may be explicitly stated or implicitly
carried further, to the design and implementation
phases.

Software engineers should aim to minimize filling
software requirements’ gaps with implicit assumptions
because there is a high probability that the assumptions
will be incorrect. Complete and correct requirements
specifications are required for developers to know what
to build and for users to know what to expect [8, 21].

This study aims to determine possible relationships
between software engineers’ tendencies to make
explicit assumptions and project characteristics. If
reasons for making implicit assumptions are found,
ways to avoid them may be better determined.

The following sections address background
information on requirements engineering; detailed
information on the study (the research question,
sample, and method); empirical findings and data
analysis from a series of projects; threats to validity;
and conclusion and future directions.

2. Requirements engineering

An effective requirements process at the beginning
of the project has positive outcomes throughout the
project life cycle, improving the efficacy of other
project processes and ultimately leading to
improvements in many aspects, including product
quality [6].

 Software requirements engineering (RE) is defined
as all the activities denoted to identify user
requirements to drive additional requirements,
document the requirements as a specification, and

978-1-4244-4457-1/09/$25.00 ©2009 IEEE 124

validate the documented requirements against the
actual user needs [8]. The goal of RE is to assure that
an effective and high-quality product is defined and
developed from the stakeholders’ point of view [11,
24].

Requirements elicitation is composed of activities
that enable understanding the goals, objectives, and
motives for building a proposed system [3]. Ways to
perform successful RE activities were studied [1, 2, 8,
12] and many different techniques and approaches
related to elicitation were determined [7, 21, 17, 25].

Regardless of the type of elicitation techniques, user
involvement is an important element. Kujala et al.
studied the role of user involvement in RE quality and
project success and concluded that early user
involvement seems to be a powerful way of improving
requirements quality and project success [24]. Better-
quality requirements can be developed when they are
generated by ongoing client interaction, with a
constantly improving prototype to reduce ambiguity
[16, 22, 22]. Users must be carefully listened to and
implicit assumptions must never be made [8], as they
are not shared by stakeholders and thus may increase
the uncertainty of the requirements [5, 15].

Insufficient attention paid to RE results in myriad
problems regarding incomplete requirements [25]. If
incomplete requirements are unavoidable, we should
definitely avoid accepting them as complete by using
implicit assumptions. RE process-improvement
methods typically work with explicit process models
with explicit document definitions [10].

We name the missing information between complete
and incomplete software requirements as the
“requirement gap.” When engineers make assumptions
explicitly, they are aware of which gap they fill and
how they fill it. Explicit assumptions enable engineers
to share their assumptions with users.

In the case of implicit assumptions, most software
engineers do not even realize that they are making
assumptions. They perceive the requirement as
complete and continue software development with their
perceived requirements rather than with the users’
complete requirements. When software engineers fill
the gaps with information not recorded and shared and,
hence, not confirmed by the user, they create virtual
requirements rather than actually filling the gap. These
virtual requirements often result in false requirements,
which may be the primary source of user change
requests, rework, validity problems, and even project
failure.

Identifying the factors that determine software
engineers’ preferences for filling information gaps is a
challenging subject to study.

3. The study

This section provides the pertinent information
about our experiments: the research questions, the
sample, and the method used in the study.

3.1. The research question

In our literature survey we did not find a previous
study on factors and their relationships to software
engineers’ preferences for making explicit assumptions.
Our study investigates whether software engineers’
responses to incomplete requirements are related to
project factors.

We define an average number of explicit
assumptions made by software engineers per project as
the study’s dependent variable.

The independent variables are project size,
existence of subcontractors, type of client, project’s
current phase, RE processes tools used, and RE-related
training taken during the project’s development.

To enhance the statement of the parameters and
propositions, we define each parameter and for each
parameter we explain our reasoning to the related
proposition. pi denotes the parameters and Pi denotes
our propositions.

p1: (Project size) The software project’s size in a
planned man-month.

P1: As the size of the project increases, we expect
that software engineers’ tendencies to make explicit
assumptions will increase; hence the average number of
explicit assumptions made regarding incomplete
requirements will increase.

The need for formal communication and utilization
of standard processes is greater in large projects than in
small projects. We believe that the increased need for
formal processes may influence software engineers to
work more formally and record what they do and why
they do it, as well as influence what they assume. Thus,
in relatively large projects we expect software
engineers to record their assumptions more often and
therefore make them explicit.

p2: (Existence of subcontractor) A binary parameter:
If the project involves subcontractors, p2 is 1, else 0.

P2: The existence of subcontractors may increase the
tendency to make more explicit assumptions.

 Subcontractors may create additional points of
contact in the projects. Information exchange and
recording mechanisms may be more formal when
working with subcontractors. We expect that the
existence of subcontractors will increase the average
number of explicit assumptions made by software
engineers.

125

p3: (Client type) is a category parameter that can
take one value from Military, Civilian (state or private),
or International.

P3: Not all client types require same degree of
formality. Clients of the same type may own common
attributes. The more formal the client processes are,
we expect that the tendency to make explicit
assumptions will be greater. We assume that military
organizations’ levels of formality and standardization
are higher than other organizations’. We expect that
when the client is a military service, the tendency of
engineers to make explicit assumptions will increase.

p4: (Current phase) A binary parameter that can
include any subset of Planning, Analysis, Design,
Implementation, Testing, and Maintenance. If the set
contains Analysis, p4 is 1, else 0.
P4: We expect that engineers working with projects
conducting analysis will have a greater tendency to
make explicit assumptions. RE processes are part of the
analysis phase of a project. People have a tendency to
pay attention to their current phase of the project.

p5: (Tools for RE) A binary parameter that becomes
1 when RE process-related tools are used, 0 otherwise.

P5: In projects where RE tools are utilized, we
expect that software engineers’ tendencies to make
explicit assumptions will be greater than for projects
that do not use RE tools. RE process-related tools help
software engineers to better work in formal and
improved process environments.

p6: (RE Training) A binary parameter taking 1 if
software engineers undergo RE-related training is
during the project, 0 otherwise.

P6: Our assumption is that if the engineers are
involved in RE-related training during their current
project, they will care more about requirements quality
and have a tendency to make more explicit
assumptions.

3.2. Sample and method

This empirical study is composed of two phases. In

the first phase, we conducted an experiment and
collected data regarding software engineers’
preferences in completing a given deficient software
requirement (Appendix A). For each project we
calculated the mean of explicit assumptions made by
engineers. The first phase’s sample included six
companies and 32 projects. In the second phase, we
collect project-related parameters. Some companies did
not want to share their project-related data, and the
final sample is composed of two companies and 16
projects. Both companies have CMMI Level 3.

In the first phase, we first conducted pre-interviews
with software development directors of the companies.
The directors later submitted the question used in [18],
Appendix A, and selected project managers who
directed the question to the software engineers. The
collected data was sent to us from the directors. In both
companies, interviews were held by the same author.

During the first experiment, we restricted software
engineers’ access to the stakeholders. We counted
explicitly written questions and assumptions as explicit
assumptions. We identified eight common gap types
related to the given requirement. Gap types other than
those listed in Appendix B are found, but with very low
frequency. For each project, we calculated the mean of
explicit assumptions made. After compiling data
collected from the software engineers, we conducted
post-interviews.

In the second phase, a survey, Appendix C, was sent
to the project managers via e-mail. The project
characteristics were collected by different authors.

3.3. Results and analysis

Using descriptive statistics, we compare means and
check whether our propositions were supported. Our
findings support four propositions; P1 and P2 are not
supported.

Table 1. Findings related to

p1: Project Size

p1: Project
size large?

Mean
%

Mean N Std.
Deviation

No 21,68 1,7354 11 0,3606

Yes 19,54 1,5633 3 0,0811

Total 21,23 16985 14 0,2814

The number of explicit assumptions is greater in

smaller projects (Table 1).

Table 2. Findings related to

p2: Subcontractor

p2: Sub-
contractor

Mean
%

Mean N Std.
Deviation

No 22,32 1,7858 10 1,2316

Yes 20,69 1,6548 6 0,4151

Total 21,71 1,7366 16 0,9858

Findings of our study do not support proposition P2

(Table 2). The number of explicit assumptions is
greater when there are no subcontractors involved.

126

P3 is supported. Military clients have the maximum
mean of explicit assumptions (Table 3).

Table 3. Findings related to p3: Client type

p3: Client
type

Mean
%

Mean N Std.
Deviation

Military 29,94 2,3949 7 1,0362

International 16,41 1,3127 7 0,369

Civilian 22,92 1,8333 1 ,

Total 21,71 1,7366 16 0,9858

Table 4. Findings related to

p4: Current phase

p4: Current
phase

Mean
%

Mean N Std.
Deviation

Analysis 26,72 2,1375 4 0,6129

Not 20,04 1,603 12 1,0699

Total 21,71 1,7366 16 0,9858

P4 is supported (Table 4).

Table 5. Findings related to
p5: RE tools utilization

p5: RE
tools

utilization

Mean
%

Mean N Std.
Deviation

RE Tools
Not Used

17,75 1,42 3 0,5188

RE Tools
Used

22,62 1,8097 13 1,0672

Total 21,71 1,7366 16 0,9858

As depicted in Table 5, our findings support P5.

������������������������������������	
��
�
��������������	
��
�
��������������	
��
�
��������������	
��
�
��������������������������������
�
�
������
�
�
������
�
�
������
�
�
����

p6: RE
training

Mean% Mean N Std.
Deviation

RE training
not received

18,09 1,447 10 0,2501

RE training
received

22,19 1,775 2 0,225

Total 18,77 1,5017 12 0,2116

Findings related to RE training support P6.

3.3. Threats to validity

As with any empirical study, there are various
threats to validity that must be discussed. In this section

we discuss the internal and external validity of our
study. Internal validity is defined as the soundness of
the conceptual relationships within a study.

The first threat is the threat of subject characteristics
(or selection bias). We selected a convenience sample.
The subjects were selected by the project managers at
the companies, thus we had no control over the
selection of the subjects. The specific subjects who
participated in the study could be the major reason for
the observed results. This threat was alleviated to some
degree by the fact that selected companies mostly had
same CMMI levels.

The second threat to the internal validity of this
study is the threat of data-collector characteristics. At
each company, different collectors collected data from
the subjects. The characteristics of the data collectors
might have affected results. In addition, the data
collector may have unconsciously distorted the data in
such a way as to make certain outcomes more likely,
leading to a data-collector bias threat.

External validity is defined as the degree to which
results from the study can be generalized and provide
insight. The representativeness of the artifact is a threat
to external validity. We used a very simple, textbook-
sample-like artifact previously used in [18, 19]. We
selected this generic (not domain-specific) artifact
because we wanted to make sure that all the subjects
were equally familiar with the requirement. Since it
was simple, it did not take much time for the subjects
to complete. The artifact used in this study may not be
reflective of an actual requirements document. We
consider using a more realistic instrument for future
studies. We also have a small sample size.

The last threat is common to all empirical studies. It
cannot be assumed that the results will always
generalize beyond the setting in which the study was
conducted. Thus, for more confidence in the results, the
study should be replicated.

4. Conclusion and future studies

How gaps in software requirements are filled by
software engineers is important, and depending on the
method used, may lead to project failure. The study
focuses on the possible and not previously studied
relationships between project characteristics and
utilization of explicit assumptions by software
engineers. We construct a base for future studies
aiming to search for possible relationships between
software project’s characteristics and software
engineers’ behavior related to completing requirements
by explicit assumptions. Due to a small sample size, we

127

could not satisfy the hypotheses that we initially aimed
for. Four out of six propositions are supported.

Improvements can be made regarding the means to
measure parameters of the propositions. In addition to
the man-month measure, line of code, cost, or other
measures of project size may be used. As a dependent
variable, the number of explicit assumptions divided by
the number of requirements may also be used.

Factors impacting software engineers’ preferences
to fill gaps may not be limited to project-related
specifications. Organization- and engineer- related
factors, and interrelations between these factors may
also be studied in future. Both companies in our sample
are very similar with respect to organizational and
software engineer-related parameters. For further
studies, parameters of organizational and software
engineer-related characteristics may be included.

In addition to functional attributes, quality attributes
are also very crucial to the success of software projects
[3]. Further studies may also focus on incomplete
quality-attributes-related requirements.

When the relationships between software engineers’
preferences to complete deficient requirements and
project-related parameters are identified, actions to
prevent implicit assumptions may be taken.

6. References

 [1] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M.
Moreno, “Effectiveness of Requirements Elicitation
Techniques: Empirical Results Derived From a Systematic
Review”, Proceedings of the IEEE Int. Req. Eng. Conf. (RE),
2006, pp. 176-185.

[2] B. Boehm, “Identifying Quality-requirement Conflicts”,
IEEE Software, Mar 1996, Volume: 13, Issue: 2, pp. 25-35.

[3] B.H.C. Cheng, and J.M. Atlee, “Research Directions in
Requirements Engineering”, Future of Software Engineering

(FOSE ’07), IEEE 2007, 23-25 May 2007, pp. 285-303.

[4] B. Zagajsek, K. Separovic, Z. Car, “Requirements
Management Process Model for Software Development
Based on Legacy System Functionalities”, 9th International

Conference on Telecommunications, (ConTel 2007), 13-15
June 2007 pp.115-122.

[5] C. Ebert, J. D. Man, “Requirements Uncertainty:
Influencing Factors and Concrete Improvements”, ICSE'05,
Proceedings of International Conference on Sofware
Engineering, May 15-21, 2005, pp. 553-560.

[6] D. Damian and J. Chisan, “An Empirical Study of the
Complex Relationships between Requirements Engineering
Processes and Other Processes that Lead to Payoffs in
Productivity, Quality, and Risk Management”, IEEE

Transactions on Software Engineering, Volume 32, Issue 7,
July 2006, pp.433-453.

[7] H.F. Hoffman, and F. Lehner, “Requirements
Engineering as a Success Factor in Software Projects”, IEEE

Software, July-Aug 2001, pp. 58-66.

[8] H. Saiedian, and R. Dale, “Requirements Engineering:
Making the Connection Between the Software Developer and
Customer”, Information and Software Technology, 42(2000),
pp. 419-428.

[9] IEEE Std. 830-1998, IEEE Recommended Practice for

Software Requirements Specifications, IEEE, 25 June 1998.

[10] J. Doerr, B. Paech and M. Koehler, “Requirements
Engineering Process Improvement Based on an Information
Model”, Proceedings of International Conference on

Requirements Engineering (RE04), IEEE Computer Society
Press, Los Alamitos, USA, 2004, pp. 70-79.

[11] J. Dörr, S. Adam, M. Eisenbarth, and M. Ehresman,
“Implementing Requirements Engineering Processes: Using
Cooperative Self-Assessment and Improvement”, IEEE

Software, Volume 25, Issue 3, 2008, pp. 71-77.

[12] J.K. Willoughby, “Adaptations to the Systems
Engineering Management Process for Projects with
Incomplete Requirements”, Proceedings of IEEE

International Conference on Systems Engineering, 24-26
Aug. 1989, pp.197-200.

[13] M. Agrawal, and K. Chari, “Software Effort, Quality,
and Cycle Time:A Study of CMM Level 5 Projects”, IEEE

Transactions on Software Engineering, Volume 33, Issue 3,
March 2007, pp.145-156.

[14] M. I. Kamata, and T. Tamai, “How Does Requirements
Quality Relate to Project Success or Failure?”, Proceedings

of the 15th International Requirements Engineering

Conference, 2007 IEEE, pp. 69-78.

[15] M. R. Strens , R. C. Sugden, Change Analysis: A Step
towards Meeting the Challenge of Changing Requirements,
Proceedings of the IEEE Symposium and Workshop on
Engineering of Computer Based Systems, p.278, March 11-
15, 1996.

[16] M. Schrage, “Never go to a client meeting without a
prototype [software prototyping], IEEE Software, Volume
21, Issue 2, Mar-Apr 2004, pp.42-45.

[17] Lloyd, W.J., Rosson, M.B., and Arthur, J.D.,
“Effectiveness of Elicitation Techniques in Distributed
Requirements Engineering”, Proceedings of IEEE Joint

International Requirements Engineering Conference on

Requirements Engineering, 9-13 Sept. 2002, pp. 311-318.

128

[18] O. Albayrak, “Solutions to Challenges of Teaching
Systems Analysis and Design for Undergraduate Software
Engineers”, in System Analysis and Design for Advanced

Modeling Methods: Best Practices, Akhilej Bajaj and
Stanislaw Wrycza (Eds), pp. 68-87, IGI Global, 2009.

[19] O. Albayrak, M. Bicakci, H. Bozkurt, “A Study to
Observe Relations Between Software Engineer’s Responses
to Incomplete Requirements and Requirements Volatility”,
International Conference on Software Theory and Practice,

SETP 2009, July 13-16, 2009, Orlando, (accepted paper).

[21] R. B. Rowen, “Software project management under
incomplete and ambiguous specifications”, IEEE

Transactions on Engineering Management, Volume
37, Issue 1, Feb. 1990, pp.10–21.

[22] R.P.D. Redondo, J.J.P. A.F. Arias, Martinez, B.B. Vilas,
”Approximate Retrieval of Incomplete and Formal
Specifications Applied to Vertical Reuse”, Proceedings of

International Conference Software Maintenance, 2002, 3-6
Oct. 2002, pp. 618-627.

[23] R.T. Yeh, and P. Zave, “Specifying Software
Requirements”, Proceedings of the IEEE, Sept. 1980,
Volume: 68, Issue: 9, pp. 1077- 1085.

[24] S. Kujala, M. Kauppinen, L. Lehtona, and T. Kojo,
“The Role of User Involvement in Requirements Quality and
Project Success”, Proceedings of the 13th IEEE

International Conference on Requirements Engineering

RE(2005), 29 Aug.-2 Sept. 2005, pp. 75-84.

[25] U.V. Subramanian, U.V, “An Event, Activity and
Process Based Methodology for Requirements Elicitation
and Its Application to an Educational Information System”,
Proceedings of the Sixth Asia Pacific Software Engineering

Conference, (APSEC '99), 7-10 Dec. 1999, pp. 188-195.

APPENDIX A:

Gap-seeded requirement used in the first section:

For the following software requirement, do one of the
following 3 alternatives:
1. draw prototype screens for at least two inputs you
enter,
2. write source code in any programming language you
know (C/C#, Java...),
3. write pseudo code.

For any positive number entered by the user, the

program should display a list of even numbers less

than input.

PLEASE LIST ANY QUESTIONS/ASSUMPTIONS
YOU HAVE FOR YOUR SOLUTION

 APPENDIX B:

The types of gaps seeded in the requirement:
Gap Type Related Assumption/Question
Input type What is the type of input: Is it

integer, double, float…?
Prompt Which text messages are displayed

to the user?
Order What is the order of the list? Is it

ascending or descending?
Format What is the format of the output

list? Appearance?
Application
type

Is it a console, windows, or Web
application?

Error messages Which errors are displayed, and
how to handle errors?

Stopping
condition

What is the stopping condition
while listing?

Validation How is input validation realized?

APPENDIX C:

Project Characteristics:
Name/ Code
Planned
(man-month)

Realized
(man-month)

Any subcontractor? € Yes

€ No
Client Type € Military

€ Civilian-State

€ Civilian-Private

€ International

€ Other (please explain)
Current Phase € Planning

€ Analysis

€ Design

€ Implementation

€ Test

€ Maintenance
RE tools used?
RE training taken?

129

