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ABSTRACT

In this paper, a new array signal processing technique by us-
ing particle swarm optimization (PSO) is proposed to identify
multipath channel parameters. The proposed technique pro-
vides estimates to the channel parameters by finding a global
minimum of an optimization problem. Since the optimization
problem is formulated in the cross-ambiguity function (CAF)
domain of the transmitted signal and the received array out-
puts, the proposed technique is called as PSO-CAF. The per-
formance of the PSO-CAF is compared with the space alter-
nating generalized expectation maximization (SAGE) tech-
nique and with another recently proposed PSO based tech-
nique for various SNR values. Simulation results indicate the
superior performance of the PSO-CAF technique over men-
tioned techniques for all SNR values.

Index Terms— direction of arrival (DOA), cross-ambiguity
function (CAF), particle swarm optimization (PSO).

1. INTRODUCTION

To meet the ever increasing demand for more efficient uti-
lization, the communication channels should be accurately
modeled. To this end, antenna arrays and sophisticated signal
processing techniques are used to estimate multipath chan-
nel parameters. There have been proposed many array sig-
nal processing techniques for reliable and accurate estima-
tion of these channel parameters [1]. The maximum likeli-
hood (ML) criterion based channel identification is a com-
monly used framework. In this framework, global maximum
of the likelihood function over the channel parameter space
should be found. Since the channel parameter space can be
very large, the high dimensional search for the global maxima
of the likelihood function creates issues in applications. Fur-
thermore, the multimodal structure of the likelihood function
complicates the search for the global maximum of the like-
lihood function. To reduce the computational complexity of
the high dimensional search of the ML technique, the SAGE
algorithm has been proposed. The SAGE algorithm has been
successfully applied for joint channel parameter estimation
and one of these efforts is reported in [2]. Unfortunately, the
SAGE algorithm with gradient based search techniques are
prone to converge to a local maximum of the likelihood func-
tion. To overcome this problem, various optimization tech-

niques such as alternating projection method [3], and simu-
lated annealing algorithms [4] have been proposed.

In this paper, a new array signal processing technique by
using PSO is proposed to estimate multipath channel param-
eters. By finding a global minimum of an optimization prob-
lem, the proposed technique provides estimates to the channel
parameters. Since the optimization problem is formulated in
the CAF domain of the transmitted signal and the received
array outputs, the proposed technique is called as PSO-CAF.

2. SIGNAL AND CHANNEL MODEL

In this section a commonly used parametric model for multi-
path channels is described. Consider that transmitted signals
are written as a modulated train of pulses:

s(t) =
q∑

k=1

bkp(t − (k − 1)T ) , (1)

where p(t) is the modulated pulse with time-bandwidth prod-
uct larger than 1, and bk’s are ±1. In a multipath environ-
ment, delayed, Doppler shifted and attenuated copies of the
transmitted signal from a transmitter impinge on an M ele-
ment receiver antenna array from different paths. The output
of the antenna array can be written as:

x(t) =
d∑

i=1

a(θi, φi)ζis(t − τi)ej2πνit + n(t) (2)

where x(t) = [x1(t), ..., xM (t)]T is the array output, d is the
number of paths, a(θi, φi) is the steering vector, φ and θ are
elevation and azimuth angles, respectively, ζi is the complex
scaling factor of the ith path containing all the attenuation
and phase terms, τi is the time delay of the ith path with
respect to antenna origin, νi is the Doppler shift of the ith

path and n(t) = [n1(t), ..., nM (t)]T is spatially and tempo-
rally white circularly symmetric noise Gaussian distributed
with covariance σ2. For notational simplicity all unknown
parameters are collected in vector, ϕ = [ϕ1, ...,ϕd] where
ϕi = [τi, νi, θi, φi].
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3. MAXIMUM-LIKELIHOOD BASED PARAMETER
ESTIMATION

ML estimation is a systematic approach, used in many param-
eter estimation problems. The likelihood function of the ob-
served data is determined in order to use the ML method. Un-
known channel parameters that maximize the likelihood func-
tion are considered to be ML estimates. Assuming that the
noise on each pulse transmission are independent, the proba-
bility density function can be written as:

P [x(t1) ... x(tN )] =
N∏

k=1

1
| πσ2I |e

−[‖e(tk)‖2/σ2] , (3)

where | · | is for the determinant, ‖ · ‖ is for the norm, and

e(tk) = x(tk) −
d∑

i=1

a(θi, φi)ζis(tk − τi)ej2πνitk . (4)

The ML estimates can be obtained as the maximum of the
log-likelihood function:

ϕ̂ = arg max
ϕ

{
−NMlogπσ2 − 1

σ2

N∑
k=1

‖e(tk)‖2

}
. (5)

Therefore, one needs to find the global maximum of this 4×d
optimization problem to identify all 4 parameters of each d
paths. SAGE algorithm, which has simpler maximization
steps in lower dimensional spaces, has been proposed to re-
duce the computational complexity [5]. In SAGE, parameters
are updated sequentially [2]. In Table 1, basic form of the
SAGE algorithm is presented.

Table 1. Basic SAGE algorithm for reference

Initialize the algorithm.

for j = 1 ; j ≤ max. # iterations ; j = j + 1
for i = 1 ; i ≤ d ; i + +
- Expectation step: estimate the complete (unobservable)

data of ith signal path given measurements.

- Maximization step: estimate each parameter of ith

signal path sequentially by maximizing a properly chosen

cost function.

- Create a copy of the ith signal path with estimated

parameters.

- Subtract the copy signal from each antenna output.

end
end

4. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a very powerful stochas-
tic optimization algorithm, developed by Kennedy and Eber-
hart in 1995 [6]. It is inspired by animal social behaviors
such as bird flocking. PSO has been successfully applied to
many different global optimization applications [7], [8]. PSO

Table 2. PSO update steps

for each time step t, do
for each particle l in the swarm do

- υl and zl is updated using (6) and (7)

- closeness of particle location to the solution is determined

- pl and pg are updated

end
end

algorithm operates on a set of solution candidates that are
called as swarm of particles. The particles are flown through
a multidimensional search space, where the position of each
particle is adjusted according to its own memory and that of
its neighbors. Each particle l consists of three vectors: its lo-
cation in D dimensional search space zl = [zl1, zl2, ..., zlD],
its historicaly best position pl = [pl1, pl2, ..., plD] and its
velocity υl = [υl1, υl2, ..., υlD]. Best position is the position
which has the best fitness to a predefined fitness function.
Initially, the positions and velocities of each particle are ran-
domly distributed over the search space. Then, in each time
step, the velocity and location of each particle is updated by
using following equations:

υlk = κ (υlk + c1ε1 (plk − zlk) + c2ε2 (pgk − zlk)) (6)

zlk = zlk + υlk , (7)

where c1 and c2 are scaling factors that determine the relative
pull of best position found particle and best position found
by the swarm, ε1 and ε2 are random numbers, κ is the con-
striction factor and pg is best position found by the swarm.
Update procedure of the algorithm is summarized in Table 2.
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Fig. 1. Barker-13 coded 6 paths a-) in time domain, b-) in

delay-Doppler domain.
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5. PROPOSED PSO-CAF TECHNIQUE

When the number of paths increases, the ML approaches
face significant challenges in finding the global maximum of
the likelihood function. This is mainly because of the fact
that likelihood maximization is performed in time domain,
where there is a considerable overlap between the signals
received from different paths. It is desirable to formulate an
alternative optimization problem other than the time domain
where the multipath signal components are localized with
less of an overlapping problem. Since typical communica-
tion signals are phase or frequency modulated, their CAFs
are significantly localized in the delay-Doppler domain. As
used in radar signal processing applications, time delay of the
Doppler shifted signals can be estimated by using CAF. The
CAF between the received signal, xm(t), and the transmitted
signal s(t) is:

χxm,s(τ, ν) =
∫ ∞

−∞
xm

(
t +

τ

2

)
s∗

(
t − τ

2

)
e−j2πνtdt. (8)

Therefore, the transformation of the array signal outputs to the
CAF domain localizes different multipath signals to their re-
spective delay and Doppler cell. Peaks of these localized clus-
ters can be detected by setting an adaptive threshold. To illus-
trate this phenomenon consider a synthetic multipath channel
with 6 distinct paths. As shown in Fig. 1.a, the individual
multipath signals overlap significantly in time at the output of
an array element. However, as shown in Fig. 1.b, the CAF
between the received signal and the transmitted signal local-
izes the contribution of different path components in delay-
Doppler domain. This localization enables us to reformulate
the channel identification problem as a set of loosely cou-
pled optimization problems in lower dimensional parameter
spaces. Effectiveness of the peak detection of each multipath
cluster on CAF surface is also verified on ionospheric data
[9]. In the following based on CAF, we provide the new opti-
mization framework.

Assuming that, based on CAF processing of the received
signal and the transmitted signal, we identified C clusters of
paths in the CAF domain. Let the number of multipaths in the
cth cluster be dc. The path parameter optimization problem
can be formulated for each cluster c, 1 ≤ c ≤ C, as:

ϕ̂(Sc) = arg min
ϕ

(9)

M∑
m=1

∣∣∣∣∣∣vec
(

Wcχxm,s(τ, ν) − Wcχx̂m(ϕ(Sc)),s
(τ, ν)

)∣∣∣∣∣∣2 ,

where vec(.) is the vector operator stacking the columns of a

matrix into a single column vector, Wc is a mask for the cth

cluster, which selects the patch that will be used in the PSO
optimization, Sc is the set containing path indexes of dc mul-
tipath components in the cth cluster, and χx̂m(ϕ(Sc)),s

(τ, ν)
is the CAF between created cth cluster multipath signal,
x̂m(t,ϕ(Sc)), and s(t):

χx̂m(ϕ(Sc)),s
(τ, ν) =

∑
i∈Sc

ζiÂm,i(τ, ν) . (10)

In this equation, Âm,i(τ, ν) is defined as:

Âm,i(τ, ν) = am(θi, φi)∫ ∞

−∞
s
(
t − τi +

τ

2

)
s∗

(
t − τ

2

)
e−j2π(ν−νi)tdt, (11)

Using (10) and (11), (9) can be written in a compact form as:

ϕ̂(Sc) = arg min
ϕ

M∑
m=1

∣∣∣∣∣∣vec
(

Wcχxm,s(τ, ν)
)
− Gc,mζc

∣∣∣∣∣∣2
(12)

where
Gc,m =[

vec
(

WcÂm,i

)
, ..., vec

(
WcÂm,i+dc−1

)]
, i ∈ Sc , (13)

and ζc is the amplitude vector, which minimizes (12), given
by

ζ̂c =
1
M

M∑
m=1

(
GH

c,mGc,m

)−1

GH
c,mvec

(
Wcχxm,s(τ, ν)

)
.

(14)
After substituting (14) into (12), channel parameter estimates
for the cth cluster, ϕ(Sc), can be obtained as the minimum
of the optimization problem over the remaining variables
τ, ν, θ, φ using PSO.

6. SIMULATION RESULTS

In this section, performances of the PSO-CAF, SAGE and
PSO-ML algorithms are compared on synthetic signals at dif-
ferent SNR values by using Monte Carlo simulations. PSO-
ML is a recently developed PSO based algorithm, which
searches parameter estimates using (5) [8]. For comparison
reasons, the joint root-mean squared error (rMSE), is defined
as:

rMSE =

√√√√ 1
dNr

Nr∑
μ=1

d∑
i=1

[ϕ̂μ
i − ϕμ

i ]2 , (15)

where Nr is the number of Monte-Carlo simulations, ϕ̂μ
i is

the parameter estimates of the ith signal path found in the
μth simulation and ϕμ

i is the true parameter values of the ith

path. A circular receiver array of M omnidirectional sensors
at positions [rcos(m2π/M), rsin(m2π/M)], 1 ≤ . . . ≤ M ,
is synthesized. The radius of the array r = λ/4sin(π/M) is
chosen such that the distance between two neighboring sen-
sors is λ/2, where λ is the carrier wavelength. The transmit-
ted training signal consists of 6 Barker-13 coded pulses with
a duration of 13Δτ where Δτ is the chip duration. The pulse
repetition interval is 30Δτ resulting a total signal duration of
qT = 167Δτ . The SNR is defined at a single sensor relative
to the noise variance.

In the experiment, there exists 10 equal power paths with
parameter values θ = [45, 50, 55, 60, 65, 70, 75, 57, 63, 68]o,
φ = [30, 35, 40, 45, 50, 55, 38, 47, 43, 33]o, τ = Δτ.[1, 1.25,
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Fig. 2. 10 signal paths on delay-Doppler domain.

1, 1.5, 2.5, 3, 4.25, 4.75, 4.75, 5.25], ν = Δν.[1, 1.5, 2.5, 3,
2.75, 2.5, 1.5, 1.25, 2.5, 2.25]. Position of each path on CAF
surface is seen in Fig. 2. Notice that, each path has 4 param-
eters. Therefore, PSO-ML search for the path parameters in
a 40-dimensional space and PSO-CAF sequentially searches
five 8-dimensional spaces. Although the number of paths d is
assumed to be known, it can also be estimated in our frame-
work by adding extra dimensionality to PSO search and se-
lecting the dominant scaling factors ζ. Moreover, there are
excellent techniques to determine the number of paths [10],
[11]. Same PSO settings are used for both PSO-CAF and
PSO-ML as: swarm size = 40, κ = 0.72984, c1 = c2 =
2.05. Necessary number of PSO evaluations are conducted
for both techniques to ensure the convergence. The joint-
rMSE obtained from 100 Monte Carlo runs at each SNR is
shown in Fig. 3. Obtained results show that PSO-CAF out-
performs both SAGE and PSO-ML techniques significantly
at all SNR values. Even at high SNR values, due to the exis-
tence of closely spaced clustered paths, SAGE and PSO-ML
techniques fail to separate paths.

7. CONCLUSION

A new array signal processing technique operating in the
CAF domain and using PSO is proposed for the estimation
of multipath channel parameters. The PSO-CAF technique
provides estimates to the channel parameters in a sequential
search over lower dimensional spaces. Simulation results
show that the PSO-CAF provides significantly better parame-
ter estimates than the SAGE and recently proposed PSO-ML
technique.
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