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Abstract—Graph stores are becoming increasingly popular
among NOSQL applications seeking flexibility and heterogeneity
in managing linked data. Conceptually and in practice, applica-
tions ranging from social networks, knowledge representations
to Internet of things benefit from graph data stores built on a
combination of relational and non-relational technologies aimed
at desired performance characteristics. The most common data
access pattern in querying graph stores is to traverse from a node
to its neighboring nodes. This paper studies the impact of such
traversal pattern to common data caching policies in a partitioned
data environment where a big graph is distributed across servers
in a cluster. We propose and evaluate a new graph aware
caching policy designed to keep and evict nodes, edges and their
metadata optimized for query traversal pattern. The algorithm
distinguishes the topology of the graph as well as the latency
of access to the graph nodes and neighbors. We implemented
graph aware caching on a distributed data store Apache HBase
in the Hadoop family. Performance evaluations showed up to
15x speedup on the benchmark datasets preferring our new
graph aware policy over non-aware policies. We also show how
to improve the performance of existing caching algorithms for
distributed graphs by exploiting the topology information.

Index Terms—Graph Aware; Cache; Big Data Analytics;
Distributed Computing; Apache HBase

I. INTRODUCTION

The technique of data caching is well known and widely

applied across tiers of computing and storage systems. With

the emergence of a new generation of social and mobile

applications built on graph data stores or graph data model

implemented on legacy database technology, the knowledge

about graph traversal based queries can be exploited to de-

vise efficient caching policies that are graph topology aware.

Simultaneously, the policy must address metadata properties

that come with nodes1 and edges in the graph, since query

predicates are often imposed on those properties to select next

steps in the traversal.

Among the use cases of graph data store such as social

networks, knowledge representations, and Internet of things,

while their respective graph topology may be small and fit on

a single server, adding all the metadata properties easily drives

up computing and storage requirements beyond the capacity of

1In the rest of this paper we use the terms “node” and “vertex” interchange-
ably.

one server. The context of our investigation thus is anchored

on scale out, big data clusters in which the graph and its

data is partitioned horizontally across servers in the cluster.

We assume topology and metadata about a node or edge

are co-located since they are most often accessed together.

In addition, as reflected in real-world workload, updates to

change graph topology are allowed, which makes one-time

static graph clustering less beneficial.

Figure 1 illustrates the context in which our cache solutions

fit. The graph data is partitioned and distributed over a cluster

of servers with low communication latency. Each distributed

node hosts its own data cache and manages the data with

the knowledge of local vs. remote graph data. The local data

could be found either in the memory cache or in the persistent

medium such as disks. A client submits a query to the server

hosting the queried root node and the server communicates

with its peers to process the client’s query.

Fig. 1: Cache layer is located between graph storage and

distributed processing node. Cache layer knows if a graph file

is local or remote and designed to fetch and evict items with

graph aware optimization.

Our main contributions in this paper can be summarized as

follows:

• We point out that distributed graph stores encounter

performance bottlenecks due to slow disk and network

accesses. Since optimal graph partitioning problem is
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known to be NP-Hard we propose a practical solution

to cope with this problem.

• We discuss inefficiencies of popular cache policies in pro-

cessing graph queries through qualitative and quantitative

measures.

• We propose a novel cache design which is both graph

access and data partition aware.

• We demonstrate how to improve the hit ratio of existing

caching policies by exploiting the topology information.

• We present a robust implementation of our algorithms

on top of Apache HBase, a horizontally scaling dis-

tributed storage platform through its Coprocessor com-

puting framework [1].

• We run our experiments on 10 different real datasets and

present detailed experiment results.

The rest of the paper is organized as follows. We first

discuss the related work on cache and graph literature in

Section II. Then we discuss the graph implementation on big

data platform in Section III. Our proposed graph aware cache

is presented in Section IV and we evaluate its performance on

real social network datasets in Section V. Finally, Section VI

concludes the paper.

II. RELATED WORK

Many major large scale applications rely on distributed key-

value stores [2], [3], [4], [5]. Meanwhile, distributed graphs

are used by many web-scale applications. An effective way to

improve the system performance is to deploy a cache layer.

Facebook utilizes memcached [6] as a cache layer over its

distributed social graph. Memcached is a general-purpose dis-

tributed memory cache which employs LRU (see Section IV-B

for further details) eviction policy [7] where it groups data

into multiple slabs with different sizes. Neo4j [8] is a popular

open-source graph database with the ability to shard data

across several machines. It provides two levels of caching [9].

The file buffer cache caches the Neo4j durable storage media

data to improve both read and write performance. The object

cache caches individual vertices and edges and metadata in a

traversal optimized format. The object cache is not aware of

graph topology and facilitates LRU as for the eviction policy.

On the other hand, Facebook’s distributed data store [10],

called TAO, is designed to serve as a cache layer for Face-

book’s social graph. It implements its own graph data model

and uses a database for persistent storage. TAO is the closest

work in the literature to our study. TAO keeps many copies of

sharded graph regions in servers called Followers and provides

consistency by using single Leader server per graph shard to

coordinate write operations. TAO employs LRU eviction policy

similar to memcached.

Pregel [11] provides a system for large-scale graph process-

ing, however, it does not provide a caching layer. It touches

on poor locality in graph operations while we study on how to

obtain high locality and achieve it through prefetching using

graph topology information. Neither TAO nor other studies

exploit graph characteristics but they handle graph data as

ordinary objects. Thus, our study is novel in the sense that

it exploits graph specific attributes.

In order to reduce the latency of access in distributed graphs

replication based solutions are also proposed in the literature.

Mondal et al. in [12] propose an aggressive replication method

for low latency querying. The proposed solution however

assumes that the graph data resides in the memories and

does not distinguish the latency difference between disk and

network. Also the replication decision is made for a single

node, whereas in our caching policy more than one hop away

neighbors could be cached. The third problem is that the

proposed algorithm requires keeping track of a histogram

of read/write requests for each graph node which could be

expensive to maintain.

III. DISTRIBUTED GRAPH HANDLING WITH

APACHE HBASE

We model interactions between pairs of objects, including

structured metadata and rich, unstructured textual content,

in a graph representation materialized as an adjacency list

known as edge table. An edge table is stored and managed

as an ordered collection of row records in an HTable by

Apache HBase [1]. Since Apache HBase is relatively new

to the research community, we first describe its architectural

foundation briefly to lay the context of its latest feature known

as Coprocessor, which our algorithms make use of for graph

query processing.

A. HBase and Coprocessors

Apache HBase is a non-relational, distributed data manage-

ment system modeled after Google’s BigTable [13]. HBase is

developed as a part of the Apache Hadoop project and runs

on top of Hadoop Distributed File System (HDFS). Unlike

conventional Hadoop whose saved data becomes read-only,

HBase supports random, fast insert, update and delete (IUD)

access.

Fig. 2 depicts a simplified diagram of HBase with several

key components relevant to this chapter. An HBase cluster

consists of master servers, which maintain HBase metadata,

and region servers, which perform data operations. An HBase

table, or HTable, may grow large and get split into multiple

HRegions to be distributed across region servers. HTable split

operations are managed by HBase by default and can be

controlled via API also. In the example of Fig. 2, HTable

1 has four regions managed by region servers 1, 2 and 10

respectively, while HTable 2 has three regions stored in region

servers 1 and 2. An HBase client can directly communicate

with region servers to read and write data. An HRegion is a

single logical block of record data, in which row records are

stored starting with a row key, followed by column families

and their column values.

HBase’s Coprocessor feature was introduced to selectively

push computation to the server where user deployed code can
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Fig. 2: An HBase cluster consists of one or multiple master

servers and region servers, each of which manages range

partitioned regions of HBase tables. Coprocessors are user-

deployed programs running in the region servers. Cache is

used by coprocessors and distributed with graph regions.

Cache is located between Coprocessor and HRegions and

HRegion accesses are first handled by cache layer.

operate on the data directly without communication overheads

for performance benefit. The Endpoint Coprocessor (CP) is

a user-deployed program, resembling database stored proce-

dures, that runs natively in region servers. It can be invoked

by an HBase client to execute at one or multiple target regions

in parallel. Results from the remote executions can be returned

directly to the client, or inserted into other HTables in HBase,

as exemplified in our algorithms.

Fig. 2 depicts common deployment scenarios for Endpoint

CP to access data. A CP may scan every row from the start to

the end keys in the HRegion or it may impose filters to retrieve

a subset in selected rows and/or selected columns. Note that

the row keys are sorted alphanumerically in ascending order

in the HRegion and the scan results preserve the order of

sorted keys. In addition to reading local data, a CP may be

implemented to behave like an HBase client. Through the

Scan, Get, Put and Delete methods and their bulk processing

variants, a CP can access other HTables hosted in the HBase

cluster.

B. Graph Processing on HBase

We map the rich graph representation G = {V,E,M,C}
to an HTable. We first format the vertex identifier v ∈ V
into a fixed length string pad(v). Extra bytes are padded to

make up for identifiers whose length is shorter than the fixed

length format. The row key of a vertex v is its padded id

pad(v). The row key of an edge e = {s, t} ∈ E is encoded

as the concatenation of the fixed length formatted strings

of the source vertex pad(s), and the target vertex pad(t).
The encoded row key thus will also be a fixed length string

pad(s) + pad(t). This encoding convention guarantees that a

vertex’s row immediately precedes the rows of its outbound

edges in an HTable. Fig. 2, includes a simple example of

encoded graph table, whose partitioned HRegions are shown

across three servers. In this table, a vertex is encoded as a

string of three characters such as ‘A10’, ‘B13’, ‘B25’, ‘A21’,

etc. A row key encoded like ‘A10B13’ represents a graph edge

from vertex ‘A10’ to ‘B13’.

k-hop neighbors queries in Section V are implemented in

several HBase Coprocessors to achieve maximal parallelism.

When non-local vertex neighbors are to be read, a Coprocessor

instance issues a neighbors read message to the remote HBase

region server, which reads and returns the neighbors.

IV. CACHE POLICIES

We implemented a graph library on top of Apache HBase

and used commodity servers for experimentation. The im-

plementation details of these system and some use cases

are described in [14], [15], [16]. While running our graph

algorithms on top of this platform, we experienced that a

substantial amount of memory on our servers is available for

use. Execution of graph algorithms typically require passing

the state information between arbitrary graph nodes which

can be located on different physical machines. Even if a bulk

message passing protocol is executed between the machines

as in Pregel, co-locating the neighboring graph nodes in same

machines can bring significant performance advantages. Hence

we concluded that available memory space can be exploited

for caching purposes. One can argue that existing distributed

file system caches can be leveraged for reducing the cost of

back and forth communication cost between physical servers.

However, as we show in our experiments a graph aware

caching policy would perform much better than traditional

caching policies. The main reasoning behind this claim is that

a graph aware cache will know the graph access patterns while

executing the queries. For instance accessing the neighbors of

a node is a strong indication that the neighbors of neighbors

of this particular node will also get accessed soon. Therefore

a topology aware caching scheme can exploit this opportunity.

Another problem with distributed caches is that the cache pol-

icy may not know whether the graph nodes and edges residing
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in the cache are retrieved from the local machine’s disk or

from a remote machine located in the cluster. Considering

the latency of access to either of these locations can benefit

the caching algorithm to reduce the latency penalty while

executing the graph queries. Before explaining the details of

our algorithm we first provide an overview of existing caching

schemes.

Cache systems in general aim to predict future data access

requests and optimize its resources accordingly. In order to

accomplish that goal two data access patterns are considered:

1) spatial locality, which indicates that future data accesses

will target spatially close data to current accesses.

2) temporal locality, which means that future data ac-

cesses will target the same data currently accessed.

Spatial locality pattern is used to prefetch data into cache

before it is not even accessed for the very first time. Temporal

locality pattern on the other hand aims to keep already

accessed data in cache to cater for possible future requests

received under cache size limitation. Below we discuss how

these two techniques can be extended to improve performance

of graph processing in distributed graph infrastructures.

A. Exploitation of Spatial Locality for Graph Processing

Generic cache algorithms assume that iteration over logical

data order is correlated to physical data order in lower layer in

cache hierarchy. For instance, let’s consider an iteration over

the elements of an array a with an index variable i. While

iterating over a, access to a[i] proceeds with an access to

a[i + 1] where a[i] and a[i + 1] are physically co-located in

the lower level storage medium. Thus, prefetching a[i + 1]
upon fetching a[i] would prevent a cache miss due to right

prediction of future access.

In contrast to accessing array elements in a sequential

fashion, graph traversals do not follow a physical data order

in lower cache layers or storage medium. Graph traversal is

correlated with graph topology rather than its storage pattern.

Hence, prefetching the next element in storage layout would

be a poor prediction method while processing the graphs.

Majority of the graph algorithms such as k-neighborhood, k-

egonet, shortest path require an iterative processing through

the neighbor nodes. Therefore, prefetching either one hop or

multiple hop neighbors of a particular graph node that is being

accessed would increase the hit ratio dramatically. As we

discuss below, we designed our caching algorithm with this

observation in mind.

B. Eviction Algorithms

According to the temporal locality concept, currently re-

quested data will be requested again in the near future. Based

on this assumption, keeping every requested item in the cache

would maximize the temporal locality benefit. However, that

would not be a feasible approach because of the limited cache

space of conventional servers. After inserting the requested

items, the cache area gets full and an eviction mechanism is

executed to claim empty space. If an evicted item is requested

in the future, a cache miss occurs. Therefore, eviction algo-

rithms are designed to minimize the cache misses in order

to reduce the penalty of accessing the requested item from

a slower medium. Below we briefly explain existing caching

policies and later we describe our suggested caching policy

for distributed graph platforms.

Least Recently Used (LRU) algorithm [8], [10], [7] is the

most popular eviction policy in the literature. LRU keeps track

of access order and selects the least recently used item for

eviction.

Largest Item First (LIF) algorithm is item size sensitive

where it evicts largest item in the cache. Evicting largest

item allows cache to store several small items. This algorithm

does not assume any correlation with item size and its access

frequency.

Smallest Item First (SIF) algorithm is also item size

sensitive and it evicts the smallest item in the cache. Thus, the

algorithm tries to minimize miss penalty where small items are

fetched faster than large items.

LRU algorithm is designed to keep track of recency of

access to improve the hit ratio. Largest item first and smallest

item first algorithms on the other hand considers the size of

the items in the cache for making the decision of which items

should be evicted. None of these algorithms however takes

into account the topology of graph as well as the latency of

access to the items. In a distributed graph architecture the

requested items can be found either in a slow medium in

the local machine or in a remote server. One can consider

the latency of access to the location of the graph nodes

while making the decision of eviction. Below we propose a

novel caching algorithm suited for distributed graph platforms

called “Clock Based Graph Aware algorithm” which aims to

consider multiple factors while evicting items from the cache.

As we discuss further details the goal of the algorithm is to

minimize the access latency for multiple graph nodes rather

than maximizing the hit ratio.

C. Clock Based Graph Aware Cache (CBGA)

Distributed graph processing has its own unique challenges

when it comes to designing a caching algorithm. One has to

take into account many factors such as locality and size of

graph components, access patterns and topology of the graph.

Below we discuss these factors in more detail and explain how

these parameters can be considered in a caching policy.

1) Local/remote placement: On a single server, the graph

nodes and edges can be located either in disk or in

memory. However in a distributed platform the graph

components can be found in different locations. These

are local memory, local disk, remote memory or remote

disk. If we know that bringing a data item from a remote

server will be costlier than a local cache miss then the

item brought from a remote server might have a higher
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Algorithm 1: AdmissionPolicy

1: upon get(Vertex v)

2: put_cache(v, v.neighbors())
3: for vertex u in v.neighbors() do
4: put_cache(u, u.neighbors())
5: end for

Iteration over a graph makes access to spatially next element in graph
topology.

priority to stay in the cache compared to the local data

items.

2) Metadata size: Graph vertices typically have different

number of neighbors and variable metadata sizes. For

instance in a social networking graph a popular pop

star can have millions of followers whereas many of the

individuals might have less than a hundred followers.

Also a user might have many metadata information

compared to others. Therefore the size of a graph node

together with its metadata can be quite different from

other nodes in the graph.

3) Uneven access probabilities: Graph vertices have differ-

ent centrality/popularity in networks. Thus some central

items are requested more frequently than others. Similar

to our previous example a popular user in a social

networking site could get much more hit than some

ordinary users. The caching policy should take this into

account as well.

4) Iteration on topology: Many of the graph traversal

algorithms require passing the state information along

the neighbors of vertices. Accessing a node will imply

that its neighbors and also their multi-hop neighbors will

also get accessed.

We introduce a new caching policy called, clock-based

graph aware caching (CBGA), that takes into account the

aforementioned factors. The algorithm aims to exploit spatial

locality of the graphs to handle topological closeness instead of

storage level co-location. Whenever a graph node is accessed

its one hop away neighbors as well as neighbors of neighbors

are retrieved and put into the cache. Also all edges connect-

ing these nodes and metadata associated with these edges

are stored along this graph node. Prefetching neighbors of

neighbors helps popular items to be cached earlier. The details

of this admission policy is also described in Algorithm 1.

Note that this method brings the multi-hop neighbors of the

requested node regardless of their physical location in the

system.

Once a graph node is put into the cache a time-to-live value

(TTL) is assigned (See Algorithm 2 for the assignment of

TTL). The TTL value is used to determine when to evict

an item from the cache. Once the cache is full the eviction

mechanism is executed to claim empty space. A clock pointer

iterates through the items in the cache in a circular fashion.

Algorithm 2: TTLAssignment

1: upon put_cache(v,...) call

2: if v ∈ local_partition then
3: latency ← LOCAL_ACCESS_LATENCY
4: else
5: latency ← REMOTE_ACCESS_LATENCY
6: end if
7: size ← get_size(v)
8: distance ← get_distance(v, s)
9: TTLv ← latency

(size∗distance)
10: TTLv ← normalize(TTLv)
11: return

The TTL value for each cached item is computed at item cache time and
normalized to fall into [1-250] range.

If the cache is full the eviction process starts and removes the

items from the cache until enough empty space is claimed 2.

Once the eviction process kicks off the TTL value of the cache

entries the clock is pointing is reduced by one. If the TTL
value of an item reaches zero it is evicted from the cache. The

eviction process is described in Algorithm 3. The TTL value

is computed using the following formula:

TTL =
l

s ∗ d (1)

where l is the average duration (latency) to fetch an item into

the cache from either local server or from a remote server,

d is the hop distance between this particular graph node and

the graph node that is being queried, and s is the size of the

cached item. As the latency parameter, l, increases, a bigger

TTL value is assigned which makes it harder to remove the

graph node from the cache. For instance if the access latency

for a remote graph node is costlier than bringing it from a

local disk then a higher priority can be given to remote graph

nodes. In our graph platform implemented on HBase it is

easy to distinguish local and remote graph nodes as they are

partitioned into ordered key regions. Note that a remote item

could be either in the cache of the remote server or the remote

disk. In order to know if a remote item is in the remote cache

or not servers can periodically broadcast a Bloom filter of their

cache content and other servers can check if the requested item

is in the remote cache or disk. Based on that the latency of

access can be determined. A second option to estimate the cost

of bringing a remote item would be to calculate the expected

cost. If the average remote cache look up hit ratio is known,

then the latency could be estimated by adding the network

traversal cost on top of the disk IO cost multiplied by the hit

ratio. For instance if the network traversal cost is 20ms and

the disk IO cost is 10ms and the hit ratio is about 60%, then

2In our experiments the eviction process was executed until 20% of the cache
was claimed to be empty.
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the expected remote look up cost would be calculated as 20

+ (10 * 40/100) = 24ms.

On the other hand as the distance parameter, d, gets bigger

the probability of accessing the graph node will be reduced.

For instance if the information of a person in a social graph

is retrieved it is expected that the immediate neighbors of the

person have a higher chance of being accessed than second

order friends, which is also called friends-of-friends. Note that

if the total distance of a node to all others is relatively small

then a higher TTL value will be assigned to this node, thus

higher closeness centrality provides a higher cache duration.

In our experiments we noticed that considering this aspect

increases the hit ratio dramatically.

The third parameter s is inversely proportional to TTL. It

helps assigning higher priority to the graph nodes with smaller

sizes. As the metadata size of a particular graph node increases

it will occupy more space in the cache which will reduce the

number of graph nodes cached. Thus, the larger vertices in the

cache are more likely to be evicted based on this algorithm.

In our experiments we used milliseconds and bytes as for the

unit of the parameters l and s respectively. The normalize
procedure scales up the computed TTL value to make sure it

is bigger than or equal to 1.

Algorithm 3: EvictionPolicy

1: upon CBGA_evict() call

2: while TRUE do
3: for item u in cache.items() starting from last index

do
4: TTLu ← TTLu − 1
5: if TTLu ≤ 0 then
6: evict(u)
7: return
8: end if
9: end for

10: end while
When the cache requires the eviction policy to evict items, for each item in
the cache TTL is decreased by one and the item is evicted if TTL is less than
1. Eviction iterations continue until an item is evicted.

CBGA uses eventual consistency model for cache co-

herency, a relaxed consistency model that is described by Terry

et al. [17] and discussed by Werner [18]. Any item in the cache

is associated with a TTL value which eventually decreases to

zero and causes the item to be evicted. Essentially, any change

on items is reflected to the cache after a sufficient period of

time which is acceptable for many social network applications,

e.g., Facebook [10]. Thus, all copies of an item in the cache

will be consistent and reflect all updates to the item.

V. PERFORMANCE EVALUATION

In order to assess the performance of the proposed caching

algorithm we installed Apache HBase on top of a cluster and

loaded 10 different real graph data crawled from different

TABLE I: Key characteristics of the datasets used in the

experiments

Name Vertex Count Bidirectional Edge Ref
Count

Twitter 1.1 M 170 M [19]
Orkut 3.1 M 234 M [20]
LiveJournal 5.2 M 144 M [20]
Flickr 1.8 M 44 M [20]
Patents 3.8 M 33 M [21]
Skitter 1.7 M 22.2 M [21]
BerkStan 685 K 13.2 M [21]
YouTube 1.1 M 9.8 M [20]
WikiTalk 2.4 M 9.3 M [21]
Dblp 317 K 2.10 M [21]

social networking sites. Our experiments show that CBGA

outperforms all other caching policies in terms of both hit ratio

and overall execution time. We also modified existing caching

schemes to make them topology aware. Our experiments

prove that the hit ratio of existing caching algorithms can be

improved significantly by considering the structure of graphs

as well.

A. System Setup and Datasets

We stored our graphs on top of Apache HBase platform and

used the data representation model described in Section III-B.

We implemented the graph algorithms using HBase Copro-

cessors in order to take advantage of distributed parallelism.

HBase Coprocessors can access to local and remote cache

areas.

Our cluster consists of 1 master server and 5 slave servers,

each of which is a c3.large instance running Linux on Amazon

EC2. C3 instances are typically used for high performance

computing applications such as distributed analytics, web-

servers, front-end fleets etc.. Each c3.large instance comes

with 2 Intel Xeon E5-2680 processors, 3.75GB memory space

and two flash based SSDs with 16GB space in each. We use

vanilla HBase environment running Hadoop 1.0.3 and HBase

0.94 with data nodes and region servers co-located on the

slave servers. We used Ganglia distributed monitoring system

to generate reports of CPU, memory, network and disk usage.

We have not observed any interference from other processes

on the cluster that can affect our performance results.

In our experiments we used 10 different real datasets

crawled from different web sources. Some of the datasets

are crawled from popular social networking cites such as

Twitter, Orkut, LiveJournal and YouTube. The datasets were

made available by Milove et al. [20], Social Computing Data

Repository at ASU [19], and the Stanford Network Analysis

Project [21]. We briefly recap the key characteristics of the

datasets in Table I. More details about the datasets can be

found in the references included in Table I. To emulate real

world content rich graph edges, the datasets were prepared

with a random text string attached to each edge. The size of

the random text string varies between 100 bytes and 1KB.
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Fig. 3: Overall Hit Ratio and Workload Execution Time for

Twitter dataset

Fig. 4: Direct Hit Ratio and other statistics for Twitter dataset

B. Experiments

We implemented the cache policies discussed in Section IV

in HBase Coprocessors. Whenever a k-hop neighbor search

query is received by HBase, the request is forwarded to the

region server where the originating vertex is located. First hop

away neighbors of this vertex are looked up in the cache. If any

of them is not found then the vertex is requested either from

the local region server or from other region servers running

on other physical servers. The traversal of the subsequent

searches continue likewise. For CBGA algorithm each cache

miss is handled according to Algorithm 3. When the cache is

Fig. 5: Indirect Hit Ratio and other statistics for Twitter dataset

Fig. 6: Remote Hit Ratio and other statistics for Twitter dataset

full, the eviction policy is executed. The prefetching algorithm

described in Algorithm 1 can be applied to the other caching

policies we mentioned in Section IV. For instance, when a

vertex is accessed from the cache, its one hop and two hop

away neighbors can be brought and inserted into the cache

even if an LRU, LIF or SIF algorithm is used as for the

caching policy. In our experiments we observed that this

prefetching techniques yield about 2X improvement in hit

ratio. For the sake of fairness we implemented LRU, LIF or

SIF with the prefetching technique and compared them with

CBGA algorithm. For LRU algorithm we also implemented a

version without this improvement to distinguish the benefit of
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prefetching. In our experiments we show the results for both

of these LRU implementations.

In order to prepare the query workload we examined the

social network benchmarking tool LinkBench developed by

Facebook [22]. The benchmark basically generates random

k-hop queries and creates a query workload. Similar to

this benchmark we generated 10000 random k-hop neighbor

queries on each social network dataset where the originating

vertex for the queries are selected randomly from the graph.

We set an upper limit of 10000 vertices for the query result

in order to prevent a single query to stall a region server. This

could be the case when a very popular vertex in the graph

(also called as supernova) is queried. In each Coprocessor we

allocated a 10MB of memory heap space as the cache area.

In the first experiment we ran the query workload on Twitter

dataset with different caching policy implementations and

measured both hit ratio and execution time. The experiment

results are shown in Figure 3. The left vertical axis shows

the hit ratio and the right vertical axis shows the execution

time. The difference between LRU and LRU-SP is that the

former one does not have the prefetching feature whereas

the latter one does have prefetching. The experiment results

prove that CBGA policy achieves the highest hit ratio among

all other caching policies. Another interesting observation is

that the prefetching technique described in Algorithm 1 yields

significant improvement in terms of hit ratio not just for

CBGA but also for all other caching policies. Nevertheless

the execution time of the workload is significantly faster than

all other caching policies because of the distinction of the

latency difference between local and remote accesses. For

instance in LRU-SP, LIF and SIF the hit ratio is almost as

high as CBGA but the execution time is much slower. This

is an indication that these algorithms does not distinguish

the graph nodes brought to the cache from local or remote

servers. Another interesting observation is that despite the hit

ratio improvement in LRU-SP the execution time does not

change much compared to regular LRU. This also attributes

to the previous reasoning which is about distinguishing local

and remote resources. As a summary of this experiment we

conclude that considering the topology as well as latency

provides significant speed up in terms of performance.

When a particular vertex is looked up in the cache, this

request could be originated from three different request types.

First, the vertex could be the starting vertex for the graph

traversal which is directly requested by the user. We call this

look up as “direct look up”. The second option is that when a

vertex is requested from the cache, the prefetching mechanism

described in Algorithm 1 kicks in and brings its one hop

and two hop neighbors into the cache. While executing the

prefetching, the vertices are first looked up in the cache. This

type of cache look up is called “indirect look up”. When

a requested item is not found in the cache, the request is

forwarded into another region server. Once a region server

receives a loop up request from another region server, it first

Fig. 7: Speedup achieved for each dataset when CBGA and

LRU policies are compared.

checks its cache to see if it is found in the cache. This type of

request is called “remote look up”. For each of these request

types we had two types of counters for keeping track of

accesses. For direct look up requests we monitor direct hit

counts and direct miss counts. If a directly requested item is

found in the cache direct hit count is incremented. Otherwise

direct miss count is incremented. These statistics are provided

in Figure 4. Direct access count shows the number of total

direct access requests submitted to the cache. Direct hit ratio is

computed by dividing the number of hits into the total number

of direct access requests. Similarly indirect access requests

as well as remote access requests are shown in Figure 5 and

Figure 6 respectively. The hit ratio shown in Figure 3 includes

aggregate hit ratio for all three types of requests. Note that

the indirect access count of LRU is 0 in Figure 5. This is

because the basic implementation of LRU does not have the

prefetching improvement. LRU-SP shows the indirect access

counts when LRU is used with the prefetching feature. One

interesting observation is that even if the remote hit ratio for

CBGA algorithm is less than others the overall execution time

of CBGA is significantly smaller due to the distinction of

latency of accesses.

We repeated the same experiment with other datasets but

did not observe a notable hit ratio difference between dif-

ferent datasets. As for the execution time we compared the

overall execution time of CBGA versus LRU and provided the

speedup for all datasets in Figure 7. The speedup is computed

by dividing the execution time of LRU by the execution time

of CBGA. For each dataset we observed substantial speed up

(about 15X in the best case). It is worth noting that in each

of these experiments we observed a different speed up for

different datasets. The datasets used in the experiments are
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Fig. 8: Workload execution times under long runs for Flickr

dataset.

real graphs from different domains. For instance Twitter is a

social network, BerkStan is a web graph while Patents is a

citation network among US Patents. Each of these graphs has

different characteristics such as degree distribution, topology

etc., which result in different performance results. Nonetheless,

we observed that CBGA caching outperforms LRU based

caching for each of these datasets.

We also repeated our experiments with longer workloads

to see the impact of change in the cache content. Figure 8

presents the performance of the policies under long runs for

Flickr dataset. For increasing number of queries from 10K to

100K, we observe that CBGA policy provides stable lowest

execution time.

In another experiment setting we ran the workload similar

to the previous experiments but this time we measured the

execution time of each individual query submitted to the

system. Experiment results for Flickr and Twitter datasets are

shown in Figure 9. The results prove that during the warm

up period the execution time decreases dramatically. Once the

warm up is over the execution time stabilizes. Since queries

are randomly selected and their overhead is not equal (e.g.,

a vertex might have 10 neighbors in two hops while another

vertex have 10000 neighbors in two hops) we observe some

fluctuation in individual query times. Thus, we also computed

the average execution time for the last 10 queries. Experiments

for other datasets are not shown here since we observed similar

warm up pattern.

We also computed the average number of queries executed

per minute which is shown in Figure 10. After the completion

of the warm up period, a significant improvement in through-

put is observed.

(a) Flickr

(b) Twitter

Fig. 9: Average query time is decreased while cache warms up

for (a) Flickr and (b) Twitter datasets. The average execution

time is calculated by using the last 10 queries instead of

individual queries.

VI. CONCLUSION

To the best of our knowledge, this study is the first to

propose a graph aware caching scheme for efficient graph pro-

cessing in horizontally scaling solutions on big data platforms.

We proposed a clock based graph aware cache (CBGA) system

with cache and eviction algorithms designed with distributed

graph processing context in mind. We ran experiments on

our HBASE cluster, which demonstrate up to 15x speedup

compared to traditional LRU based cache systems.
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(a) Flickr

(b) Twitter

Fig. 10: The number of queries processed per minute increases

while the cache warms up for Flickr and Twitter datasets.

We provided a distributed implementation of the caching

algorithms on top of Apache HBase, leveraging its horizontal

scaling, range-based data partitioning, and the newly intro-

duced Coprocessor framework. Our implementation fully took

advantage of distributed, parallel processing of the HBase

Coprocessors. Building the graph data store and processing

on HBase also benefits from the robustness of the platform

and its future improvements.
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