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ABSTRACT
Query forwarding is an important technique for preserving
the result quality in distributed search engines where the in-
dex is geographically partitioned over multiple search sites.
The key component in query forwarding is the thresholding
algorithm by which the forwarding decisions are given. In
this paper, we propose a linear-programming-based thresh-
olding algorithm that significantly outperforms the current
state-of-the-art in terms of achieved search efficiency values.
Moreover, we evaluate a greedy heuristic for partial index
replication and investigate the impact of result cache fresh-
ness on query forwarding performance. Finally, we present
some optimizations that improve the performance further,
under certain conditions. We evaluate the proposed tech-
niques by simulations over a real-life setting, using a large
query log and a document collection obtained from Yahoo!.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Search engines, distributed IR, query forwarding, optimiza-
tion, linear programming, index replication, result caching

1. BACKGROUND
Commercial web search engines of the past relied on a sin-

gle search site (data center), which processed queries issued
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from all around the world. This approach had the typical
scalability problems in centralized architectures. Moreover,
queries issued from distant locations suffered from poor re-
sponse times as the network latency between the user and
the site became an issue. For such queries, either the query
processing times had to be shortened, thus degrading the
result quality, or users experienced unreasonable response
times, which had implications on user satisfaction [16].

At this point, replicating the data (i.e., the web collec-
tion and the inverted index built upon it) over multiple,
geographically distant search sites emerged as a feasible so-
lution. In this strategy, each geographical region is mapped
to a nearby search site. A search site processes over its full
web index only the queries originating from the regions as-
signed to itself1. Although this strategy reduces network
latencies, the scalability still remains as an issue since the
entire web index had to be maintained on all search sites
and queries are evaluated over the full web index.

A strategy that contrasts replication is to partition the
data disjointly and assign each site only the documents ob-
tained (crawled) from its region [8]. In this strategy, local
queries of a region are evaluated over the partial index in
the corresponding search site. The underlying assumption
here is that users are interested more in documents located
in their own region and local documents are more relevant
for queries originating from the same region. As queries are
now evaluated over small subsets of the web index, gains are
possible in query processing time and throughput [8], along
with other gains, such as those in web crawling [9].

Unfortunately, although the assumption about having high
relevance between the documents and queries of the same
region is reasonable, this is not true for all queries as some
queries target non-regional documents [4]. This implies that
evaluation over a partitioned index will lead to inferior search
quality as some relevant, non-local documents are not re-
trieved. The problem of accessing non-local documents has
two immediate solutions: taking the data to where it is
sought and/or taking the queries to what they seek. The
first is an offline solution that requires partial replication of
the popular documents in a region on some non-local search
sites. The second is an online solution that requires selective

1Herein, we refer to such queries as local queries.
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forwarding of queries between search sites to extend cover-
age of search results. Our focus in this paper is on the latter
approach, but we briefly touch to the former as well.

Selective query forwarding works as follows. The local
search site receives a query and makes a decision about the
quality of the locally computed results (relative to globally
computed results, which would have been obtained through
evaluation over the full index). If it is predicted that the
local ranking misses some documents that would have ap-
peared in the global ranking, a forecast is made about which
search sites might have those documents. The query is then
forwarded to those sites for further processing over non-local
indexes and more results are retrieved. Finally, non-local
and local results are merged and returned to the user.

The predictions made may lead to false positives (the
query is forwarded to a site with no useful results, thus de-
grading performance) as well as false negatives (the query
is not forwarded to a site with useful results, thus degrad-
ing the search quality). In this paper, our focus is on query
forwarding techniques that preserve the search quality, i.e.,
those with no false negatives. This requires correctly iden-
tifying all search sites that will contribute to the global top
k. In the mean time, the number of contacted sites with no
useful results should be kept minimal as this has an impact
on the performance and overall costs of the search engine.

A recent study [3] has proposed a thresholding technique
that preserves the search quality while reducing the number
of sites contacted. In this work, we build upon that work
and propose a new thresholding algorithm that substantially
improves the algorithm in [3] in terms of efficiency. Our al-
gorithm has an offline phase, in which past user query logs
are used to create offline queries, for which the maximum
possible score attainable on each site is precomputed and
globally replicated. In the online phase, this information is
used in a linear programming (LP) formulation to set upper
bounds on possible non-local site scores for new queries. For-
warding decisions are given based on comparisons between
these bounds and the kth top score on the local site.

The following are the contributions of this paper:
• We describe an LP-based thresholding algorithm that

significantly outperforms the current state-of-the-art [3].
• We evaluate a heuristic for partial index replication.
• We investigate the impact of result caching and cache

freshness on query forwarding performance.
• We present several optimizations that provide further

performance improvements under certain conditions.
The rest of the paper is organized as follows. Section 2

presents the considered geographically distributed search en-
gine architecture and the associated query forwarding prob-
lem. We describe the proposed thresholding algorithm in
Section 3. Experimental framework is given in Section 4.
Section 5 provides the performance results. Further opti-
mizations are proposed and evaluated in Section 6. Related
work is surveyed in Section 7. We conclude in Section 8.

2. QUERY FORWARDING PROBLEM

2.1 Architecture
We consider a distributed architecture with N geographi-

cally distant search sites, where each site is assigned a nearby
geographical region and is responsible for crawling and in-
dexing only the documents in its assigned region. That is,
the global web index is disjointly (document-based) parti-
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Figure 1: A geographically distributed search engine
architecture with query forwarding.

tioned into N local indexes, and each local index is uniquely
assigned to a search site. Also, each site is assigned the task
of generating the top k results for queries issued from its
own region and returning these results to its users.

A query is processed as follows (Fig. 1). The query is first
issued to the local site, which evaluates the query over its
partial index and computes a local top k result set. Then, a
check is made to determine whether the global ranking over
the full web index would bring results that are of higher
quality than those in the local top k set. If it is guaran-
teed that the local top k set is identical to the global top
k set, local results are immediately returned to the user.
Otherwise, the local site identifies the non-local sites that
store the documents that are missing in the local top k, but
may appear in the global top k. The query is forwarded to
those sites to retrieve missing results. When a non-local site
receives a forwarded query, it processes the query over its
own local index and generates a top k set. This result set
is then transferred back to the local site, which forwarded
the query. In the mean time, the local site waits for replies
from all non-local sites that are contacted. Once all remote
top k sets are received, they are merged2 at the local site to
generate a global top k set, which is returned to the user.

2.2 Problem
The problem in selective query forwarding is to decide

which search sites are likely to contain relevant results for
the query and if retrieving those results will improve the re-
sults of the local site. If a query is forwarded to a non-local
site and none of the returned results get into the final re-
sult set, the non-local site becomes unnecessarily burdened.
Moreover, a delay is introduced in the query response time.
On the other hand, if a non-local site had documents that
would have appeared in the global result set but the query
is not forwarded to that site, those documents are missed in
the final result set and hence the search quality degrades.

The difficulty in the query forwarding problem is in cor-
rectly identifying which queries need to be forwarded and to
which sites. Herein, we focus on solutions that preserve the
search quality, i.e., the final result set returned to the user is
guaranteed to be identical to the global top k set computed
over the full web index. Hence, our objective is to mini-

2Result sets are merged according to document scores. We
assume that global collection statistics are available on all
sites, and scores generated by different sites are compatible.
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mize any form of redundancy and inefficiency incurred by
forwarding decisions that do not improve the search quality.

2.3 Performance Metrics
Let QL and QF be the sets of locally processed and for-

warded queries, respectively. Let F q denote the set of non-
local sites that query q is forwarded to. We employ two per-
formance metrics: the fraction α of locally processed queries

α =
|QL|

|QL|+ |QF|
, (1)

and the average number β of non-local sites hit per query

β =

P
q∈QL∪QF

|F q|
|QL|+ |QF|

. (2)

In addition to these metrics, we measure the average query
response time and the average query processing workload
(relative to query processing over the full index) of the search
engine. Since all of our optimizations are quality-preserving,
herein, we do not use a result quality metric (e.g., P@k).

Let q denote a query submitted by some user uq to a local
search site Ŝq, and let S̃i∈F q, where 1≤ i≤|F q|. Also, let Ī,

Îq, and Ĩi denote the global index, the local index of Ŝq, and
the local index of S̃i, respectively. If a query is processed
locally, there are mainly two cost components in the query
response time3. The first cost (steps 1 and 6 in Fig. 1) is

the user-to-site network latency `(uq, Ŝq), which is incurred

while q is transferred from uq to Ŝq and also while the final
results are transferred from Ŝq to uq. The second cost (step

2 in Fig. 1) is the computational cost t(q, Îq) of processing

q over Îq. The query response time then becomes

TL(q) = 2×`(uq, Ŝq) + t(q, Îq). (3)

If the query is forwarded, then there are two additional costs.
The first cost (steps 3 and 5 in Fig. 1) is the site-to-site net-

work latency `(Ŝq, S̃i), which is incurred while q is trans-

ferred from Ŝq to S̃i and also while non-local results are
transferred from S̃i to Ŝq. The second cost (step 4 in Fig. 1)

is the non-local query processing cost t(q, Ĩi), i.e., the cost

of processing q remotely on Ĩi. The response time becomes

TF(q) = TL(q) + max
S̃i∈F q

(2×`(Ŝq, S̃i) + t(q, Ĩi)). (4)

In Eq. (4), we take the maximum of all remote response
times since queries are transferred to non-local sites at the
same instant and the highest remote response time deter-
mines the waiting time of the local site. We can now com-
pute the average query response time Tavg as

Tavg =

P
q∈QL

TL(q) +
P

q∈QF
TF(q)

|QL|+ |QF|
. (5)

Let W (q, I) represent the workload4 incurred to the search
engine when evaluating q over an index I. For a given query
set Q, we compute the relative workload Wrel as the ratio
of the total workload incurred in our architecture to the
workload incurred by evaluation over the full index, i.e.,

Wrel =

P
q∈Q (W (q, Îq) +

P
S̃i∈F q W (q, Ĩi))P

q∈Q W (q, Ī)
. (6)

3We assume that result merging as well as various other
costs are negligible, as this is the case for low k and N values.
4Herein, we approximate the workload incurred by a query
as the sum of inverted list lengths of all terms in the query.
Interested readers may refer to [11] for other possibilities.

3. THRESHOLDING ALGORITHM

3.1 Preliminaries
We assume that queries are processed over the inverted

index in the AND mode [15], which is often the case in
practice. In this mode, only the documents that contain
all query terms are retrieved. The score of a document is
computed simply by summing the term scores, indicating
the relevance of the term to the document (e.g., BM25)5.
Optionally, document-specific scores (e.g., PageRank) may
be added to the final score. The technique proposed herein
is applicable only to the former type of scoring. Extending
it to cover the latter type requires further research.

As our aim is to preserve the search quality of a central-
ized architecture, a query q should be forwarded to any non-
local site that would have at least one result in the global
top k set. A non-local site S̃ can contribute to this set only
if the top score s(q, 1, S̃) it computes for q is larger than

the kth score s(q, k, Ŝ) that local site Ŝ computes6. Obvi-

ously, it is not possible to know s(q, 1, S̃) before evaluating

q on S̃. A simple but effective technique [3] for deciding

whether q should be forwarded to S̃ is based on computing
an upper-bound m(q, S̃) for s(q, 1, S̃) and comparing this

bound against s(q, k, Ŝ). If m(q, S̃) ≤ s(q, k, Ŝ) holds, it is

guaranteed that S̃ has no better documents than those in Ŝ
and there is no need to forward q to S̃. Otherwise, S̃ may
have better documents, and q has to be forwarded to S̃. As
the gap between m(q, S̃) and s(q, 1, S̃) increases, the query
is more likely to be forwarded to a site with no useful doc-
uments. Hence, the objective in this thresholding technique
is to compute the m(q, S̃) value as tight as possible, i.e., this

bound should be as close as possible7 to s(q, 1, S̃).

3.2 LP Formulation
Assume that we have the precomputed s(q′i, 1, S̃) value for

every query q′i in a set Q′={q′1, . . . , q′m} of m offline queries.
Each q′i ={ti

1, . . . , t
i
ni
} is composed of ni unique terms. We

are given an online query q={t1, . . . , tn} at local site Ŝ with

a kth local score of s(q, k, Ŝ). Given these, we formulate

the problem of computing a tight m(q, S̃) value as a linear
programming (LP) problem as follows. We first introduce a
real-valued variable xj for each term tj ∈ q. We then find
every offline query q′∈Q′ such that q′ is a proper subset of
q, i.e., q′⊂q. For every such q′, we introduce an inequalityX

tj∈q′

xj ≤ s(q′, 1, S̃), ∀q′ s.t. q′∈Q′ and q′⊂q, (7)

which always holds. We also have the set of inequalities

xj ≥ 0, ∀tj s.t. tj ∈q, (8)

which guarantee that the top scores for single-term queries
(i.e., query terms) are always non-negative. After this set-
ting, the thresholding problem reduces to finding

m(q, S̃) = max
X
tj∈q

xj (9)

subject to the linear constraints given in Eqs. 7 and 8 via
linear programming. In practice, there exist well-known,
efficient LP solvers for this and similar problems.
5Refer to Section 6.1 in [3] for more background on scoring.
6We omit superscripts on symbols for better readability.
7However, the inequality m(q, S̃) ≥ s(q, 1, S̃) always holds.
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We now illustrate the formulation by an example. Let
q = {t1, t2, t3, t4} and Q′ = {q′1, q′2, . . . , q′7} with q′1 = {t1},
q′2 ={t2}, q′3 ={t3}, q′4 ={t4}, q′5 ={t1, t2}, q′6 ={t2, t3}, and
q′7 = {t2, t3, t4}. Assume that precomputed top scores are

s(q′1, 1, S̃)=9.7, s(q′2, 1, S̃)=8.1, s(q′3, 1, S̃)=3.2, s(q′4, 1, S̃)=

4.9, s(q′5, 1, S̃) = 4.2, s(q′6, 1, S̃) = 4.7, and s(q′7, 1, S̃) = 5.1.
These lead to the following set of inequalities

x1 ≤ 9.7; x2 ≤ 8.1; x3 ≤ 3.2; x4 ≤ 4.9;

x1 + x2 ≤ 4.2; x2 + x3 ≤ 4.7; x2 + x3 + x4 ≤ 5.1;

x1 ≥ 0; x2 ≥ 0; x3 ≥ 0; x4 ≥ 0.

The maximum score satisfying these constraints is found as
m(q, S̃)=9.3 (x1 =4.2, x2 =0, x3 =0.2, x4 =4.9).

3.3 Query Forwarding Algorithm
The forwarding algorithm contains an offline and an online

phase. In the offline phase, offline queries are generated first.
This can be done in different ways (see Section 4.4), e.g.,
synthetically by combining popular terms in the document
collection or by extracting popular queries in past user query
logs. Assuming such a set is available, the top scores are then
computed for every query in this set over all local indexes.
The computed values are replicated on all sites.

In the online phase, a query q is processed as follows.
First, we evaluate q locally on Ŝ and record s(q, k, Ŝ). If a
query term tj ∈q does not appear in any of the offline queries,
q is forwarded to every non-local site (case F-MissingInfo8)
as it is impossible to compute any score bounds. For a non-
local site S̃, if there is a subquery q′⊂q for which m(q, S̃)=0,

q is not forwarded to S̃ (case L-ZeroThreshold). Finally, for

each non-local site S̃ for which no decision is yet made, we
separately solve the LP formulation of the previous section.
If m(q, S̃) > s(q, k, Ŝ) holds, q is forwarded to S̃ (case F-

HighLPBound); otherwise, it is not (case L-LowLPBound). We
note that, in our LP formulation, it is possible to capture
the F-MissingInfo case simply by introducing an equation
xj≤∞ for every term tj ∈q such that tj 6∈q′ for ∀q′∈Q′.

4. EXPERIMENTAL FRAMEWORK

4.1 Setup
We simulate a geographically distributed search engine

architecture using two different setups. The first setup, re-
ferred to as Europe, consists of five search sites, located in
Berlin (Germany), Madrid (Spain), Paris (France), Rome
(Italy), and London (UK). The second setup, referred to as
World, contains five relatively distant search sites, located
in Canberra (Australia), Brazil (Brazil), Ottawa (Canada),
Berlin (Germany), and Mexico City (Mexico). These two
setups represent search architectures where the network la-
tencies between the sites are low and high, respectively.

For both setups, we approximate the site-to-site network
latency between any two sites by taking into account the
speed of light on copper wire (200,000 km/s) and the bird-
fly distances between the cities that the sites are located. To
approximate the user-to-site latency between a site and its
users, we take an average over the latencies between the cap-
ital city where the site is located and the most populated five
cities in the respective country. Computing latencies this
way is reasonable as latencies are known to correlate well
with geographical distance [12], and our data transfer costs

8We will use these labels later while discussing Fig. 10.
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distinct search sites.

are negligible as transferred result sets are very small. How-
ever, this approach ignores queuing delays and the fact that
network connections are not necessarily on straight lines.
Therefore, using several, geographically distant computers,
we measured real network latencies and obtained a mapping
from predicted latencies to actual values through regression
(Fig. 2). All predicted values are converted to final, more
accurate latency values via this mapping. Table 1 displays
some statistics about the latency values used in our setups.

Table 1: Network latency statistics (in ms)
Site-to-site latencies User-to-site latencies
Min. Avg. Max. Min. Avg. Max.

Europe 12.0 19.6 26.9 10.6 11.5 12.6
World 43.9 109.8 172.8 9.0 16.3 23.9

4.2 Dataset
As the global document collection, we use a large crawl of

the Web (about 200 million documents). This collection
is obtained through various cleansing and filtering steps.
Hence, it is high-quality and its documents have high po-
tential to appear in real-life search results. Then, using a
proprietary classifier9, a home country is predicted for every
document, and disjoint subsets of documents are assigned to
search sites (some documents are not assigned to any site).
Finally, separate indexes are built on each subcollection.

For each site, we extract consecutive queries (about 19
million queries in total) from the query logs of the Ya-
hoo! web search engine. Queries are passed through cleans-
ing steps, such as case-folding, stop-word elimination, term
uniquing, and reordering of query terms in alphabetical or-
der. We omit queries issued by clicking on the next link and
use only first page requests10. The query set of each site is
separately sorted in increasing order of arrival times. The
last quarter of each query set is used in the online phase.
The rest are used in the offline phase. In our sample log,
most queries are regional and occur in one site (Fig. 3).

4.3 Simulations
We compute thresholds and local top k results using a

modified version of Terrier. In simulations, we assume that
each search cluster node builds an index on three million
documents. The total number of processors available to the
overall search system is determined accordingly. Each site
is assigned a number of processors proportional to its in-
dex size. Therefore, query processing times are comparable

9This is a production-level classifier that uses features such
as language, IP, and domain to identify documents’ regions.

10Next page requests may be handled by prefetching of result
pages [14]. This is beyond the scope of this paper.
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for search sites11. Query evaluation is simulated via a de-
tailed simulator, which computes a separate response time
for each query, using Eqs. (3) and (4). In query processing,
we assume a processing cost of 200ns per posting. This is
an average value obtained from Terrier, but we observed it
to correlate well with real search engine timings. We also
assume a 20ms overhead for preprocessing, per query.

4.4 Offline Query Generation
Our LP-based solution is applicable to online queries of

arbitrary length and is especially suitable for long queries.
However, our query set is composed of web queries, which are
very short in nature. Using long queries in the offline query
set does not bring much additional performance benefit12.
Therefore, in our offline query set, we consider only single-
and two-term queries13. This approach also reduces the
storage requirement for the precomputed scores and their
offline computation cost. Moreover, if we assume that an
offline query can be accessed in O(1)-time using a hash ta-
ble, the computational cost of accessing offline queries that
are proper subsets of the online query becomes much lower
as this can be done in O(|q|2)-time instead of O(2|q|)-time.

In this work, we generate two offline query sets, referred
to as D1 and D2. D1 contains all terms (i.e., queries of length
one) in the vocabulary of the collection. D2 contains all
possible pairs of vocabulary terms (i.e., queries of length
two). Obviously, the latter may not be feasible in a practical
setting, but we still prefer to experiment with this set to
observe the degree of benefit that our thresholding algorithm
may provide. We also generate two more query sets, Q1 and
Q2, using the query log. Q1 contains, as an offline query, all
the terms in the vocabulary of the query log. Q2 contains
subqueries of length two in each individual query in the log
(but, not across the entire vocabulary as we do for D2).

For performance evaluation, we use selected combinations
(unions) of the above-mentioned sets: Q1, D1, Q1-Q2, D1-Q2,
and D1-D2. We omit combinations Q2, D2, Q1-D1, and Q1-D2

as they are less meaningful or useful. In our experiments, we
use the D1 set as our baseline as this is identical to the tech-
nique discussed in [3] (see the discussion in Section 7). To
measure the best possible performance, we also consider an
Oracle algorithm that has no false positives, i.e., it forwards
a query to only the non-local sites with positive contribution
to the final result set. Due to space limitations, occasionally,
we display the results for only a single setup (often, Europe).

5. PERFORMANCE

5.1 Effect of Offline Query Set
Fig. 4 shows the fraction of locally processed queries for

different offline query sets, as k varies. It is interesting to
observe that the Q1-Q2 set outperforms the baseline (D1)
although it has fewer queries. When the baseline is com-
bined with the term pairs extracted from the query log (i.e.,
D1-Q2), for k = 10, about 9.1% more queries are processed
locally (10.2% for the World setup). The impractical D1-
D2 set performs quite close to the Oracle algorithm, which
processes about 40% of the queries locally, for k=10.

11We assume that indexes are entirely kept in main memory.
12A similar issue is mentioned before in the context of caching
intersections of posting lists [15].

13We implemented an LP solver, tailored to our purposes.
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Figure 6: Fraction of queries that are answered un-
der a certain response time (for k=10).

The increase in the fraction of locally processed queries
leads to a reduction in average query response times (Fig. 5).
However, the distribution of response times is also impor-
tant, i.e., we should check what fraction of queries can be
processed under a given threshold time. It is empirically
shown that after a certain response time threshold, users
become frustrated and URL click-through rates go down,
leading to financial losses for the search engine [16]. It is
also shown that, given additional time for query processing,
it is possible to improve the quality of search results [8]. In
our simulations, we observe that the response time is a more
critical issue for the World setup than Europe (Fig. 6). For
Europe, only less than 10% of the queries cannot be answered
under 400ms, whereas this rate varies in the 40%–55% range
for the World setup, depending on the offline query set used.

According to Fig. 7, our technique achieves considerable
reduction in the average number of non-local sites contacted.
Additionally, in Fig. 8, we show the average number of sites
that are active in processing a query. The second excludes
any site that does not process the query on its local index.
This may happen due to absence of a query term in the
site’s index, which explains the overlap of curves in Fig. 8
for Q1 and D1 as well as Q1-Q2 and D1-Q2. Fig. 9 shows the
average relative workload values as computed by Eq. (6). We
observe that, for k=10, there is about 16% reduction in the
workload when queries are evaluated over our architecture
(assuming D1-Q2) relative to query evaluation over the full
index (this goes up to 20% for the World setup).

Fig. 10 shows the average outcome of a forwarding de-
cision for a (query, site) pair (recall the discussion in Sec-
tion 3.3). In the figure, we observe the following: Since Q1

and Q1-Q2 sets miss some terms in the collection vocabulary,
about 10% of test queries had to be forwarded to all non-
local sites (case F-MissingInfo). Most of the improvement
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Figure 7: Average num-
ber of non-local sites a
query is forwarded to.
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ber of active sites (search
backends) per query.
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Figure 9: Fraction of the
evaluated index relative
to the global index.
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Figure 10: Dissection of
forwarding decisions into
various possible cases.

over the baseline is due to the proposed LP solution (cases
F-HighLPBound and L-LowLPBound), which uses term pairs
(e.g., see D1 versus D1-Q2). The fraction of L-ZeroThreshold
cases correlates with the size of the offline query set used.

5.2 Effect of Partial Index Replication
Replicating globally popular documents on all sites leads

to a high reduction in the forwarded query count [3]. The
algorithm in [3] (herein, we call it R-freq) sorts the docu-
ments globally in decreasing number of occurrences in the
top 200 results of training queries. A certain fraction of the
most frequent documents are then replicated and indexed on
all sites. This type of replication has two benefits for thresh-
olding algorithms: local kth scores get higher as local sites
have more documents, and thresholds computed for offline
queries on non-local sites get lower as they are now com-
puted over fewer documents. Both imply less forwarding.

A possible improvement over R-freq is to incorporate the
storage cost incurred on the index due to replication of the
document14. This is a greedy algorithm (R-cost) that tries
to optimize per-byte benefit at any step by prioritizing doc-
uments according to the ratio of their occurrence frequencies
and storage costs. In related experiments, we compute the
occurrence frequencies using the top 10 results of training
queries and then replicate on all sites 0.5% of documents
with the highest benefit. According to Figs. 11 and 12, sur-
prisingly, the improvement achieved by R-cost over R-freq
is minor (0.3%–0.9% increase in the rate of locally processed
queries and 0.9%–2.8% decrease in the number of non-local
sites contacted per query). This is mainly because R-cost

14We estimate this cost by document’s unique term count.
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Figure 11: Impact of
replication on locally pro-
cessed query rate.
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Figure 12: Impact of
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sites per query.
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Figure 13: Impact of re-
sult caching on locally
processed query rate.
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Figure 14: Impact of
TTL on locally processed
query rate.

fills the given replication budget with small documents that
have low past occurrence frequencies. Although past oc-
currences correlate well with future occurrences at high fre-
quency values, there is little correlation at low occurrence
frequencies15. This limits the performance of R-cost.

5.3 Effect of Result Caching and TTL
Search engines cache the results of frequent and/or recent

queries to reduce the query workload on backend clusters
and improve query response times [2]. Queries that result in
a hit in the cache are served by the cache. In our context,
result caching has a significant impact on the number of for-
warded queries. With result caching, the fraction of queries
that can be locally processed increases by 35%–45%, depend-
ing on the offline query set used (Fig. 13). We also observe
that more informative query sets receive a lower benefit.
This is because, under result caching, only the queries that
are seen for the first time (i.e., compulsory cache misses) are
subject to forwarding. Most cache misses are tail queries,
which are long. As we will see in Section 6.3, long queries
are much less likely to be forwarded, and hence having more
information in bound computations becomes less important.

The above discussion holds for search engines with indexes
that are periodically rebuilt (e.g., once a week). If, however,
there are incremental updates on the index, result cache
entries may become stale. In practice, a quick solution is
to associate a fixed time-to-live (TTL) value t with every
cache entry [7]. A cache entry that is not refreshed for at

15An interesting discussion and possible solutions are avail-
able in the context of result caching [11]. But, application
of those techniques are beyond the scope of our paper.
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to the rth rank are local.

Table 2: Fraction of queries according to length
Query length

Setup 1 2 3 4 >4
Europe 0.330 0.365 0.194 0.074 0.038
World 0.288 0.369 0.211 0.085 0.046

least t units of time is said to be expired, and any request
for the entry is treated as a cache miss. In our context, such
requests are subject to forwarding. According to Fig. 14, the
performance saturates very quickly with increasing TTL16,
due to the power-law distribution of query frequencies [2].

6. FURTHER OPTIMIZATIONS
We now describe various techniques that improve perfor-

mance under certain conditions. Some of the optimizations
in distributed IR are also applicable to our setting, e.g.,
non-local computations can be early terminated simply by
transferring s(q, k, Ŝ) values together with the query. How-
ever, here, we skip such techniques and focus on those that
are more meaningful in a geographically distributed setting.

6.1 Non-local Top k Optimization
If a query is forwarded to a non-local site, the top k re-

sults are requested. However, we note that it suffices to
request k−r results, where r is the lowest rank such that
m(q, S̃)<s(q, r, Ŝ) holds. Hence, for some queries, it is pos-
sible to request fewer documents and reduce the number of
remotely computed snippets, in addition to other savings in
score computations. For k = 10, the saving is in the 5.3%–
16.7% range, depending on the offline query set (Fig. 15).

6.2 Early Result Presentation
Search results are typically displayed in pages, containing

10 results. An interesting optimization is to show the user
the local site’s search results without waiting for replies of
non-local sites. If it later turns out that s(q, k, Ŝ)≥s(q, 1, S̃i)

for every non-local site S̃i, the query becomes served at
the speed of a local query. Otherwise, non-local results are
merged as a background job and the user’s screen is refreshed
with the correct results17. In our case, for about a quarter of
queries, all top 10 results come from the local site. For the
top result, this is so for more than half of queries (Fig. 16).

16We use small TTL values that are suitable to our sample
query set. In practice, the TTL values are around a day [7].

17Some vertical search sites use similar optimizations (e.g.,
http://www.kayak.com). The impact of this kind of result
presentation on user satisfaction is open to investigation.

Table 3: Average saving (in ms) in query response
saving by early query forwarding

Offline query set
Setup Q1 D1 Q1-Q2 D1-Q2 D1-D2

Europe 12.1 13.4 12.1 13.4 13.4
World 15.7 18.1 15.7 18.1 18.1

Table 4: Query response time (in ms) as the number
of non-local sites a query is forwarded to varies

Number of non-local sites
Setup 0 1 2 3 4
Europe 87.3 152.0 157.1 161.5 190.2
World 121.4 376.6 435.1 484.5 524.1

6.3 Early Query Forwarding
We note that if m(q, S̃) >

P
t∈q s(t, b(k − 1)/|q|c+ 1, Ŝ)

holds18, q can be immediately forwarded to S̃ without wait-
ing for completion of the local evaluation, which determines
s(q, k, Ŝ). This way, it becomes possible to overlap local
query evaluation with network transfer. This approach re-
quires precomputing and storing s(t, b(k − 1)/|q|c + 1, Ŝ)
values for all terms in the collection vocabulary. Since the
stored value depends on query length, covering all query
lengths (assuming k is fixed to 10) requires storing all s(t, r, Ŝ)
values for r ∈ {1, 2, 3, 4, 5, k}. If long queries (according to
Table 2, less than 15% of queries have more than 3 terms) are
ignored, it suffices to store the scores only for r ∈ {4, 5, k}.
Herein, we only store s(t, k, Ŝ) values and observe the impact
on queries with a single term (about one-fifth of forwarded
queries have one term, as seen in Fig. 17). For affected
queries, the response time saving is up to 18ms (Table 3).
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6.4 Remote Result Preparation
If the query is forwarded to only a single non-local site,

the final results can be created and returned to the user by
the non-local site as there are only two sets to be merged.
This approach requires transferring the local top k result
set together with the query, but may reduce the overall net-
work latency in returning results to the user. Table 4 shows
that there is a correlation between the average query re-
sponse time and the number of non-local sites a query is
forwarded to. The gap between the response time of local
and forwarded queries is clearly seen. Our optimization,
however, is applicable to a limited set of queries. According

18The right-hand side is an upper bound on s(q, k, Ŝ).
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Table 5: Average saving (in ms) in query response
time by remote result preparation

Offline query set
Setup Q1 D1 Q1-Q2 D1-Q2 D1-D2

Europe 10.8 10.8 10.4 10.4 10.4
World 16.6 16.6 16.2 16.2 16.2

to Fig. 18, about only 10% of our queries are forwarded to
a single non-local site. For such queries, the saving in query
response time is between 10ms and 16ms (Table 5).

7. RELATED WORK
Although there is much research on distributed IR [1],

little research is done on multi-site, distributed search en-
gines [3, 8]. Cambazoglu et al. present cost models and
results, showing the potential of multi-site architectures for
efficiency and relevance improvements [8]. Baeza-Yates et
al. develop analytical models to compare operational costs
of multi-site search systems against centralized systems [3].

The work in [3] is the closest to ours in that it also pro-
poses an algorithm that tries to increase the number of lo-
cally processed queries by a thresholding technique, based
on precomputation of maximum score contributions for all
terms in the global vocabulary and replicating this infor-
mation on all search sites. This way, it becomes possible
to locally compute the maximum score a document can get
on a non-local site, simply summing the maximum possible
scores for query terms without evaluating the query remotely
at all. It turns out that this technique is a limited case of
our general solution (the same as using D1 in our setting).

We note that the query forwarding problem we deal with
is somewhat different than the collection selection problem
in federated IR [6]. In our system, queries are evaluated over
a local index and some of them are forwarded. In federated
IR, all queries are forwarded without any evaluation on a lo-
cal index. We further note that P2P search systems [17] are
also very different due to existence of a very high number of
peers, their volatile nature, and limited availability. Baeza-
Yates et al. [5] describe an architecture in which the global
index is split into two tiers. In this architecture, queries
are evaluated on one or two tiers, based on the decision of a
machine-learned corpus predictor. In that architecture, doc-
uments are split into tiers by their importance or location.

Finally, Das et al. employ an LP-based solution in the
context of databases for top k computation using material-
ized views [10]. Kumar et al. apply a similar technique to
generalize top k thresholding algorithms by using precom-
puted intersections of posting lists [13]. To our knowledge,
there is no work applying a similar technique in our context.

8. CONCLUSIONS
We showed that the fraction of locally processed queries

in a multi-site search engine can be significantly increased
by using an LP-based thresholding technique, and results
are further improved by caching and replication. There are
three research directions surfaced by our work. First, the
applicability of our techniques to other problems (e.g., tier-
ing [5]) should be investigated. Second, a trade-off analysis
is needed between forwarding performance and offline query
generation and storage overheads. Finally, the freshness of
precomputed score thresholds needs further research.
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