
   
Figure 1: Two examples of colon tissues that are stained with the routinely 
used hematoxylin-and-eosin technique. The regions labeled with 1 include 
normal regions and the regions labeled with 2 include cancerous regions of 
different grades. The region marked with 3 in (b) can be included in either 
side without affecting the medical interpretation. 
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Abstract— This paper presents a new algorithm for the 
unsupervised segmentation of tissue images. It relies on using 
the spatial information of cytological tissue components. As 
opposed to the previous study, it does not only use this 
information in defining its homogeneity measures, but it also 
uses it in its region growing process. This algorithm has been 
implemented and tested. Its visual and quantitative results are 
compared with the previous study. The results show that the 
proposed segmentation algorithm is more robust in giving 
better accuracies with less number of segmented regions. 

Keywords- Quantitative medical image analysis; Image 
segmentation; Texture analysis. 

I.  INTRODUCTION 
Cancer is one of the most important health problems that 

threat the human life [1]. The likelihood of curing cancer 
increases with its early diagnosis and correct grading, for 
which histopathological examination is routinely used. The 
number of computational studies on histopathological image 
analysis is increasing over the past few years. The main aim 
of these studies is to automate the diagnosis and grading 
process for reducing the subjectivity that can be observed in 
histopathological examination. These studies extract features 
from a histopathological tissue image and use the features in 
automated diagnosis and grading [2][3]. The images used in 
these studies are usually assumed to be homogeneous. 
However, this may not always be the case and tissue images 
may contain both normal and cancerous regions (Figure 1). 
Thus, before extracting features, heterogeneous images 
should be segmented into their medically uniform regions.  

There are many approaches that have been proposed to 
segment heterogeneous images into their uniform regions; 
examples include region growing [4], graph-based [5], and 
stochastic [6] algorithms. These algorithms are proposed for 
segmenting generic images and do not employ a domain 
specific knowledge that can be necessary for interpreting 
some types of images such as histopathological tissue 
images. The interpretation of the tissue images requires the 

domain specific knowledge of a pathologist who mainly 
employs the distribution of cytological tissue components 
and abnormalities and irregularities observed in this 
distribution. Additionally, tissue images have some specific 
properties: they have similar color distributions in their 
heterogeneous regions and they may contain a large amount 
of noise and variations. The segmentation algorithms should 
also consider these domain specific properties.  

In literature, there are few algorithms that work on 
heterogeneous tissue images. A common approach in these 
algorithms is to divide an image into grids and classify each 
grid according to its color and texture information, assuming 
that the grid is homogeneous [7][8]. These algorithms do not 
explicitly consider the domain specific knowledge of a 
pathologist in calculating the features. In our previous study 
[9], we proposed an algorithm, ObjSEG, which incorporates 
the knowledge of a pathologist into segmentation. It defines 
a set of primitive objects to represent cytological tissue 
components, computes its texture descriptors quantifying the 
spatial distribution of the objects, and uses these descriptors 
as homogeneity criteria in its region growing based 
segmentation. Although ObjSEG improves the results of its 
pixel-based counterparts, it has a problem of finding a 
common parameter set that works for all image instances, 
which reduces its robustness. 
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This paper extends the previous work to alleviate this 
problem. In this current work, we propose a new region 
growing algorithm, in which the growing process depends on 
object-to-object relationships, instead of pixel connectivity. 
It is different than the ObjSEG algorithm that grows the 
regions based on pixel connectivity. Our experiments show 
that the use of object-to-object relationships in region 
growing increases the segmentation performance. It also 
improves the robustness of the algorithm, enabling to select a 
common parameter set for all image instances that leads to 
good segmentation results.  

II. METHODOLOGY 
A tissue is not a random collection of its cytological 

components. The distribution of tissue components follows a 
pattern and this pattern changes with the existence of cancer. 
Pathologists diagnose and grade a tissue according to these 
changes. Thus, it is important to use spatial distribution of 
the tissue components in defining computational measures. 
The proposed algorithm makes use of the textural measures 
introduced by our previously proposed ObjSEG algorithm. 
ObjSEG quantifies the distribution of tissue components, 
approximately representing these components with circular 
objects and defining a set of texture descriptors on these 
objects. As it uses pixel connectivity in its region growing, it 
computes these descriptors for each pixel. On the other hand, 
this current work uses object-to-object relationships in the 
region growing process, and hence, it defines the texture 
descriptors for objects, instead of pixels. In the following 
subsections, we first give the details of object definition and 
the texture descriptors. Then, we explain the steps of the 
region growing algorithm that our current work introduces. 

A. Object definition 
Tissue components are approximately represented with 

circular objects using a heuristic algorithm given in [9]. This 
algorithm first clusters the image pixels into three by using 
the k-means method. Each cluster corresponds to one of the 
dominant colors in a tissue stained with hematoxylin-and-
eosin. These colors are purple, pink, and white, and they 
mainly correspond to cell nuclei, stromal regions, and 
luminal regions, respectively. The algorithm then locates 
circular objects on the pixels of each cluster and groups them 
into two according to their sizes; one group is for larger 
objects and the other is for smaller ones. Figure 2(b) 
illustrates this object transformation for the original image 
shown in Figure 2(a); here six object types are represented 
with six different colors.  

B. Homogeneity measures 
The homogeneity measures used in this study rely on the 

following observation: in a homogeneous region, for each 
particular object, there should be another one with the same 
type and the same size and that object should be on the 
symmetrically opposite side of the particular object with 
respect to the centroid of this region. To quantify this 
observation for a single object, a window is located at its 
center and 12 descriptors are defined considering the objects 
falling in this window.  

Let   j 1, 2 . . . 6;  i  be the object set 
where  is the object with type j and id i and is the 
number of objects with type j. Each object , ,  
is characterized with its centroids  and  and its area . 
And also let W be the window located at a given pixel; in our 
case, this pixel corresponds to the centroid of an object   

 

 
Figure 2: The illustration of the proposed region growing algorithm: (a) the original image, (b) circular objects that approximately represent the cytological 
tissue components, (c) all of the object groups, (d) seed groups after eliminating the small-sized object groups, (e) grown regions, and (f) final boundaries of 

the grown regions. 
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TABLE I. QUANTITATIVE SEGMENTATION RESULTS 

 
Accuracy Sensitivity Specificity Region no 

Proposed 
algorithm 

86.5 
(±11.1) 

86.0 
(±26.5) 

82.9  
(±23.4) 

5.9 
(±2.2) 

ObjSEG 
algorithm 

82.8 
(±12.5) 

92.1 
(±16.3) 

66.1 
(±32.8) 

6.1 
(±2.2) 

for which the texture descriptors are calculated. As the first 
set of descriptors, for each object type, the standard deviation 

 of object areas are calculated as follows  

 . .  / 1  

(1) 
where  is the average area of the objects that fall in 
window W and has type j and  is the number of these 
objects.  

As the second set of descriptors, for each object type, the 
sum of the position vectors of the corresponding objects with 
respect to the window centroid ( , .  is defined as  

| | . . | | . .  

(2) 

C. Region growing algorithm 
In its first step, seed groups are identified based on the 

similarity of adjacent objects. To determine the adjacent 
objects, a Voronoi diagram is constructed on the centroids of 
all objects and any two objects are labeled as adjacent if they 
share an edge on this Voronoi diagram. Then, similar objects 
are grouped together such that the Euclidean distance 
between any pair of the adjacent objects in this group is 
below a similarity threshold. Finally, the large-sized groups 
that contain more objects than an object threshold are 
considered as seeds. Figure 2(c) shows the objects of the 
same group with the same color. Figure 2(d) shows the seeds 
that are obtained by eliminating the small-sized groups.  

In its second step, seeds are iteratively grown by 
appending the remaining objects to one of the seeds. For 
doing this, an individual remaining object is appended to an 
adjacent seed group if the distance between this object and 
the seed group is smaller than the similarity threshold that is 
relaxed by its 10 percent in every iteration. The descriptors 
of a seed group are calculated by averaging the descriptors of 
all objects that belong to this seed group. When all objects 
are assigned to a seed group, the algorithm employs the 
Voronoi diagram of the objects to find the final boundaries 
of the grown regions. The grown regions and their final 
boundaries are illustrated in Figure 2(e) and Figure 2(f), 
respectively. 

III. EXPERIMENTS AND RESULTS 
We conduct our experiments on 16 randomly chosen 

colon tissue images that contain both normal and cancerous 
regions. The tissues are stained with hematoxylin-and-eosin 
and their images are captured using a Nikon Coolscope 
Digital Microscope with 5× microscope objective lens. The 

images are taken in the RGB color space and their resolution 
is 1920 × 2560.  

The proposed algorithm has three parameters: window 
size (winSize), similarity threshold (simThr), and object 
threshold (objThr). To select the parameter set, we use leave-
one-out cross validation; for each particular image, we 
determine the parameter set on all other images excluding 
this particular image and obtain its test segmentation result. 
For that, we consider all possible combinations of the 
following sets winSize = {32, 64, 96, 128}, simThr = {0.25, 
0.50... 3.00, 3.50, 4.0}, and objThr = {10, 25, 50... 100, 
150... 250} and select the one that leads to the best 
performance over all images except the excluded image.  In 
defining the best performance, we consider both the accuracy 
and the number of segmented regions: we select the 
parameter set that leads to the best accuracy and that gives at 
most 10 segmented regions. Note that if only the accuracy 
was considered, we would select the parameter set that leads 
to very high accuracies but at the same time very high 
number of regions. Table I reports the average quantitative 
test results and the average number of segmented regions. 
The quantitative results are calculated comparing the 
segmented regions with the manual segmentation provided 
by our medical collaborator. The details of this calculation 
can be found in [9]. 

In order to understand the effectiveness of the proposed 
algorithm, we compare its results with our previously 
proposed ObjSEG algorithm [9], which uses a similar set of 
homogeneity criteria but a different region growing 
procedure in its segmentation. ObjSEG has also model 
parameters: small and large window sizes (winS and winL), 
area threshold (area), and merge threshold (merge). We 
select its parameter set also using leave-one-out cross 
validation, considering the following candidate sets: winS = 
{32, 64}, winL = {128, 256}, area = {5000, 7500... 20000, 
25000... 50000}, and merge = {0.0, 1.0, 1.5, 2.0... 4.0}. The 
quantitative test results obtained by the ObjSEG algorithm 
are also given in Table I . 

Figure 3 shows the visual results of the proposed 
algorithm (a1 – f1) and those of the ObjSEG algorithm (a2 – 
f2) on six example images. On these images, segmented 
regions obtained by each algorithm are shown in different 
colors. The images also include the boundaries of cancerous 
and normal regions that are manually drawn by our 
pathologist collaborator; regions that can be included in 
either side without affecting the medical interpretation are 
shaded in black. The quantitative and visual results show that 
the proposed region growing algorithm gives better 
segmentation performances. However, there are still errors in 
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some images such as the one shown in Figure 3(d1). This is 
due to using a common parameter set; for such images, better 
results can be achieved with different sets. Nevertheless, the 
quantitative results demonstrate that the proposed algorithm 
yields better accuracy, sensitivity, and specificity values 
when a common parameter set is used for all images. Note 
that the quantitative results reported in [9] are the ones that 
are obtained by separately optimizing the merge threshold 
for each image. Moreover, the proposed algorithm leads to a 
reasonable number of segmented regions even though it does 
not have an explicit region merge step. 

IV. CONCLUSION 
This paper introduces a new region growing algorithm 

for the unsupervised segmentation of tissue images. This 
algorithm relies on using the similarity of objects that 
approximately represent cytological tissue components. 
Working with the images of colon tissues, our experiments 
show that the proposed region growing algorithm leads to 
better results compared to the previous algorithm that uses 
similar criteria but a different region growing procedure.  

Our future work includes comparing the proposed 
algorithm with other state-of-the-art segmentation methods 
and defining different object-based textures for unsupervised 
segmentation algorithms.  
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Figure 3: The visual results of the proposed algorithm (a1 – f1) and the previous algorithm [9] (a2 – f2). Segmented regions are shown with different colors. 

The manual segmentations are also indicated in these images. 
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