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Abstract

We propose a technique to calculate the saliency of animated
meshes with material properties. The saliency computation consid-
ers multiple features of 3D meshes including their geometry, mate-
rial and motion. Each feature contributes to the final saliency map
which is view independent; and therefore, can be used for view de-
pendent and view independent applications. To verify our saliency
calculations, we performed an experiment in which we use an eye
tracker to compare the saliencies of the regions that the viewers
look with the other regions of the models. The results confirm that
our saliency computation gives promising results. We also present
several applications in which the saliency information is used.

Keywords: mesh saliency, computer animation, mesh simplifica-
tion, perception, human visual system

1 Introduction

Animating three-dimensional meshes is a central problem in creat-
ing computer games, virtual environments, and digital special ef-
fects in movies. Animated meshes are now widely used for face
and body animation of virtual humans, cloth animation, physically-
based simulation, and deformable object animation. In addition,
various research problems, such as animated mesh compression and
transmission, mesh simplification, level-of-detail management, and
progressive mesh representations, are also based on the efficient
representation of animated 3D meshes.

Recently, the use of perception-inspired metrics for efficiently pro-
cessing static meshes has gained attention; However, there has been
comparatively less work done on perceptually guided animated
mesh processing that incorporates the effect of temporal proper-
ties. Various research groups have proposed incorporating prin-
ciples of perception in managing the level of detail for rendering
static meshes [Luebke and Hallen 2001] [Reddy 2001] [Watson
et al. 2001]. Lee et al. [2005] have proposed such a geometrical
approach for static meshes, based on the concept of mesh saliency,
a measure of regional importance in 3D meshes. This method uses
the curvature property of the mesh and a center-surround mecha-
nism to identify regions that are different from their surrounding
context. Solutions have been proposed for animated mesh com-
pression [Guskov and Khodakovsky 2004] [Ibarria and Rossignac
2003] [James and Twigg 2005] [Karni and Gotsman 2004] [Müller
et al. 2005], representation [Briceo et al. 2003] [Shamir et al. 2000]
and level-of-detail adjustment [Shamir and Pascucci 2001] [Kircher
and Garland 2005]. Much of this work does not explicitly incorpo-
rate low-level models of human visual attention.
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We propose an approach to compute the saliency value of animated
meshes with material properties. In addition to the curvature prop-
erty of the mesh, we take into consideration motion and material
properties. The saliency computation is view independent, and
thus, can also be used in view-independent and view-dependent ap-
plications.

The contributions of this paper are:

1. Animated mesh saliency computation: We propose a method
that uses the acceleration and velocity of the mesh vertices to
compute saliency.

2. A framework for computing overall saliency of meshes with
material properties: We propose a method for incorporating
color, texture, and orientation effects to the saliency of the
mesh, and present a method to combine the effects of motion
and material cues to the overall mesh saliency metric.

3. Applications using saliency: We present the usage of com-
puted saliency values with several applications. The appli-
cations include mesh simplification, dynamic level-of-detail
adjustment, and viewpoint selection.

We begin the paper with a survey of related work on animated
meshes and saliency, and then state the main saliency computation
algorithm. Next, we present the generalization of mesh saliency to
animated meshes, and surfaces with colour and texture. We finish
with results, discussion, and future directions of our work.

2 Background

Saliency, which characterizes the level of significance of the subject
being observed, has been a focus of cognitive sciences for more
than 20 years. It is closely related to many disciplines, including
artificial intelligence, neuroscience, psychology, and recently, com-
puter graphics. Itti and Koch [1998] describe one of the earliest
methods used to compute the saliency of 2D images. Saliency is
essentially the property of an object that gathers human attention.
It is mainly related to difference of an object from its surroundings.
Saliency can be seen as the bottom-up part of the visual attention
mechanism, in which intentional factors such as the user’s task do
not have an effect. Object properties such as luminance, orienta-
tion, or geometry can be considered as bottom-up features; whereas
the users’ tasks or prior experiences can be considered as top-down
features.This paper is mainly focused on bottom-up features while
calculating the saliency map.

Lee and Varshney [2005] have introduced the saliency concept
for 3D graphical models. In their work, the saliencies of mesh
vertices are computed based on the mesh geometry. Their pro-
posed saliency metric is based on the center-surround operator on
Gaussian-weighted mean curvatures. They have used the computed
saliency values to drive the simplification 3D meshes, using Gar-
land’s Qslim method for simplifying objects based on quadric error
metrics [Garland and Heckbert 1997].

Another saliency metric and measure for the degree of visibil-
ity is proposed by Feixas et al. [2009]. Their saliency metric
uses the Jensen-Shannon (JS) divergence of probability distribu-
tions by evaluating the average variation of JS-divergence between
two polygons, yielding similar results to Lee and Varshney [2005].
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A saliency map for selective rendering that uses colors, intensity,
motion, depth, edges, and habituation (which refers to saliency re-
duction over time as the object stays on screen) has been devel-
oped using graphical processing unit (GPU) [Longhurst et al. 2006].
Their saliency map is based on the model suggested by Itti and
Koch [2000].

To extract the critical points, the mesh saliency metric of [Lee et al.
2005] was modified by Liu et al. [2007], using Morse theory. In
their work, they point out two disadvantages of Lee and Varshney’s
approach [2005]. One is that the Gaussian-weighted difference of
fine and coarse scales can result in the same saliency values for
two opposite and symmetric vertices, because of the absolute dif-
ference in the equation. The other is that combining saliency maps
at different scales makes it difficult to control the number of critical
points. Instead of the Gaussian filter, Liu et al. [2007] use a bilateral
filter and define the saliency of a vertex as the Gaussian-weighted
average of the scalar function difference between the neighboring
vertices and the vertex itself.

Recently, Kim et al. [2010] performed a user study and com-
pared various approaches to mesh saliency computation by quanti-
fying the correlation between human eye movements and calculated
saliencies. According to this study, the mesh saliency metric of Lee
and Varshney [2005] models human-eye movements significantly
better than a purely random model or a curvature-based model on
3D static meshes.

Saliency and other perceptually inspired metrics have also gained
attention in level-of-detail (LOD) rendering and mesh simplifica-
tion. For a flythrough in a scene, Reddy [2001] uses the models
of visual perception, including vision metrics such as visual spa-
tial frequency and contrast, to optimize the visual quality of ren-
dering by removing the non-perceptible components of 3D scenes.
Luebke and Hallen [2001] propose a perceptually-driven rendering
framework that evaluates local simplification operations according
to the worst-case contrast gratings and the worst-case spatial fre-
quency of features that they can induce in the image. In their work,
contrast grating is a sinusoidal pattern that alternates between two
extreme luminance values, and the worst-case one is a grating with
the most perceptible combination of contrast and frequency induced
by a simplification operation. They apply the simplification only if
a grating with that contrast and frequency is not expected, so they
do not get any perceptible effect, which results in a high-fidelity
model. A set of experiments has been performed using three groups
of tasks for measuring visual fidelity [Watson et al. 2001]. These
tasks are naming the model, rating the likeness of the simplified
model against a standard one using a seven point scale, and choos-
ing the better model of two equally simplified models using Q-Slim
and V-clust [Rossignac and Borrel 1993]. The results of these ex-
periments and some automated fidelity measures [Bolin and Meyer
1998] [Cignoni et al. 1998] show that automated tools are poor pre-
dictors of naming times but good predictors of ratings and prefer-
ences. Williams et al. [2003] extend Luebke and Hallen’s [2001]
framework to models with texture and light effects. Howlett et al.
use an eye tracker to identify the salient regions and the fixation
time on those regions, and they modify Q-Slim to simplify those
regions with a weight value [2004]. Because of experiments sim-
ilar to Watson et al.’s work [2001], it is shown that the modified
Q-Slim performs better on natural objects than on man-made arti-
facts, which indicates that saliency detection is very important.

Although mostly used for simplifying meshes, saliency has also
been used as a viewpoint selection criterion. In Yamauchi et al.’s
work [2006], viewpoints are selected from among a sample point
set, forming the vertices of a graph on the bounding sphere of an
object. The graph is partitioned according to the degree of similar-
ity between its edges, and sorted according to the edges’ geometric

saliency value. A recent work by Shilane uses a database of ob-
jects to measure the distinctiveness of different regions of an object
[2007]. It is based on the idea that if a region has a unique shape
that is used to differentiate the object from other objects, that re-
gion is an important part of the object. It works by selecting several
random points as centers of overlapping spheres over the surface
and generating shape descriptors from the surfaces covered by those
spheres. Next, a measurement is taken of how distinctive each re-
gion is with respect to a database of multiple object classes, and
if the best matches of a region are all from the object’s own class,
that region is distinctive. Although a database is required, it gives
better results than Lee and Varshney’s approach [2005] in terms of
simplification quality.

Saliency has also been studied for illustration. It is shown that vi-
sual attention can be directed by increasing the saliency at user-
selected regions using geometric modification [Kim and Varshney
2008]. With a weight change in the center-surround mechanism,
Kim and Varshney modify mean curvature values of vertices by us-
ing bilateral displacements and use eye trackers to verify that the
change increases user attention. Mortara and Spagnuolo use the
saliency information to generate thumbnails of meshes [2009]. In
addition to the bottom-up saliency calculation, they use semantic
information also to determine the important parts of a mesh.

3 Approach

We propose a metric for calculating the saliency of 3D meshes,
which is applicable to vertex-animated models as well as static
models. Most of the previous saliency detection methods focus
on the shape and curvature features of 3D meshes. On the other
hand, in addition to these features, motion and material properties
of 3D meshes also affect saliency in a significant way. Therefore,
for our animation-based saliency calculation task, the proposed so-
lution considers per-vertex curvature, material, and animation prop-
erties of 3D animated meshes.

The combination of different features, such as color, orientation,
spatial frequency, brightness, direction of movement, into a sin-
gle saliency model requires an integrated model of attention. The
feature-integration theory of attention [Treisman and Gelade 1980],
which has been used successfully for 2D images, suggests that the
visual scene is initially coded along a number of separable dimen-
sions; and the contribution of any features which are present in the
same region are combined. Based on this theory, Itti et al. have
proposed a model for integration of the different features in 2D im-
ages [1998]. Our model of saliency for 3D animated models uses a
similar approach.

In order to derive an integrated approach for saliency calculation,
our metric considers multiple features of animated meshes such as
their color, geometry, and motion; each as a separate channel. The
general structure of the proposed approach is shown in Figure 1.
The 3D model is decomposed into a set of dimensions, with each
dimension stored in a separate feature map. Different regions of the
3D model then compete for saliency within each feature map, and
only those regions that stand out locally from their neighborhood
in different scales are kept. Then, the saliency values computed for
each dimension are combined into a master saliency map, which
approximates the overall attended regions of the animated 3D mesh.

Our saliency calculation depends on the center-surround mecha-
nism of human visual attention [Itti et al. 1998] [Lee et al. 2005].
The mechanism captures the regions that are spatially different
from their surroundings. For each feature, we compute the salient
vertices by a set of center-surround operations. In these operations,
vertices in a small neighborhood of a vertex v constitute the center,
and vertices in a larger neighborhood constitute the surround. The
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Figure 1: The proposed saliency computation framework.

across-scale difference of a feature between the central region and
the surrounding region determines the saliency.

We compute different feature maps of multiple scales to account for
the saliency in different scales of the mesh. For example, a small
scale saliency map may detect the movement of a finger in a human
model but it will fail to detect a larger-scale movement such as that
of a leg. A large-scale saliency map will fail in the former case and
succeed to show the saliency correctly in the latter case.

As shown in Figure 1, our saliency computation framework consists
of four steps.

3.1 Feature Extraction

We use geometry, velocity, acceleration, hue, color opponency, and
luminance features of a vertex in our saliency computations. Each
feature is calculated as follows for each vertex:

Geometry: This feature is used for computing the saliency of a
3D mesh due to its shape. Curvature is a significant feature of a
vertex that can indicate its distinctiveness among others. Therefore,
for geometry-based computations, we use the mean curvatures of
vertices, as previously proposed by Lee and Varshney [2005], us-
ing Meyer et al.’s method for curvature computation [Meyer et al.
2002].

Velocity: The velocity of a vertex is calculated by taking the po-
sitional difference of a vertex in consecutive frames as follows:

vel(vi, fi) =
p(vi, fj)− p(vi, fj−1)

diagonal
, (1)

where vi stands for vertex i,; p stands for position which is a vector
of length three; fj stands for jth frame. diagonal is the length of
the axis aligned diagonal of the mesh’s bounding box. The division
by diagonal makes our method scale independent.

Acceleration: The acceleration computation is very similar to the
velocity calculation. It is calculated by taking the difference of ve-
locities on consecutive frames but this time diagonal is not used
because its effect is already present in velocities.

acc(vi, fi) = vel(vi, fj)− vel(vi, fj−1), (2)

where acc(vi, fi) stands for acceleration of vertex i at frame j.

Hue: We extract hue values from the RGB color of a vertex and
map them to the 0-360 interval. Let r, g, and b denote the red, green
and blue components of the color of a vertex. Corresponding hue
value is extracted as follows.

hue =


0, if max = min(

60×(g−b)
max−min

+ 360
)
mod 360, if max = r(

60×(b−r)
max−min

+ 120
)
mod 360, if max = g(

60×(r−g)
max−min

+ 240
)
mod 360, if max = b

(3)

where max and min stand for maximum and minimum values
among r, g, and b.

Because the hue values wrap around (e.g., the value 359 is close to
1), while computing the center-surround differences (explained in
Section 3.2) we use the smaller distance between two values. For
example, the distance between values 350 and 10 is 20 instead of
340.

Color opponency: For the central area of the visual field, the
neurons in the primary visual cortex are excited by one of the col-
ors in the Red-Green and Blue-Yellow pairs, and inhibited by the
other color. The opposite holds for the surrounding area. Therefore,
presence of a color in the center increases saliency of a region, if
this region is surrounded by the opponent color. We use the color
opponency values described in [Itti et al. 1998].

Luminance: For each vertex, we compute the luminance feature
by calculating the average of the RGB components of the vertex.

3.2 Generating Feature Maps

After processing all features of the vertices, we calculate the
Gaussian-weighted center-surround differences for several center-
surround scales, and then we generate a separate feature map for
each pair of center-surround scale and feature. Define this feature
map as featuremap(c, s, f) which stores the feature for each vertex
of a 3D mesh, where c and s stand for the center and surround lev-
els and f stands for the feature. For scale (c, s) and feature f the
entry for vertex i in the map is generated as follows:

• Let the neigborhood N(v, d) of vertex v be the set of ver-
tices that have a Euclidean distance smaller than d to vertex
v. First, we calculate the Gaussian-weighted average of fea-
ture f for the vertices that are in N(vi, 2c) [Itti et al. 1998].

G(f, c, vi) =

∑
x∈N(vi,2c)

fxexp
(
− ||vx−vi||2

2c2

)
∑

x∈N(vi,2c)
exp
(
− ||vx−vi||2

2c2

) (4)

• Then, the absolute center-surround differences are stored in
the feature map.

featuremap(c, s, f, i) = |G(f, c, vi)−G(f, s, vi)|, (5)

where c is the fine (center) scale and s is the coarse (surround)
scale.

For center and surround distances, Itti et al. [1998] have used 2, 3,
and 4 pixels for fine scale c and c+δ pixels for coarse scale s, where
δ ∈ {2, 3}, resulting in six different center-surround levels. On the
other hand, Lee and Varshney [2005] used 2ε, 3ε, 4ε, 5ε, 6ε, where
ε is 0.3% of the diagonal of the bounding box for the center and the
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surround is the double of the center. In this case, five different lev-
els of center-surround scales are considered. The largest surround
scale of the second approach covers only 12× 0.3% = 3.6% of the
diagonal of the bounding box, which is not large enough. Hence,
we also need to consider larger center-surround scales as well as
the narrow scales. The list of center-surround levels used for our
calculations follows:

L = {2ε, 3ε, 5ε, 8ε, 13ε, 21ε, 34ε, 55ε},
(c, s)∈{x, y|x=L[i] ∧ (y=L[i+ 1] ∨ y=L[i+ 2])} (6)

where c stands for center, s stands for surround and ε again means
0.3% of the diagonal. Using the Fibonacci sequence decreases the
cost of calculating neigborhoods of different scales such that only
eight different neighborhoods are calculated to get thirteen differ-
ent center-surround levels. In this case, the largest surround level
covers 55× 0.3% = 16.5% of the bounding box.

3.3 Normalization of Feature Maps

After calculating the separate featuremaps, the next step is to com-
bine the maps that belong to the same feature. This is done by
linear addition after normalizing the maps using the normalization
method defined by Itti et al. for 2D images [1998]. For example,
all featuremaps related to velocity are normalized and summed up
to determine the velocity-based saliency map. This normalization
method works as follows:

• All values in the feature map are mapped to a fixed range 0−
M so that the maximum saliency becomes M .

• All vertices with a saliency greater than all of its neighbors’
saliencies are signed as local maximums. Let a be the average
value of the saliencies of the local maximums.

• The feature map is multiplied with |M − a|2.

Using this normalization technique suppresses the maps in which
the saliency values are distributed homogeneously, whereas a map
with an outstandingly salient point is promoted. After normaliza-
tion, all maps related to a feature are linearly added and we get a
saliency map for each feature.

Other normalization methods, such as iterative competition be-
tween salient locations and simple normalized summation, have
been proposed by Itti and Koch for 2D images [1999]. For 3D
animated models, however, this approach is the most suitable one
regarding the computation-accuracy tradeoff.

After computing the saliency maps based on each feature, we com-
bine these maps to a final saliency map. This combination is per-
formed by linear addition as each feature map has already been nor-
malized in the previous step.

4 Results

In this section, we demonstrate the results of our saliency metric.
Each feature has different contribution to the saliency calculation;
therefore, it is useful to show the effect of each feature separately
before demonstrating the final saliency map.

Geometry based saliency map: It identifies the important re-
gions of a 3D mesh according to its shape. It can be considered as
the static saliency of a 3D mesh. Figure 2(a) shows salient parts of
a horse model due to its geometry. As seen in the figure, the parts
of the mesh that are outstanding according to their mean curvatures
(e.g., eyes, feet, joint of tail) are computed as salient.

Velocity and acceleration based saliency maps: Velocity and
acceleration features are used to obtain the regions that are salient
due to their motion. Note that high saliency of a region is not the
direct result of high velocity or acceleration of this region. Saliency
is related to the difference of this region’s motion with respect to
the surrounding area.

Figures 2(b) and 2(c) show examples of velocity-based and
acceleration-based saliency maps, respectively. Although these two
features are similar, each one is sensitive to a different behaviour of
a motion. For example, while velocity-based saliency map finds
left feet as salient (Figure 2(b)), the acceleration-based saliency
map finds the front-right foot of the horse model as more salient
(Figure 2(c)). In Figure 2(d), the combination of motion related
saliency maps are shown.

(a) (b)

(c) (d)

Figure 2: The calculated saliencies based on geometric mean cur-
vature (a), velocity (b), and acceleration (c) in a horse model. The
image in (d) shows the combined saliency map of the velocity and
acceleration features. Light-colored areas show the salient regions
and are emphasized for illustration purposes.

Hue, color opponency, and luminance based saliency maps:
In addition to the shape and motion related attributes of 3D meshes,
our saliency metric also considers per-vertex material properties.
Figure 3(b) shows the hue-based saliency map of the cloth model
shown in Figure 3(a). As seen in this figure, the hue-based saliency
map highlights the regions that have different hue values than their
neighbors. Color opponency-based saliency map identifies the re-
gions that are surrounded by the opponent color. In Figure 3(c), we
can see that the green parts are indicated as salient since in the orig-
inal image these regions are surrounded by the opposite color (red).
Another color related attribute which is used to identify the salient
regions is the intensity of color. The luminance-based saliency map,
which is shown in Figure 3(d), points out the salient regions due to
their color intensity.

Final saliency map: All features are combined to obtain a final
saliency map. In Figure 4, example saliency maps belonging to dif-
ferent animated models are shown. Although these images are only
snapshots of the animations of the models, looking at the saliency
images we can understand the salient regions of the models due to
their animations, such as the legs of the horse model and the left
part of the cloth model.
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(a) (b)

(c) (d)

Figure 3: The animated cloth model (a). The calculated salien-
cies based on hue, color opponency, and luminance are shown in
(b), (c), and (d), respectively. Light-colored areas show the salient
regions and are emphasized for illustration purposes.

Figure 4: Left: The models with their original views, right: the
final saliency maps of these models.

4.1 Experiments

To verify our saliency calculations, we have performed an experi-
ment in which our aim is to compare the calculated saliency maps

to the actual regions that are looked at by the users. For this pur-
pose, we have used a Tobii 1750 eye-tracker. In the experiment,
3 short video sequences (Figure 5) were shown to 12 subjects and
the points that are looked at were captured. The duration of each
animation is approximately 15s. The subjects have normal or cor-
rected to normal vision and they freely viewed the animations with
no assigned task. In order to evaluate our system, we have followed
the steps shown below:

1. We have extracted the saliency maps for the animations that
are used in the experiment.

2. For each user, using the eye-tracking results, we have marked
the points of the animations that are looked at.

3. For each frame of the animation;

(a) We have calculated average saliency of all visible
points, call it average saliency.

(b) We have calculated average saliency of all points that
are marked as looked at, and compared this to average
saliency.

Figure 5: Samples from the three animation sequences used in
the experiment. Left: original frames, right: saliency maps of the
frames on the right (red dots indicate the regions that are looked at
by the subjects).

There are several limitations in this experiment. Firstly, there is a
margin of error, which is quite large considering that our saliency
computation is performed over vertices. In order to tolerate this
error, when calculating the average saliency of the points we have
used a small circular neighborhood of the point that is looked at.
The radius of this circle is approximately 5% of the visible re-
gion. While this approximation tolerates the error to some extent, it
causes the calculated average saliency of the points that are looked
at to be closer to the average saliency of all visible points.
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Figure 6: The results for the animation sequences used in the experiments. Plots at the top row show the average saliency histogram for each
animation and the plots at the bottom show the cumulative distribution of saliency values. In each plot, the black dot indicates the average
saliencies of the points that are looked at.

Another limitation is that there is a delay between a motion and
the users response to that motion. To tolerate this error, we take
the time of eye-tracker backwards by 0.4s, to take into account the
subjects’ reaction delay due to their perceptual processing of the
shown animation.

Despite these limitations, the eye tracking results show that the sub-
jects look at the regions with significantly higher overall saliency
than average. In the top row of Figure 6, saliency histograms for
each saliency range are shown; whereas the bottom row shows the
cumulative distribution of saliency values. Note that the saliency
of visible points in these animations are scaled to [0,100] range in
order to be able to compare the results. In these plots, the average
saliency values of all points that are the output of eye tracker are
also shown. As shown in the bottom row of Figure 6, the average
saliency of regions that the subjects look at for animation 1, 2, and
3 are ranked in the top 17%, 21%, and 19% of all visible points,
respectively.

Furthermore, we have tested the validity of the proposed saliency
approach as follows. In addition to the actual users, we have
assumed 100 virtual users who look at random screen positions.
Then, we have compared the calculated average saliencies of the
regions that the actual subjects look at to the regions that the vir-
tual users looked at. In this comparison, we have not considered
the points that are not on the animated models. Figure 7 shows that
the actual users look at more salient regions compared to the vir-
tual users and the difference is statistically significant (p < 0.05)
according to the applied t-test.

These results show that our saliency metric identifies the regions
that are likely to be looked at and determines the important parts of
a 3D mesh. Moreover, these results can be considered as the worst
case due to the limitations explained before.

5 Applications

The computed saliency map can be used for different applica-
tions, including mesh simplification, viewpoint-selection [Lee et al.
2005], persuading attention [Kim and Varshney 2008], and acceler-
ating global illumination computations [Yee et al. 2001].

Figure 7: Comparison between the calculated average saliencies
of the regions that are looked at by the actual users, and the ran-
domly generated virtual users. Error bars indicate 95% confidence
intervals.

Our saliency calculation is performed in a view independent way.
Once the saliency values are computed as a preprocessing step, they
can be stored as per-vertex attributes in a 3D animated mesh and can
be used in different applications without recomputing. We present
several applications in which the usage of saliency has a significant
importance.

5.1 Mesh Simplification

The first application in which the usage of saliency is illustrated is
simplification of 3D animated meshes. This application is based
on the idea that a vertex with a higher saliency value means that it
resides on a perceptually more interesting region of the mesh. Our
goal is to delay the simplification of the salient parts of the mesh,
because those parts are presumably the parts of the mesh where the
viewers focus on. On the other hand, saliency maps themselves do
not suffice to be used as the main simplification metric, but they are
rather support data, i.e., as a heuristics for simplification.

We have used the Quadric Error Metric (QEM) described in [Gar-
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(a) (b)

Figure 8: The animated horse model is simplified using quadric er-
ror metrics (a) and using our saliency-based simplification method
(b). Both of the models have 4600 faces.

land and Heckbert 1997] as our main simplification metric and in-
corporated saliency maps as a supporting decision factor. Origi-
nally, QEM has been used to compute a score for each vertex in
the mesh determining their simplification possibility. In our frame-
work, these QEM scores are blended with the saliency value of the
vertices and the final score is assigned to the vertices, according to
the following equation:

wi = −qi × (1− α) + si × α× µ, (7)

where wi is the final weight, qi is the QEM score, si is the saliency
score of vertex i, α is the weight of the saliency score in simplifica-
tion and µ is the normalization factor of the saliency values.

In our experiments, we have selected α = 0.5 and µ = 10−4. Af-
ter the scores are assigned to each vertex, the vertices are placed
on a heap, i.e., a priority queue, according to their scores. A ver-
tex with a high score means that it has a lower QEM error score
and/or a higher saliency; thus, we delay the contraction of the ver-
tices with higher scores. For this purpose, we use a min-heap where
vertices with lower scores are placed at the top. These vertices are
consequently simplified earlier without degrading the quality of the
salient regions of the mesh and without increasing the QEM error
rate significantly. When two vertices are contracted we assign a
new score to the resulting vertex. This score is obtained by the
own QEM score of the new vertex and a saliency value which is
the computed by linearly interpolating the saliency values of the
contracted vertices. This interpolation is performed depending on
the distance of the new vertex to the contracted vertices. Figure 8
shows a frame of the result of our simplification method applied on
the horse model. The figure illustrates that the new method suc-
cessfully preserves the salient regions such as the eye of the horse
model, and the colored region on the back.

5.2 Dynamic Level-of-Detail

Dynamically adjusting the level-of-detail of the models in the scene
depending on the display area they allocate is a widely used tech-
nique. This technique provides rendering efficiency by avoiding the
time to render the imperceptible details of complex meshes. The
view-independent saliency values that are computed as a prepro-
cess are used for real-time level-of-detail adjustment. The idea here
is that the viewers mostly focus on objects that are closer to them in
the scene, or the objects that allocate the most space on the screen.
Therefore, we can further simplify objects that are further away
from the viewer. This simplification is performed considering the
saliency values of the vertices as explained in Section 5.1.

5.3 Viewpoint Selection

The saliency information can also be used to automatically deter-
mine the viewpoint for an animation. Since the saliency values indi-
cate the significant regions of 3D meshes, automatic selection of the

Figure 9: Selected viewpoints for several meshes. top: original
views of the models, bottom: corresponding saliency maps.

viewpoint through animation would be a useful tool for a number of
applications. A similar approach can be used for automatically cre-
ating a thumbnail for animated 3D meshes; however, in this case, it
would be better to use the saliency that is generated using only the
geometric and the material properties of a 3D mesh without the mo-
tion related attributes since a thumbnail does not include animation.
Alternatively, the frame with the largest saliency can be selected.

In order to select the viewpoint automatically, we examine a spher-
ical region around a 3D mesh and the viewpoint in which the total
saliency of all visible points reaches the maximum is selected as
the viewpoint. Figure 9 shows the selected viewpoints for several
animated models. This technique can further be extended for auto-
matic control of camera position in an animation.

6 Conclusion

We have proposed a new saliency metric to calculate the level of
significance of 3D animated meshes. To be able to identify the
saliencies due to different properties, the proposed metric takes
various features of 3D models into account while computing the
saliency. These features are related to the shape, color, and mo-
tion of an animated 3D model. The saliencies due to each feature
are computed separately and they are normalized and combined to
calculate the final saliency map. The proposed method is view in-
dependent; thus, the saliency map can be calculated for an animated
3D mesh once and can be used for both view-dependent and view-
independent applications.

In order to validate our saliency metric, we have performed a user
study. In this study, we used an eye-tracker to capture the regions
of the models that the users look at. We compared the calculated
saliencies of these regions to the saliencies of the other regions of
the models. According to the results of this experiment, the users
look at the regions that are significantly more salient than the aver-
age saliencies of the models, which shows that we correctly iden-
tified the salient regions. We recommend several applications in
which the saliency information could be useful.
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