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ABSTRACT
Rigidity and reflectivity are important properties of objects,
identifying these properties is a fundamental problem for
many computer vision applications like motion and track-
ing. In this paper, we extend our previous work to propose
a motion analysis based approach for detecting the object’s
rigidity and reflectivity. This approach consists of two steps.
The first step aims to identify object rigidity based on motion
estimation and optic flow matching. The second step is to
classify specular rigid and diffuse rigid objects using struc-
ture from motion and Procrustes analysis. We show how rigid
bodies can be detected without knowing any prior motion
information by using a mutual information based matching
method. In addition, we use a statistic way to set thresholds
for rigidity classification. Presented results demonstrate that
our approach can efficiently classify the rigidity and reflec-
tivity of an object.

Index Terms— Rigidity, Reflectivity, Mutual Informa-
tion, Optic Flow

1. INTRODUCTION

Rigidity and reflectivity are significant properties of objects,
identifying these properties is a fundamental problem of many
computer vision applications like motion and tracking. Rigid-
ity indicates an object’s resistance to changing its shape. Re-
flectivity is commonly captured by means of bidirectional re-
flectance distribution function (BRDF) [1]. According to the
surface reflectivity, objects are either diffuse or specular. Con-
sidering both the rigidity and reflectance, objects can be clas-
sified as four categories, namely, specular rigid, diffuse rigid,
specular nonrigid and diffuse nonrigid, as shown in figure 1.

Detecting the rigidity and reflectance of an object would
allow a computer vision system to rely more on appropri-
ate measurements and improve performance. Methods for
rapidly classifying the reflectivity and rigidity of an object
would give the basis for automated recovery. However, the
inference of rigidity and reflectance is difficult without addi-
tional information about the object’s shape, the environment,

Fig. 1. From left to right: Specular rigid object; diffuse rigid
object; specular nonrigid object; diffuse nonrigid object.

or lighting. Hence, most computer vision algorithms usually
have strong assumptions about both the reflectivity and rigid-
ity.

For example, structure from motion algorithms assume
that the object is rigid. And it is difficult to extract the point
motion information needed without diffusely reflective and
patterned objects [2]. Although there are methods to handle
both nonrigid structure from motion and shape from specu-
lar flow, these methods are derived under the assumption that
the rigidity and reflective properties of the object are known
[3, 4]. Previous methods for classifying material have largely
relied on the ability to control the lighting in the scene, using
multiple lights, structured lights, color, stereo, or combina-
tions of these, see [5, 6, 7]. Oren and Nayar [8] developed a
classification strategy to distinguish image points whose mo-
tions affected by specular reflectance from points behaving
like diffuse reflectors based on caustic curves. Recently, we
showed that the relative motions of object and observer pro-
vide a rich source of information for inferring object rigidity
and reflectivity [9]. However, in that work, motion parameters
are assumed to be known in advance.

In this paper, we extend our previous work and demon-
strate that, without having any prior motion information, it is
possible to detect rigid object motion for specular and dif-
fusely reflecting surfaces by coupling the mutual informa-
tion based motion parameter estimation and optic flow match-
ing. We use a Procrustes analysis [10] of structure from mo-
tion [11] reconstructed 3D points to detect the reflectance of
an rigid object. Besides, we also show how a statistic way
of setting thresholds is utilized for the rigidity classification.
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The presented results demonstrate that our approach can effi-
ciently classify the rigidity and reflectivity of an object.

2. IDENTIFICATION SCHEME

In this section, we give an overview of the rigidity and re-
flectivity identification scheme. As shown in figure 2, the
presented approach consists of two steps. The first step is
to distinguish rigid and nonrigid bodies by coupling the mo-
tion estimation and optic flow matching. We use a combined
global local differential method (CLG) for optic flow compu-
tation based on Bruhn et al. [12]. CLG yields accurate, dense
flow fields that are robust against noise. To estimate motion
parameters of objects, a mutual information based matching
method, described in section 3, is employed.

It is shown in our previous work [9] that rigidity produces
characteristic transformations in optic flows and it holds for
objects with both diffuse and specular reflectance. Optic flow
patterns of rigid motion bodies are the same up to the mo-
tion transformation. If there is sufficient matchable structures
in the flow fields, rigidity can be identified by matching op-
tic flows. However, in our previous work, the detection of
rigidity assumes motion parameters are known. In this paper,
no prior motion information is required. Motion parameters
can be estimated by employing the mutual information based
technique, and optic flow patterns are accordingly matched
and measured in a quantitative way with the average angu-
lar error (AAE) [13]. Nonrigid objects tend to have higher
AAE values, on the contrary, AAE values are lower for rigid
objects. In this paper, we utilize a statistic way, detailed in
section 4, to set thresholds for classifying the rigidity.

The second step is to identify the object’s reflectance.
Similar to our previous work, for the specular rigid and dif-
fusely reflective rigid objects, structure from motion analysis
is applied and a Procrustes analysis is utilized to evaluate the
variation of reconstructed 3D shapes across time. Based on
an average shape change (ASC) measure [9], we are able to
distinguish specular and diffuse rigid bodies.

3. MOTION PARAMETER ESTIMATION

To evaluate the optic flow matching in a quantitative way, the
global transformation of object moving should be first esti-
mated. A mutual information based method is employed to
align the computed optic flow amplitude images for estimat-
ing the motion parameters. In [14], a novel image matching
approach based on the alignment by maximization of mutual
information was proposed. The basic idea is, given two im-
ages of the same scene or objects, when their mutual infor-
mation is maximized, they are considered to be matched. The
concept of mutual information is closely related to the en-
tropy. For a discrete random variable X , the Shannon entropy
is defined as

H(X) = −EX [log(P (X))]

= −
∑

xi∈ΩX

log(P (X = xi))P (X = xi) , (1)

Fig. 2. Object rigidity and reflectance classification.

where EX indicates the expected value function of X , P (X)
is the probability of X , ΩX refers to the domain over which
the random variable can range and xi is an event in this do-
main.

Given two random variables X and Y , their joint entropy
is defined as

H(X,Y ) = −EX [EY [log(P (X,Y ))]] , (2)

where E refers to the expectation, P (X,Y ) is the joint dis-
tribution of X and Y . The mutual information is then given
by

I(X,Y ) = H(X) +H(Y )−H(X,Y ) . (3)

The way of matching two images is to find the transformation
which gives the maximum mutual information. Let X be a
random variable which ranges over the domain of an image
m, m(X) is thus a new random variable. If a transforma-
tion T is applied on m, we can get a mapped image n with
n(T (X)) being a random variable. The mutual information
of these two images is then given by

I(m(X), n(T (X))) = H(m(X)) +H(n(T (X)))

−H(m(X), n(T (X))) . (4)

Matching images m and n requires to find the transformation
T by differentiating equation (4), that is

d

dT
I(m(X), n(T (X))) =

d

dT
H(n(T (X)))

− d

dT
H(m(X), n(T (X)))(5)

To compute the transformation, the probability distribution
should be first estimated. In this paper, we use a method
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called Parzen windowing to estimate the random variable’s
probability density. Given a set S of n samples, the probabil-
ity P (X) of X occurring is the sum of the contributions of
each sample s from S to P (X). The contributions are func-
tions of the distance between s and X . This results in the
following definition of the probability of X given a sample s

P (X,S) =
1

n

∑

s∈S

W (X − s) , (6)

where the weighting function W is chosen to be a Gaussian
function with the following form

g(x) =
1√
2πσ

exp(− x2

2σ2
) , (7)

with σ being the variance of the Gaussian distribution. In or-
der to maximize the mutual information, we use an optimiza-
tion scheme proposed by [15]. A stochastic gradient method
is employed to seek a local minimum of entropy and the gra-
dient of the mutual information is computed in an iterative
way by using a muti-scale scheme.

Based on the estimated motion parameters, optic flow pat-
terns are accordingly transformed for further matching.

4. THRESHOLD SETTING

In order to distinguish rigid and nonrigid objects based on
the AAE measures, a statistic way to set thresholds is uti-
lized. Based on a computer generated diffuse rigid image se-
quence, we compute the corresponding optic flows and match
them using the estimated motion parameters. The matched
optic flow error data is assumed to have a Gaussian distribu-
tion. Then, we randomly generate two optic flow fields and
make sure that their probabilities of having the same distribu-
tion with that of the diffuse rigid optic flow error are bigger
than 0.8. Based on these two optic flow fields, corresponding
AAEs are computed and regarded as the thresholds. Mov-
ing objects with AAEs below the thresholds are accordingly
identified as rigid bodies. And the rest objects are classified
as nonrigid.

5. EXPERIMENTAL RESULTS

To have a better evaluation of the presented approach, we
work on four image sequences with real objects. Figure 3
shows four types of real objects: a shiny ballon (specular non-
rigid), a diffusely reflective ballon (diffuse nonrigid), a shiny
plate (specular rigid) and a box (diffuse rigid). For each se-
quence, the 1st, 60th and 100th frames are illustrated. All
objects undergo a rotation with the view direction being the
rotation axis. The deformation of nonrigid objects are manu-
ally made.

Using mutual information based matching, rotation angles
are estimated as shown in figure 4. For every other 10 frames,
we match the optic flow magnitude images with the model
image (generated from the first two frames). It is revealed

Fig. 3. Rows from top to bottom: Specular nonrigid ob-
jects; diffuse nonrigid objects; specular rigid objects; diffuse
rigid objects. Columns from left to right: 1st, 60th and 100th
frames of the corresponding image sequences.

that estimated results of the rigid objects are very close to
the ground truth. With the increase of deformation, estimated
rotation angles of nonrigid objects are increasingly far away
from the ground truth. However, since the mutual information
of the two images are maximized, these angles with bigger er-
rors enable more accurate optic flow matching than that based
on the ground truth.
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Fig. 4. Estimated rotation angles for four objects.

Using the estimated rotation angles, optic flows are
matched for every other 10 frames and results are demon-
strated in figure 5. It is shown that rigid objects have lower
AAEs than the thresholds. Hence, nonrigid and rigid bodies
can be distinguished.

We track object features across the duration of a sequence,
and compute the ASC by comparing shape changes between
the first and second 50-frame block. Figure 6 illustrates the
average shape change measure for the specular and diffuse
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Fig. 5. Average angular errors between an initial flow field
based on frames 1-2 and subsequent fields as a function of
frame number.

rigid objects. Results demonstrate that the specular rigid ob-
ject has much high values of average shape change, how-
ever, these values are much lower for the diffuse rigid objects.
Based on the ASC measure, specular and rigid objects can be
clearly classified.
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6. CONCLUSIONS

In this paper, we propose a motion analysis based approach
to identify the rigidity and reflectivity of an object. Without
having any prior motion information, rigid bodies can be clas-
sified by using a mutual information based motion parameters
estimation and optic flow matching. In addition, a statistic
way to set thresholds for classifying rigidity is utilized. To
distinguish specular and diffuse rigid objects, we apply a Pro-
crustes analysis of structure from motion reconstructed 3D
points. Presented results demonstrate that our approach can
efficiently classify an object’s rigidity and reflectivity.
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meets Horn/Schunck: Combining local and global op-
tic flow methods,” International Journal of Computer
Vision, vol. 61, no. 3, pp. 211–231, 2005.

[13] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Perfor-
mance of optical flow techniques,” International Jour-
nal of Computer Vision, vol. 12, no. 1, pp. 43–77, 1994.

[14] P. Viola and III W.M. Wells, “Alignment by maximiza-
tion of mutual information,” in Proc. of the Fifth In-
ternational Conference on Computer Vision (ICCV’95),
1995, pp. 16–23.

[15] S. Gilles, “Description and experimentation of image
mathching using mutual information,” Tech. Rep., Dept.
of Engineering Science, Oxford University, 1996.

4576


