
Impact of Maintainability Defects on Code Inspections

Özlem Albayrak
Computer Technology and Information Systems

Bilkent University
Ankara, Turkey

+90 (312) 290 5039

ozlemal@bilkent.edu.tr

David Davenport
Computer Engineering

Bilkent University
Ankara, Turkey

+90 (312) 290 1248

david@cs.bilkent.edu.tr

ABSTRACT
Software inspections are effective ways to detect defects early in
the development process. In this paper, we analyze the impact of
certain defect types on the effectiveness of code inspection. We
conducted an experiment in an academic environment with 88
subjects to empirically investigate the effect of two
maintainability defects, i.e., indentation and naming conventions,
on the number of functional defects found, the effectiveness of
functional defect detections, and the number of false positives
reported during individual code inspections.

Results show that in cases where both naming conventions and
indentation defects exist, the participants found minimum number
of defects and reported the highest number of false positives , as
compared to the cases where either indentation or naming defects
exist. Among maintainability defects, indentation seems to
significantly impact the number of functional defects found by the
inspector, while the presence of naming conventions defects
seems to have no significant impact on the number of functional
defects detected. The presence of maintainability defects
significantly impacts the number of false positives reported. On
the effectiveness of individual code inspectors we observed no
significant impact originated from the presence of indentation or
naming convention defects.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Code
inspections and walk-throughs;

General Terms
Code inspections and walk-throughs

Keywords
Source code inspection, code inspection effectiveness.

1. INTRODUCTION
Formal software inspections have been established as an effective
way to detect defects and thus decrease software development
costs [2, 7]. Code inspection is an important part of software
inspections, as a structured quality verification process to identify

defects in the source code [2, 3, 10, 18].

Manual inspections are considered too laborious for widespread
adoption. Studies have been conducted on how to optimize the
inspection process to increase effectiveness of code inspections
[11, 17]. Considerable research has been carried out on computer
supported code inspection tools [4, 8, 15, 16].

In [5] researchers proposed development of agent-based tools to
automate parts of the code inspection process. It has been shown
that advances in static program analysis can reduce the inspection
time required [2]. For more effective code inspections, techniques
for object-oriented code inspections were suggested in [6].

An inspection of the source code usually follows a checklist [1, 2,
9]. While many checklists and coding standards exist, the final
decision is generally based on the experience of the inspector
[13]. Several recent studies have concluded that most of the
defects are found during individual inspections [8]. In this study,
we focus on individual code inspectors, using checklists.

This paper does not propose a new method to improve
effectiveness of code inspections. It presents results of an
examination of whether the presence of some maintainability
defects impact individual code inspection effectiveness. Previous
studies show that most of the defects found in code inspections
are not problems that could have been uncovered by latter phases
in testing or field usage because these defects have little or
nothing to do with the visible execution behavior of the software.
Code inspections do not only detect defects, but they also
improve the readability of the code, and hence maintainability.
Rather, they improve the maintainability of the code by making
the code conform to coding standards, minimizing redundancies,
improving language proficiency, improving safety and portability
[12, 2]. To our knowledge, no previous studies have been
conducted to observe if the presence of maintainability defects
has an impact on individual code inspector’s effectiveness.

The purpose of this experiment was to find out whether or not
maintainability defects, due to indentation and naming defects,
have an impact on the number of functional defects detected, and
on the effectiveness of code inspection to detect functional
defects, and the number of false positives reported.

We undertook a study to investigate the following research
questions: For code inspections,

RQ1),Is the number of functional defects detected by
individuals affected by the presence of either (a) Indentation
defects or (b) Naming defects?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’10, September 16–17, 2010, Bolzano-Bolzen, Italy.
Copyright 2010 ACM 978-1-4503-0039-01/10/09…$10.00.

RQ2) Is the individual’s effectiveness of functional defect
detection affected by the presence of indentation and naming
defects?

RQ3) Is the number of false positives reported affected by the
presence of indentation and naming defects?

2. EXPERIMENTAL SETUP
For initial work to observe the impact of different types of
maintainability defects on the number of functional defects
detected correctly and false positives reported, and on the
effectiveness of individual code inspections, we used four
different versions of a Java source code.

In this study, we examined the following hypotheses. (Due to
space limitations, we do not include the alternative hypotheses
here and only present the null hypotheses):

H1a0: The number of functional defects detected by an inspector
is not affected by the presence of indentation defects in the source
code.

H1b0: The number of functional defects detected by an inspector
is not affected by the presence of naming defects in the source
code.

H20: The effectiveness of functional defect inspection by an
inspector is not affected by the presence of indentation or naming
defects in the source code.

H30: The number of false positives is not affected by the type of
maintenance defects in the source code.

2.1 Experimental Variables
Maintainability defects are defects that do not affect the visible
functionality of software, but impact maintainability by making
the code easier to understand and modify. Naming defects include
violation of naming conventions and using meaningless names in
the code. Indentation defects are related to misuse of spaces in the
source code lines, within the same line and between lines. The
dependent variables included:

Functional defects: The total number of functional defects
detected correctly in the source code. (We do not use the defect
detection ratio as defined in [15], because in our experiment there
were equal number of functional defects injected into the code.)

Inspector effectiveness: The number of functional defects
correctly found divided by the time spent in the inspection.

False positives: The total number of false positives reported by
the individual inspector.

2.2 Subjects
We first conducted a pilot study with 16 senior students enrolled
into CTIS494-Software Quality Assurance course. The main
purpose of this pilot study was to validate our checklist, set an
appropriate time-period for the experiment, and collect feedback
on the whole experiment moving forward.

The actual experiment included 88 subjects who were volunteer
freshmen students of three different sections of a second Java
programming course (CS102-Algorithms and Programming) of
the Computer Engineering department at Bilkent University

during the Spring semester of 2010. The subjects had two
semester programming experience in an academic environment
and no experience in code inspections.

2.3 Materials
The experiment used four versions of the same artifact, about 100
LOC of Java source code. All four versions included the same
functional defects. We then injected different defect types
composed of indentation and naming defects to each version.
Table 1 presents the distribution of defect types injected to the
different versions of the artifact.

Table 1. Distribution of defect types injected

Defect Type V0 V1 V2 V3

Indentation 0 0 10 4

Naming 0 10 0 6

Functional 6 6 6 6

2.4 Study Design
During the lecture immediately preceding the experiment, the
subjects were informed about software inspections. They were
trained on code inspection using checklists. The study was
conducted on the same day after the training. Each student
inspected one artifact using the checklist provided to them to
detect naming, indentation and functional defects. Each version of
the artifact contained the same total number of defects, except for
the first group which only had the 6 functional defects injected.
All of the subjects started the study at the same time and they
used a common timer application to record the time they detected
each defect. We placed the subjects and distributed artifacts to
them.

3. DATA ANALYSIS AND RESULTS
We collected 88 valid inspection documents from 88 subjects.
The subjects’ assignment to treatment groups was not totally
random. To balance the number of students per course section,
they were seated with respect to their CS102 sections, some of the
students did not appear in the experiment, thus each group does
not have equal number of participants. We counted the number of
defects reported and the number of defects detected by each
inspector. The descriptive statistics are presented in Table 2,
while the box-plots in Fig. 1 shows graphically the number of
functional defects detected and false positives reported for
different versions of the artifact.

Table 2. Descriptive statistics for functional defects

False Positives
Reported

Functional Defects
Detected Artifact

version Mean Std. Dev. Mean Std. Dev.
N

V0 5.61 2..808 2.22 1.313 23

V1 4.73 2.676 2.32 1.249 22

V2 4.74 2.663 1.79 1.512 19

V3 6.96 2.941 1.63 1.173 24

Fu

nc
tio

na
l d

ef
ec

ts
 d

et
er

m
in

ed
/

Fa

ls
e

po
si

tiv
es

 r
ep

or
te

d

3210
 Artifact version
Figure 1. Box-plot for functional defects and false positives.

For all statistical tests reported in this paper, we have used one-
way ANOVA and an alpha value of 0.05.

3.1 H1: Functional Defects
Table 3 presents results of the ANOVA to test H1a0.

Table 3. Test of the ANOVA (H1a0-Indentation Defects)

Sum of
Squares df Mean

Square F Sig.

Between Groups 7.119 1 7.119 4.255 0.042

Within Groups 143.870 86 1.673

Total 150.989 87
R Squared = 0.047 (Adjusted R Squared=0.036)

The ANOVA was significant F(1, 88) = 4.255, p = 0.042, η2 =
0.047. This result allows H1a0 to be rejected. The presence of
indentation defects impacts the number of functional defects
detected in the code. In the presence of indentation defects, the
subject found less functional defects. On the average, the presence
of indentation defects resulted in 0.56 (25%) fewer functional
defects being defected.

Table 4 presents results of the ANOVA to test H1b0. For impact
of the presence of naming defects, the ANOVA was not
significant F(1, 88) = 0.057, p = 0.812, η2 = 0.001.

Table 4. Test of the ANOVA (H1b0-Naming Defects)

Sum of
Squares df Mean

Square F Sig.

Between Groups 0.099 1 0.099 0.057 .812

Within Groups 150.889 86 1.755

Total 150.989 87
R Squared = 0.001 (Adjusted R Squared=0.011)

3.2 H2: Inspector Effectiveness
Table 5 presents results of the ANOVA to test H20. The ANOVA
was not significant F(3, 83) = 2.191, p = 0.096, η2 = 0.077. Those
inspected V1 were the most, and V3 were the least effective.

Table 5. Test of the ANOVA (Inspector effectiveness)

Sum of
Squares df Mean

Square F Sig.

Between Groups 1.35E-005 3 4.50E-006 2.191 0.096

Within Groups .000 79 2.06E-006

Total 0.000 82
R Squared = 0.077 (Adjusted R Squared=0.042)

3.3 H3: False Positives
Table 6 presents results of the ANOVA to test H30.

Table 6. Test of the ANOVA (False positives)

Sum of
Squares df Mean

Square F Sig.

Between Groups 75.106 3 25.035 3.233 0.026

Within Groups 650.484 84 7.744

Total 725.591 87
R Squared = 0.104 (Adjusted R Squared=0.071)

The ANOVA was significant F(1, 88) = 3.233, p = 0.026, η2 =
0.104. This result allows H30 to be rejected. The type and
existence of maintainability defects impacts the number of false
positives reported. In the presence of only one type of
maintainability defects, in versions V1 and V2, the mean and the
standard deviations of the false positives reported by the
inspectors are almost the same (Table 3). While in the presence of
both indentation and naming defects, as in V3, the subject
determined more false positives than the other versions. The
inspectors whose artifact did not contain any maintainability
defects, version V0, reported more false positives than the
inspectors using V1 and V2 versions of the artifact. On the
average, the presence of both naming and indentation defects
resulted in 2.23 (47%) more false positives being reported.

4. THREATS to VALIDITY
This experiment exhibits a number of threats to internal and
external validity. External validity deals with generalizations and
internal validity investigates if the treatment causes the outcome.
Common to any empirical study, researchers cannot draw general
conclusions based solely on the results of one study.

The subjects were students who may not represent real
developers, and thus may have been the major source of the
observed results. The source code artifact used may not be
reflective of a typical Java source code, but we selected
commonly made defects in the code. The likelihood of
experimenter’s bias is limited by having two researchers. The
experiment was conducted all at once and by the same collector,
thus we do not have location and instrumentation threats.

2,5

0,0

5. CONCLUSIONS and FURTHER WORK
The primary goal of this study was to investigate the impact of the
maintainability defects, indentation and naming conventions
defects, on the number of functional defects identified correctly,
on the number of false positives reported, and on the effectiveness
of individual code inspectors.

Based on empirical data collected during an experiment in an
academic setting with 88 students, our analysis showed that the
inspectors detected less functional defects when their code
included indentation defects. Thus, the presence of indentation
defects has a significant negative impact on the number of
functional defects found, while the presence of naming defects
does not appear to have the same impact.

The significant impact of the maintainability defects on the
number of false positives reported is an important observation. If
the code contains only a single type of maintainability defects, the
inspectors’ effectiveness are equal. The presence of indentation
and naming defects does not have significant impact on the
effectiveness of individual code inspections. The results reveal
initial information on the importance of indentation defects in the
code. The presence of indentation defects decreases the
readability and significantly reduces the defects found.We aim to
run similar experiments using different programming languages
and with professional developers in the future.

6. ACKNOWLEDGMENTS
We thank Dr. Jorge L. Díaz-Herrera for commenting on earlier
versions of the paper, and the anonymous reviewers.

7. REFERENCES
[1] Almeida Jr., J. R., Camargo Jr., J. B., Basseto, B. A., and

Paz, S. M. 2003. Best practices in code inspection for safety-
critical software. IEEE Softw. 20, 3 (May. 2003), 56-63.
DOI= http://dx.doi.org/10.1109/MS.2003.1196322.

[2] Anderson, P., Reps, T., Teitelbaum, T., Zarins, M . 2003.
Tool support for fine-grained software inspection . IEEE
Softw. 20, 4. 42 – 50. DOI= 10.1109/MS.2003.1207453.

[3] Barnard, J. and Price, A. 1994. Managing code inspection
information. IEEE Softw. 11, 2 (Mar. 1994), 59-69. DOI=
http://dx.doi.org/10.1109/52.268958

[4] Brothers, L., Sembugamoorthy, V., and Muller, M. 1990.
ICICLE: groupware for code inspection. In Proceedings of
the 1990 ACM Conference on Computer-Supported
Cooperative Work (Los Angeles, California, United States,
October 07 - 10, 1990). CSCW '90. ACM, New York, NY,
169-181. DOI= http://doi.acm.org/10.1145/99332.99353

[5] Chan, L., Jiang, K., and Karunasekera, S. 2005. A tool to
support perspective based approach to software code
inspection. In Proceedings of the 2005 Australian
Conference on Software Engineering (March 29 - April 01,
2005). ASWEC. IEEE Computer Society, Washington, DC,
110-117. DOI= http://dx.doi.org/10.1109/ASWEC.2005.10

[6] Dunsmore, A., Roper, M. and Wood, M. 2003.The
development and evaluation of three diverse techniques for

object-oriented code inspection. IEEE Transactions on
Software Engineering, 29, 8. 677 – 686.

[7] Fagan, M. E., 1999. Design and code inspections to reduce
errors in program development. IBM Systems Journal. 38, 2.
258 – 287. DOI: 10.1147/sj.382.0258

[8] Harjumaa, L., Hedberg, H., and Tervonen, I. 2001. A path to
virtual software inspection. In Proceedings of the Second
Asia-Pacific Conference on Quality Software (December 10
- 11, 2001). APAQS. IEEE Computer Society, Washington,
DC, 283.

[9] Hatton, L., 2008.Testing the value of checklists in code
inspections. IEEE Software, 25, 4. 82 – 88. DOI=
10.1109/MS.2008.100.

[10] Laitenberger, O., 1998. Studying the effects of code
inspection and structural testing on software quality. In
Proceedings of the The Ninth International Symposium on
Software Reliability Engineering (November 04 - 07, 1998).
ISSRE. IEEE Computer Society, Washington, DC, 237.

[11] Land, L.P.W., C. Sauer, and Jeffrey, R. 2000.The use of
procedural roles in code inspections. Empirical Software
Engineering, 5, 11 – 34.

[12] Mantyla, M.V., Lassenius, C., 2009.What types of defects
are really discovered in code reviews? IEEE Transactions on
Software Engineering. 35, 3. 430 – 448. DOI=
10.1109/TSE.2008.71.

[13] Nelson, S., and Schumann, J. 2004. What makes a code
review trustworthy. In Proceedings of the 37th Hawaii
International Conference on System Sciences. HICSS 2004,
1 – 10.

[14] Porter, A.A., Siy, H.P., Toman, C.A., and Votta, L.G., 1997.
An experiment to assess the cost-benefits of code inspections
in large scale software development . IEEE Transactions on
Software Engineering. 23, 6. 329 – 346.DOI=
10.1109/32.601071.

[15] Remillard, J. 2005. Source Code Review Systems. IEEE
Softw. 22, 1 (Jan. 2005), 74-77. DOI=
http://dx.doi.org/10.1109/MS.2005.20

[16] Rodgers, T. L., Vogel, D. R., Purdin, T., and Saints, B. 1998.
In search of theory and tools to support code inspections. In
Proceedings of the Thirty-First Annual Hawaii international
Conference on System Sciences - Volume 3 (January 06 - 09,
1998). HICSS. IEEE Computer Society, Washington, DC,
370 - 378. DOI=
http://dx.doi.org/10.1109/HICSS.1998.656306.

[17] Seaman, C. B. and Basili, V. R. 1997. An empirical study of
communication in code inspections. In Proceedings of the
19th international Conference on Software Engineering
(Boston, Massachusetts, United States, May 17 - 23, 1997).
ICSE '97. ACM, New York, NY, 96-106. DOI=
http://doi.acm.org/10.1145/253228.253248.

[18] Siy, H. and Votta, L. 2001. Does the modern code inspection
have value? In Proceedings of the IEEE international
Conference on Software Maintenance (ICSM'01) (November
07 - 09, 2001). ICSM. IEEE Computer Society, Washington,
DC, 281.

