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Abstract— In this paper, theoretical limits on estimation of
respiration rates via pulse-based ultra-wideband (UWB) signals
are studied in the presence of prior information about respiration
related signal parameters. First, a generalized Cramer-Rao lower
bound (G-CRLB) expression is derived, and then simplified
versions of the bound are obtained for sinusoidal displacement
functions. In addition to the derivation of the theoretical lim-
its, a two-step suboptimal estimator based on matched filter
(correlation) processing and maximum a posteriori probability
(MAP) estimation is proposed. It is shown that the proposed
estimator performs very closely to the theoretical limits under
certain conditions. Simulation results are presented to investigate
the theoretical results.

Index Terms— Ultra-wideband (UWB), generalized Cramer-
Rao lower bound (G-CRLB), maximum a posteriori probability
(MAP) estimation.

I. INTRODUCTION

The large bandwidth of ultra-wideband (UWB) signals
facilitates various applications such as high data rate com-
munications [1] and accurate position estimation [2]. Also,
UWB signals can be used to detect movements and to estimate
movement related parameters in radar-type applications [3]-
[9]. Due to the high time resolution of UWB signals, even
small movements such as chest-cavity displacements of a
human can be detected, which can be used in the estimation of
vital signal parameters. Estimation of vital signal parameters is
important in many scenarios, including searching people under
debris after an earthquake, through-the-wall health monitoring
of hostages, and non-invasive patient monitoring [7].

In [4], various medical applications of UWB signals are
presented, and their penetration and reflection properties are
investigated. The channel characteristics of signals reflecting
from a human chest are studied in [8], which also proposes
an algorithm for respiration rate estimation. In [9], respiratory
detection of hidden humans via UWB signals is implemented.
A mathematical framework for estimation of vital signal
parameters is established in [7], which employs the Fourier
transform and motions filters for estimation of respiration and
heartbeat rates.

The theoretical limits on estimation of respiration rates
are studied in [5] and Cramer-Rao lower bound (CRLB)
expressions are obtained. [6] extends that study to multipath
channels and derives theoretical limits and suboptimal estima-
tion algorithms. Although the theoretical limits on estimation
of respiration rates are obtained in [5] and [6], no studies
have considered respiration rate estimation via UWB signals
in the Bayesian framework [10]; that is, in the presence

0The authors wish to acknowledge the activity of the Network of Excellence
in Wireless COMmunications NEWCOM++ of the European Commission
(contract n. 216715) that motivated this work.

Fig. 1. Transmitted signal structure for respiration rate estimation.

of prior statistical information about respiration related pa-
rameters. Since it is possible to obtain such information in
practice from respiration rate measurements, it is important
to obtain theoretical lower bounds and practical estimators in
the presence of such prior information. This paper provides
a framework for estimation of respiration rates via pulse-
based UWB signals in the presence of prior information
by deriving generalized CRLB (G-CRLB) expressions and
proposing a practical estimator based on matched filter (cor-
relation) processing and maximum a posteriori probability
(MAP) estimation. Although the estimation of respiration rates
is considered, the ideas in this paper can also be extended to
estimation of other periodic movements via UWB pulses.

II. SIGNAL MODEL

In order to estimate the respiration rate, a sequence of pulse
bursts is transmitted towards the subject and the reflections
are collected and processed. The transmitted signal structure
is shown in Fig. 1, which is expressed as

s(t) =
1√
N

N−1
∑

k=0

w(t − kTb) , (1)

where N is the number of bursts, Tb is the burst period, and
w(t) is a burst of pulses. Each burst comprises of M pulses
and is given by

w(t) =
M−1
∑

j=0

p(t − jTp) , (2)

with p(t) denoting the transmitted UWB pulse and Tp being
the interval between consecutive pulses. It is assumed that
Tp > Tw where Tw denotes the width of p(t).

The main reason for using the signal structure in (1) is that
pulses in each burst are employed to obtain a reliable channel
profile (i.e., to improve the signal-to-noise ratio (SNR)), and
comparison of channel profiles obtained from consecutive
bursts is used to estimate certain parameters (e.g., respiration
rate) of the subject in the environment.

In this paper, an additive white Gaussian noise (AWGN)
channel with a single path component is considered, which
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results in the following received signal:

r(t) = gθ(t) + σ n(t) , (3)

where n(t) denotes zero-mean white Gaussian noise with unit
spectral density, and

gθ(t) =
1√
N

N−1
∑

k=0

w(t − kTb − hk(θ)) , (4)

with hk(θ) representing the periodic displacement function
induced by the respiration of the subject being monitored
[5]-[7], and θ = [θ1 · · · θK ] denoting the unknown signal
parameters. It is assumed that the range of the displacement
function and the pulse p(t) satisfy (M − 1)Tp + Tw +
max{hk(θ)}−min{hk(θ)} < Tb, so that there is no overlap
between consecutive pulse bursts, which is usually the case in
practical situations.

Although the single path model in (3) is not very realistic
for wideband pulse-based systems, it is an important first step
towards understanding of a real system since the main ideas
in the analysis can be extended to multipath scenarios as in
[6]. The main purpose of this study is to illustrate how the
prior information about the respiration related parameters can
be incorporated into the theoretical limits and practical esti-
mators. In addition, the model in (3) gets more accurate when
directional antennas are used for transmission and reception,
and/or an efficient clutter removal algorithms are employed
before parameter estimation [6].

III. THEORETICAL LIMITS

If the signal r(t) in (3) is observed over the time interval
[0, T ], with T = NTb, the log-likelihood function of θ is
given by [5], [11]

Λ(θ) = c − 1
2σ2

∫ T

0
[r(t) − gθ(t)]2 dt , (5)

where c denotes a constant that is independent of θ.
In the presence of prior information about the unknown

parameter vector θ, the G-CRLB is expressed as [10]

E{(θ̂ − θ)(θ̂ − θ)T } ≥ I−1 , (6)

where θ̂ is an unbiased estimate of θ, and I is the information
matrix given by

I = ID + IP , (7)

with ID and IP representing the information matrix obtained
from the data (observations) and from the prior knowledge,
respectively. The matrices in (7) are given by1

[ID]ij = E
{

∂Λ(θ)
∂θi

∂Λ(θ)
∂θj

}

, (8)

where the expectation is over both the received signal and the
θ parameter, and

[IP]ij = E
{

∂ log π(θ)
∂θi

∂ log π(θ)
∂θj

}

, (9)

where π(θ) represents the probability density function for the
parameter of interest θ.

1[B]ij denotes the element of matrix B in the ith row and jth column.

In order to obtain the G-CRLB in (6), we first need to
calculate ID in (8). From (4) and (5), it can be expressed,
after some manipulation, as

[ID]ij =
Ẽ

Nσ2

N−1
∑

k=0

E
{

∂hk(θ)
∂θi

∂hk(θ)
∂θj

}

, (10)

where the expectation is now only over θ, and Ẽ is the energy
of the first derivative of the pulse burst w(t), i.e.,

Ẽ =
∫ ∞

−∞

(

dw(t)
dt

)2

dt = M
∫ ∞

−∞

(

dp(t)
dt

)2

dt . (11)

The information matrix IP in (9) due to the prior in-
formation can easily be calculated for a given probability
distribution. In the special case of independent parameters
θ1, . . . , θK , (9) simplifies to

[IP]ij = E
{

∂ log πi(θi)
∂θi

∂ log πj(θj)
∂θj

}

, (12)

where πi(x) is the probability density function for parameter
θi.

Let θ1 = f denote the respiration rate parameter to be
estimated. Then, the G-CRLB for estimating f can be stated
as

Var{f̂} ≥ [I−1]11 , (13)

where I is given by (7), (9) and (10).

A. Sinusoidal Displacement Function

Although the theoretical upper bounds on the variances
of unbiased respiration rate estimators can be obtained from
the generic expression in (13), simpler expressions can be
obtained for specific models related to respiration. Commonly,
the displacement function hk(θ) can be modeled to have
three unknown parameters; frequency f , phase φ and time
shift A corresponding to the maximum displacement from a
nominal position [5]. In other words, the unknown parameter
vector can be defined as θ = [f φ A], where f represents
the main parameter of interest, i.e., the respiration rate. The
phase parameter is another unknown as the initial position of
the object (i.e., chest cavity) is not known by the receiver.
In addition, the time shift corresponding to the maximum
displacement amount from the nominal object position, A, is
usually unknown.

Prior distributions of parameters f and A can be available
from previous measurements of respiration rates. However, the
phase parameter can be modeled to be completely random.
Therefore, for a given joint probability distribution of f and
A, the information matrix IP in (9) due to the prior knowledge
can be represented as

IP =

[γ11 0 γ13
0 0 0

γ13 0 γ33

]

, (14)

where it is assumed that no prior information is available about
the phase parameter.

For the special case of a displacement function modeled by
a sinusoidal function [6], [7], hk(θ) is expressed as

hk(θ) = A sin (2πfkTb + φ) . (15)
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Then, a closed-form expression for the theoretical limit can
be obtained as in the following proposition.

Proposition 1: Consider the information matrix in (14)
related to the prior knowledge and the displacement function
in (15). Then, the G-CRLB for unbiased estimators of f is
expressed as

Var{f̂} ≥
(

γ11 −
2σ2γ2

13

Ẽ + 2σ2γ33
+

ẼαAπ2T 2
b (N2 − 1)

6σ2

)−1

(16)

where αA
.= E{A2}.

Proof: Please see Appendix A.
Proposition 1 states that as the prior information on f (A),

represented by γ11 (γ33), or the second moment of A, αA,
increases, the G-CRLB decreases. This is expected since more
prior information related to the respiration parameters and
larger movements of the chest (i.e., larger A values) facilitate
better respiration rate estimation. In addition, the G-CRLB
also decreases when the burst duration, the number of bursts,
or Ẽ/σ2 increases.

The following corollary considers the special case in which
γ13 = 0 in (14).

Corollary 1: Consider the information matrix in (14)
related to the prior knowledge and the displacement function
in (15), and assume that γ13 = 0. Then, the G-CRLB for
unbiased estimators of f is given by

Var{f̂} ≥
(

γ11 +
ẼαAπ2T 2

b (N2 − 1)
6σ2

)−1

(17)

where αA
.= E{A2}.

Corollary 1 implies that for γ13 = 0, the prior information
related to A does not improve the theoretical lower bound. In
this case, the G-CRLB decreases only when γ11, the second
moment of A (i.e., αA), the burst duration, the number of
bursts, and/or Ẽ/σ2 increases. Note that the bound depends
on the probability distribution of A only through αA; that is,
as long as the second moment of A is fixed, the probability
distribution of A does not affect the G-CRLB for γ13 = 0.

Note that the G-CRLB expression in (16) is generic in
the sense that it does not assume any specific probability
distributions for f and A. For the special case of a jointly
Gaussian distribution for [f A]T , more specific expressions
can be obtained. Let

[

f
A

]

∼ N
([

µf
µA

]

,
[

σ2
f ρfA

ρfA σ2
A

])

. (18)

Then, γ11, γ33 and γ13 in (16) can be obtained from (9) as

γ11 = σ2
A/η , γ33 = σ2

f/η , γ13 = −ρfA/η , (19)

where η .= σ2
fσ2

A − ρ2
fA.

Note that for ρfA = 0; i.e., when f and A are uncorrelated,
the G-CRLB expression in (16) becomes

Var{f̂} ≥
(

1
σ2

f
+

ẼαAπ2T 2
b (N2 − 1)

6σ2

)−1

. (20)

In addition, as σ2
f → ∞, the bound converges to

6σ2/(ẼαAπ2T 2
b (N2−1)), which is the same as the expression

in [5] (c.f. (18)) when αA = E{A2} is replaced by A2

Fig. 2. A two-step suboptimal solution for respiration rate estimation.

(i.e., when A is deterministic). In other words, as the amount
of prior information on f converges to zero, the G-CRLB
converges to the CRLB as expected.

IV. SUBOPTIMAL ESTIMATOR

As discussed in [6], optimal estimation of respiration rate
based directly on r(t) has high computational complexity. In
this section, a suboptimal estimator is proposed in order to
perform closely to the theoretical limits obtained in the previ-
ous section with low complexity. The proposed estimator has a
two-step structure as shown in Fig. 2. In the first step, the time
delay of each burst is estimated from the M pulses in the burst.
Let τk denote the delay of the kth burst for k = 0, 1, . . . , N−1.
Note that each τk can be estimated by the conventional time-
of-arrival (TOA) estimation algorithm based on matched filter
(or, correlator) outputs [2]. The time delay estimates obtained
in the first step, namely, τ̂ = [τ̂0 τ̂1 · · · τ̂N−1], are used by
a MAP estimator [11] in the second step in order to estimate
the unknown parameters.

It is shown in [12] that time delay estimates obtained from
matched filter outputs can be modeled as Gaussian random
variables around the true time delay under certain conditions.
Specifically, for following the signal model

r̃(t) =
1√
N

w(t − τk) + σ n(t) , t ∈ [0, Tb] , (21)

where n(t) is zero mean white Gaussian noise with unit
spectral density, and τk is the time delay to be estimated, if
τk is estimated by matched-filter outputs with large SNR β2

values,2 the time delay estimate can be modeled as

τ̂k = τk + nk , (22)

with nk ∼ N (0 , σ2
0) and σ2

0 = 1/(4π2β2SNR) [5], [13].
This result implies that the time delay estimates obtained

in the first step of the proposed algorithm in Fig. 2 can
be modeled to have zero mean Gaussian errors for large
SNR β2 values. Note that in the proposed algorithm, r(t)
for t ∈ [(k − 1)Tb , kTb] is used for estimating τk using a
conventional matched-filter approach for k = 0, 1, . . . , N − 1.
Therefore, for large SNR β2, these time delay estimates can
be modeled as

τ̂k = hk(θ) + nk, (23)

for k = 0, 1, . . . , N − 1, with nk ∼ N (0, σ2
0). Since each

time delay estimate is obtained from a different portion of the
signal, n0, n1, . . . , nN−1 are independent.

Based on the observations in the preceding paragraphs, the
MAP estimator in Fig. 2 calculates the unknown parameter

2β is the effective bandwidth, which is defined by β2 =
∫

f2|W (f)|2df/
∫

|W (f)|2df , where W (f) is the Fourier transform of
w(t).
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vector θ as follows:

θ̂ = arg max
θ

{log p(τ̂ |θ) + log π(θ)} (24)

= arg min
θ

{

1
2σ2

0

N−1
∑

k=0

(τ̂k − hk(θ))2 − log π(θ)

}

. (25)

Note that the conditional distribution of the time delay esti-
mates, p(τ̂ |θ), is modeled according to (23).

In the case of Gaussian priors as in (18), the MAP estimator
in (25) becomes

θ̂ =arg min
θ

{

1
σ2

0

N−1
∑

k=0

(τ̂k − hk(θ))2 +
1
η

[

σ2
A(f − µf )2

− 2ρfA(f − µf )(A − µA) + σ2
f (A − µA)2

]

}

, (26)

where η = σ2
fσ2

A − ρ2
fA .

Proposition 2 states the asymptotic optimality property of
the proposed two-step estimator.

Proposition 2: For a given set of time delay measurements
τ̂ = [τ̂0 τ̂1 · · · τ̂N−1] modeled by (23), the G-CRLB for the
covariance matrix of an unbiased estimate of θ is the same
as the expression given by (6)-(10).

Proof: Please see Appendix B.
In other words, Proposition 2 states that the theoretical limits

on the estimation of the respiration rate parameter based on the
measurements in (23) and based on r(t) in (3) are the same.
Since the MAP estimator is known to achieve the G-CRLB
asymptotically [10], the proposed estimator can achieve the
theoretical limit of the original problem as well under certain
conditions.

V. SIMULATION RESULTS

In this section, numerical evaluations and simulations are
performed in order to evaluate the G-CRLB expressions de-
rived in Section III, and to investigate the performance of the
proposed suboptimal estimator in the previous section.

For the pulse shape in (2), the second derivative of the
Gaussian pulse is used, which is given by [2]

p(t) =
(

1 − 4πt2

ζ2

)

e−
2πt2

ζ2 /
√

Ep , (27)

where Ep is used to adjust the energy of the pulse in the
simulations, and ζ determines the pulse width (Tw ≈ 2.5ζ).

For the following results, N = 50 bursts and Tb = 0.1
second are used. In addition, the displacement function in (15)
is considered, and the prior distribution of f and A is assumed
to be jointly Gaussian according to (18) with µf = 0.5 Hz,
µA = 0.1 ns, σf = 0.1 Hz, and σA = 0.02 ns (ρfA is specified
below).

In Fig. 3 and Fig. 4, the G-CRLB expression in (16) is
plotted against the SNR for various pulse widths for ρfA = 0
and ρfA = −0.2, respectively.3 It is observed from the figures
that the accuracy increases as the pulse width is decreased.
This is intuitive as higher time resolution results in better
localization of the chest cavity. In addition, larger correlations

3The square-roots of the results are plotted and the lower bounds are
obtained in the unit of Hz.
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Fig. 3. G-CRLB versus SNR for various pulse widths, where ρfA = 0 and
N = 50 bursts are transmitted.
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Fig. 4. G-CRLB versus SNR for various pulse widths, where ρfA = −0.2
and N = 50.

between f and A result in worse accuracy (i.e., larger G-
CRLBs). However, as the pulse width is decreased, the effects
of correlations on the accuracy decrease significantly.

In Fig. 5, the G-CRLB is plotted versus the pulse width
for various SNRs for ρfA = 0. Again it is observed that the
accuracy increases as the pulse width is decreased. It is also
noted that at high SNRs, the second term in (17) becomes the
dominant factor in determining the theoretical limit, which
results in a linear relation between Tw and the square-root of
the theoretical limit. However, at low SNRs, the first term in
(17) becomes significant as well; hence, the relation becomes
non-linear as shown by the plot for SNR = 0 dB.

Finally, Fig. 6 compares the performance of the suboptimal
MAP estimator in Section IV with the G-CRLB for Tw = 1 ns
and ρfA = 0. It is observed that the performance of the MAP
estimator gets close to the theoretical limits at high SNRs as
expected.

VI. CONCLUDING REMARKS

In this paper, theoretical limits on respiration rate estimation
via pulse-based UWB signals have been studied, and closed-
form expressions for the G-CRLB have been obtained. In ad-
dition, a two-step suboptimal estimator has been proposed and
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Fig. 5. G-CRLB versus pulse width for various SNRs, where ρfA = 0 and
N = 50.
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Fig. 6. RMSE versus SNR for the MAP estimator and the G-CRLB for
Tw = 1 ns, ρfA = 0 and N = 50.

its asymptotic optimality property has been shown. Although
this study considers the estimation of respiration rates, the
ideas can also be extended to estimation of other periodic
movements via UWB pulses.

APPENDIX

A. Proof of Proposition 1

First, the expectation term in (10) can be evaluated from
(15) as

E

{

(

∂hk(θ)
∂f

)2
}

= 2π2k2T 2
b E{A2} ,

E

{

(

∂hk(θ)
∂φ

)2
}

=
E{A2}

2
, E

{

(

∂hk(θ)
∂A

)2
}

=
1
2

,

E
{

∂hk(θ)
∂f

∂hk(θ)
∂φ

}

= πkTbE{A2} ,

E
{

∂hk(θ)
∂f

∂hk(θ)
∂A

}

= E
{

∂hk(θ)
∂φ

∂hk(θ)
∂A

}

= 0 , (28)

where the complete randomness of φ is modeled as
mod(φ, 2π) ∼ U [0, 2π), where mod(φ, 2π) represents a
modulo-2π operation on φ, and U denotes a uniform distribu-
tion. Then, the results in (28) can be inserted into (10), and
ID can be obtained. Finally, that ID expression and IP in (14)
can be added, and the first element of the inverse of ID + IP
can be calculated after some manipulation, which yields the
result in the proposition.

B. Proof of Proposition 2
For the model in (23), the distribution of τ̂ for a given

values of θ is expressed as

pθ(τ̂ ) =
1

(√
2πσ0

)N exp

{

− 1
2σ2

0

N−1
∑

k=0

(τ̂k − hk(θ))2
}

.

(29)

Then, the formula for the information matrix related to the
data,

[ĨD]ij = E
{

∂ log pθ(τ̂ )
∂θi

∂ log pθ(τ̂ )
∂θj

}

, (30)

can be used to obtain

[ĨD]ij =
1
σ2

0

N−1
∑

k=0

E
{

∂hk(θ)
∂θi

∂hk(θ)
∂θj

}

. (31)

The expression for σ2
0 stated after (22), σ2

0 =
1/(4π2β2SNR), can be shown to be equal to σ2

0 = Nσ2/Ẽ.
Therefore, (31) is equal to (10); i.e., ĨD = ID. In addition,
since the information due to the prior distribution of θ is the
same in both scenarios, the total information matrix is the
same in both cases.
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