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Abstract—We present an unsupervised hierarchical segmen-
tation algorithm for detection of complex heterogeneous image
structures that are comprised of simpler homogeneous primi-
tive objects. An initial segmentation step produces regions cor-
responding to primitive objects with uniform spectral content.
Next, the transitions between neighboring regions are modeled
and clustered. We assume that the clusters that are dense
and large enough in this transition space can be considered
as significant. Then, the neighboring regions belonging to the
significant clusters are merged to obtain the next level in
the hierarchy. The experiments show that the algorithm that
iteratively clusters and merges region groups is able to segment
high-level complex structures in a hierarchical manner.

I. INTRODUCTION

Segmentation has been a classical problem in computer
vision and pattern recognition. Popular methods aim to
find groups of pixels having spectral and/or micro-textural
homogeneity, and are typically applied to images containing
a small number of objects. However, it is almost impossible
to find a good set of parameters that works well for many
objects in a complex scene. On the other hand, hierarchical
segmentation received significant attention because different
objects appear in different scales. Given a hierarchical
segmentation, meaningful and interesting objects can be
extracted [1], [2], [3]. The problem is to determine how the
hierarchy is constructed. The common approach underlying
[1], [2], [3] is splitting and/or merging based on spectral
homogeneity. However, this approach does not work well for
complex structures that are intrinsically heterogeneous and
consist of multiple parts with different spectral characteris-
tics. Hence, many structures of interest do not appear in the
hierarchy due to such limitations. As an alternative, Scarpa
and Haindl [4] performed hierarchical texture segmentation
assuming that frequent neighboring regions are strongly
related. In order to find the strongly related regions, they
clustered the image pixels to compute the frequencies of
quantized region pairs. However, these frequencies are very
sensitive to the number of clusters which is determined
heuristically.

This paper focuses on an algorithm for constructing a
hierarchy that includes complex structures which do not
require a pre-clustering for determining the region types.

The algorithm does not solely depend on color information
for merging. It encodes image segmentation into a transition
space to find the interesting neighboring region pairs to
be merged. The first step is the initial segmentation where
the resulting regions correspond to primitive objects that
have uniform spectral content (Section II). The next step
is to model the transitions between neighboring regions
and calculate the transition frequencies (Section III). Fi-
nally, the significant transitions are automatically selected
to determine the regions that should be merged (Section
IV). The main difference between our previous work in
[1] and the approach proposed in this paper is that the
former aimed to select homogeneous regions automatically
from a segmentation hierarchy, whereas the latter focuses on
building a hierarchy of heterogeneous regions. Experiments
using a multi-spectral satellite image and a color texture
mosaic image illustrate the effectiveness of the proposed
modeling of the transitions for hierarchical segmentation of
complex structures (Section V).

II. INITIAL SEGMENTATION AND FEATURE EXTRACTION

The first step is to obtain a segmentation of the image such
that regions that have uniform color content correspond to
primitive objects. For this initial segmentation step, water-
shed transformation is applied on the generalized gradient
[5] of the multi-spectral image.

The regions obtained from the segmentation are repre-
sented with their spectral and size information. The spectral
information for each region consists of the mean values of
the pixels within the region for each spectral band. The
size information corresponds to the number of pixels in
each region. All features are normalized to the [0, 1] range
using linear scaling. Given an image with k spectral bands
together with its segmentation, each region Ri is represented
using the feature vector yi = (bi1, . . . , bin, si) where bik,
k = 1, . . . , n, corresponds to the mean value for the k’th
spectral band among the n bands, and si is the region size.

III. MODELING NEIGHBORING REGIONS

In order to obtain a segmentation of complex structures,
neighboring regions with different characteristics should be
merged. We present an unsupervised algorithm for automatic
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Figure 1. Clusters corresponding to the most significant transitions at levels 3, 4, and 6. The selected transitions are marked as blue, and the corresponding
regions are highlighted.

selection of the regions that should be merged. The input to
the algorithm is a segmentation together with its regions’
features. Our aim is to find the significant neighborhoods
in this segmentation. In this paper, we find the signifi-
cant neighborhoods using the transition frequencies between
neighboring regions. We assume that complex structures
consist of region objects that appear together frequently. For
example, the residential areas in a satellite image, that can
be denoted as complex structures, consists of many building-
grass and building-street neighborhoods.

A. Modeling region transitions

With this motivation, in order to find the regions that
should be merged, we model the transitions between neigh-
boring regions. Two regions are denoted neighbors if the
ratio of the length of the intersection of their boundaries
and the perimeter of the largest region is greater than
a length threshold. Let Ri and Rj be two neighboring
regions. Then, the transition between these two regions is
represented by two feature vectors in the transition space
obtained by the concatenation of the feature vectors yi and
yj as yij = (yi,yj) and yji = (yj ,yi). This transition
space encodes the region features along with their transition
frequencies in the image.

B. Clustering transition space

The assumption here is that, transitions between two simi-
lar region pairs (e.g., building-grass pairs) fall close to each
other in the transition space. While similar transitions are
pooled together to form dense clusters, seldom transitions
are located sparsely. The goal is to find coherent clusters of
transitions that correspond to significant neighborhoods. The
resulting clusters correspond to different types of neighbor-
hoods in the image.

In this work, we use a Gaussian Mixture Model (GMM)
[6] to solve the clustering problem where the GMM com-
ponents correspond to different clusters of transitions. The

cluster shapes are intuitively assumed to be Gaussian be-
cause of the expectation that similar transitions accumulate
around modes in the transition space. The GMM is estimated
based on the expectation-maximization algorithm and the
minimum description length (MDL) order estimation crite-
ria. An important point here is the estimation of the number
of clusters directly from the data because it is often impossi-
ble to guess the number of similar transitions in a particular
segmentation. After the number of clusters is selected using
MDL and the clusters are formed, each transition is assigned
to the cluster with the maximum probability. An important
observation is that most of the resulting clusters are not
sufficient (dense enough) to represent significant transitions
in the space that can be sparse due to the complex image
content.

IV. HIERARCHICAL SEGMENTATION

After clustering the transitions, the next major problem
is to select the clusters corresponding to the significant
transitions. We assume that the clusters that are dense
and large enough correspond to the significant transitions.
These clusters can be found by comparing the average
log-likelihood values of the members of the clusters. We
select the clusters whose average log-likelihood values are
larger than the average of the average log-likelihoods of
all clusters. Figure 1 shows some example clusters selected
in different levels of the hierarchy. Then, starting from the
cluster having the largest average log-likelihood value, we
merge the regions belonging to the transitions within each
selected cluster separately. If a region appears in more than
one transition in different selected clusters, the merging
of the region is performed only within the corresponding
earliest selected cluster.

After merging the significant transitions, we obtain the
next level in the hierarchy. Consequently, the resulting
regions represent complex structures in the image. In order
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Figure 3. Hierarchy levels: 1, 5, 7.

Figure 2. An example hierarchy.

to obtain each level in the hierarchy, feature extraction,
neighboring region modeling, cluster selection, and region
merging steps are performed iteratively. Figure 2 shows
a part of an example hierarchy constructed by regions
appearing in five levels.

In the feature extraction step, the mean is often not
longer sufficient to distinguish complex structures in higher
hierarchy levels. An alternative feature representation is
the topic distribution within each region. In this work,
topic distribution is computed by using the Probabilistic
Latent Semantic Analysis (PLSA) algorithm [7] that builds
topic models by learning the object-conditional probability
distributions. Due to space limitations, please refer to [1]
for the details of how the topic distribution is found for
each region. Other texture models can be used as a feature

representation for this step as well.

V. EXPERIMENTS

We applied the proposed hierarchical segmentation al-
gorithm to two different types of images. The first one is
a multi-spectral QuickBird satellite image containing blue,
green, red, and near-infrared bands. We ran the algorithm to
obtain 7 hierarchy levels including the initial segmentation.
Figure 3 shows example segmentations at different levels.
Because of space limitations, we cannot show all the levels.
Since no ground truth is available, only qualitative evaluation
was done. Means and sizes were used as region features for
the first 6 segmentation levels in which the regions stayed
almost homogeneous spectrally. At the sixth hierarchy level,
regions with different spectral content merged to form com-
plex structures and the homogeneity wast lost. Thus, we used
topic distributions as region features to obtain the last level.
Figure 4 demonstrates the merging of regions in a zoomed
area at different levels.

When individual hierarchy levels are analyzed in detail,
we can see that neighboring green-shadow regions merged
to form tree regions in the second hierarchy level. Then,
neighboring grass-tree regions merged to form vegetation
regions in the next hierarchy level. This is expected because
the image contains mostly vegetation resulting in many
green-shadow and then grass-tree groups. In the fourth
hierarchy level, transitions between bright (i.e., affected by
sun illumination) and dark building rooftops were selected
as the most significant transitions to extract building re-
gions. Then, the most significant transitions corresponded to
vegetation-building groups whose merging revealed complex
settlement regions that were separated by roads. In the last
hierarchy level, the most significant transitions were found
to occur between settlement and road regions whose merging
produced residential regions as complex structures. Note
that, we only discussed the most significant transitions at
the corresponding levels such that other transitions might
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Figure 4. Zoomed hierarchy levels.

Figure 5. Hierarchy levels: 1, 6, 10, 16.

have been selected as significant in the hierarchy as well.
Textures can also be considered as complex structures

since they involve similar kinds of transitions. These transi-
tions may be occurring in terms of different characteristics
of regions (e.g., color, shape, orientation). Hence, we also
evaluated the performance of the algorithm for hierarchical
texture segmentation on a textured mosaic image [4]. Figure
5 shows 4 segmentation levels among 15 levels obtained.
Means and sizes were used as region features in all levels.

The results show that our segmentation algorithm is able to
segment both sub-textures and textures in the image.

VI. CONCLUSIONS

Unlike traditional hierarchical segmentation approaches
that take into account only spectral or micro-textural ho-
mogeneity, we presented an unsupervised method for hi-
erarchical segmentation of complex image structures that
involved complex groups of primitive objects. We modeled
the transitions between neighboring regions to find which
regions should be merged for obtaining the next level in
the hierarchy. Experiments on satellite and textured mosaic
images showed that the proposed algorithm is able to detect
complex image structures in a hierarchical manner. Future
work includes automating the selection of complex struc-
tures from different levels of the segmentation hierarchy for
different applications.
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