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Abstract— This paper addresses the H∞-stability of linear
fractional systems with multiple commensurate delays, includ-
ing those with poles asymptotic to the imaginary axis. The
asymptotic location of the neutral chains of poles are obtained,
followed by the determination of conditions that guarantee a
finite H∞ norm for those systems with all poles in the left
half-plane of the complex plane.
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I. INTRODUCTION

Fractional order systems are obtaining large attention in

the literature in the last years. Indeed, they appear in various

engineering applications, see e.g., [1], [4], [6], [9], [10],

[11], [14] and their references, where stability analysis and

controller design problems are studied.

Similarly, time-delay systems have a strong practical and

theoretic appeal. They appear naturally in many engineering

processes, as transports, communications, biological systems,

among many others.

Recently, there has been a strong development of new

methods dealing with fractional order system with delays.

In [8], a numerical procedure based on Cauchy’s integral

theorem was proposed to test the stability of such systems,

and in [7], a technique based on the Lambert W function

was used for the same purpose. Moreover, in [5], the stability

regions for PIλDµ controllers for a fractional dead-time de-

lay system were obtained by means of the D-decomposition

method.

The systems of neutral type are the most difficult to

analyze, since they may have chains of poles asymptotic to

the imaginary axis in the complex plane. In the frequency

domain, preliminary results have been obtained in the single

delay case in [3] showing that H∞-stability might happen

or not for systems having a chain of poles clustering the

axis in the left half-plane. Simple necessary and sufficient

conditions have been derived there.

The aim of this paper is precisely the generalization of

these results to the case of neutral systems with several

commensurate delays. We are first interested in section II in

the precise location of chains of poles around the asymptotic

axis. The case of multiple chains around the same axis is

more delicate than the case of a single chain, since a higher
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Hitay Özbay is with Bilkent University, Department of
Electrical and Electronics Engineering, Ankara 06800, Turkey.
hitay@bilkent.edu.tr

order analysis might be necessary. In section III, easy-to-

check conditions guaranteeing H∞-stability are derived for

systems with chains of poles around the asymptotic axis.

Finally several numerical examples are given in section IV.

The notation used throughout is standard. The set of

natural numbers is denoted by N, whereas NN denotes the

set of its first N elements (i.e., NN = {1, . . . , N}). The

imaginary unit is  =
√
−1.

II. LOCATION OF POLES OF THE SYSTEM

We consider fractional time-delay systems with transfer

functions of the form

G(s) =
t(s)

p(s) +

N
∑

k=1

qk(s)e
−ksh

, (1)

where h > 0, and t, p and qk, for all k ∈ NN , are real

polynomials in the variable sµ for 0 < µ < 1. Note that we

define an analytic branch of sµ on the cut plane C\R− by

setting (reθ)µ = rµeµθ and choosing θ with −π < θ < π.

We assume that the system is of neutral type, which means

that the polynomials p and qk further satisfy deg p ≥ deg qk
and such that deg p = deg qk for at least one k ∈ NN .

In order for (1) to be a proper neutral type delay system

we assume also that deg p ≥ deg t. Here, the degree is

interpreted as the degree in sµ, and therefore it is an integer.

One will notice that the essence of the analysis throughout

this paper is somehow independent of the numerical value

of the delay. Indeed, for the characterization of the chains

of poles of large modulus, only the relations between the

delays are important. Hence, both systems which have fixed

known delays as well as systems with unknown delays but

in a known fixed ratio can be considered in this framework.

Unfortunately, if the delays vary independently, even a small

variation in the absolute value can generate a great variation

in the ratio, and the analysis does not apply in its present

form.

The stability of a system of type (1) is linked to the

location of its poles. Those poles of small modulus can be

found by numerical techniques, whereas for those of large

modulus, the asymptotic behavior is crucial.

We write z = e−sh and suppose that for each k

qk(s)

p(s)
= αk +

βk

sµ
+O(s−2µ) as |s| → ∞, (2)

where, denoting deg p = d, p(s) =

d
∑

m=0

ρmsµm and qk(s) =
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d
∑

m=0

σk,msµm, equation (2) is satisfied with

αk =
σk,d

ρd
, (3)

βk =
σk,d−1 − αkρd−1

ρd
. (4)

The coefficient of the highest degree term of p(s) +
N
∑

k=1

qk(s)e
−ksh, can then be written as a multiple of the

following polynomial in z

c̃(z) = 1 +

N
∑

i=1

αiz
i. (5)

Our initial concern is to find the position of the vertical

lines for which the roots of the neutral chains are asymptotic

to.

Proposition 2.1: Let G(s) be a neutral system defined

as in (1) and consider the greatest integer M ≤ N such

that αM 6= 0. There exist neutral chains of poles which

asymptotically approach the vertical lines

Re(s) = − ln(|r|)
h

(6)

for each root z = r of the polynomial c̃(z)
Sketch of Proof 2.1: The poles of the neutral chains of

G(s) are asymptotic to the roots of (5), which leads to

snh ≈ λn = − ln(r) + 2nπ, n → ∞ ∈ Z (7)

The case where all the roots of (5) have multiplicity one

is much easier to analyze and can be completely treated. So,

for now on and throughout the rest of the paper, we will

consider that Assumption 2.1 holds.

Assumption 2.1: All the roots of c̃(z) are of multiplicity

one.

In this particular case, there will be M chains of neutral

poles, and since those are asymptotic to vertical lines, it is

now necessary to discover on which side the actual poles lie.

As it will be seen later, this is especially important for poles

such that |r| = 1, because this will provide information on

which side of the imaginary axis the poles are, and this plays

a crucial role in questions about stability. This analysis is the

objective of the next theorem.

Theorem 2.1: Let G(s) be a neutral delay system defined

by (1) and suppose that all the roots of (5) have multiplicity

one. For each r such that z = r is a solution of (5) and

for large enough n ∈ Z, the solutions asymptotic to (6) are

given by

snh = λn + δn +O(n−2µ) (8)

with λn given by (7) and

δn =
hµ

∑N
k=1

βkr
k

(2πn)
µ ∑N

k=1
kαkrk

(9)

Proof: We have p(sn) +
∑N

k=1
qk(sn)e

−ksnh = 0.

Dividing both sides by p(sn) leads to

1 +

N
∑

k=1

qk(sn)

p(sn)
e−ksnh = 0 . (10)

Writing snh = λn+δn+O(n−2µ) when sn is the pole near

λn, noting that e−λn = r, and using (2) together with the

fact that e−δnk = 1− δnk +O(n−2µ) leads to

1 +

N
∑

k=1

(

αk +
βk

sµn

)

rk (1− δnk) +O(n−2µ) = 0 , (11)

and hence, assuming n large enough in (7)

1+

N
∑

k=1

(

αk + βk

(

h

2πn

)µ)

rk (1− δnk)+O(n−2µ) = 0 .

(12)

Considering the approximation up to O(n−2µ), remem-

bering that r satisfies (5), we obtain

(

h

2πn

)µ N
∑

k=1

βkr
k − δn

N
∑

k=1

kαkr
k +O(n−2µ) = 0 , (13)

which completes the proof under the assumption that r is a

root of multiplicity one of (5).

Some conclusions can be obtained by considering δn. First

of all, associated with each root r of (5), let us define Kr as

Kr =

∑N
k=1

βkr
k

∑N
k=1

kαkrk
, (14)

where, again, Kr is well defined as it is assumed that r has

multiplicity one as a root of (5).

Our interest is mainly on which side of the vertical line the

poles are, in other words, to find out the sign of Re(δn) for

n sufficiently large. Just like the case µ = 1, it is sufficient

to look only at Kr to obtain this information. First, let us

recall that for the non-fractional case (µ = 1) [2], only the

existence of poles on both sides of the line could be assured

up to this point, because either Re(δn) = 0, in which case

an analysis with further terms was needed, or Re(δn) = ±c,
with the different signs coming from the calculation of δn
for the complex conjugated root r∗ of (5).

On the other hand, for our current case, as 0 < µ <
1, complex conjugated roots of (5) will not always provide

complex conjugated δn, that means, in general, δn associated

to a particular r is not equal to the complex conjugate of

the one associated with r∗. That means one can prove that

all poles for some systems are all in one particular half-

place delimited by the vertical line given by (6) just with

the approximation up to this order. This analysis will be the

subject of the next two corollaries.

Corollary 2.1: Let 0 < µ < 1, δn be given by (9) and

its associated Kr by (14). Then, sign(Re(δn)) < 0 for all

n ∈ R if and only if

Re(Kr) < − tan
(µπ

2

)

|Im(Kr)| (15)
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Proof: Besides Kr, the only term of interest is J =
(n)−µ, as sign(Re(δn)) = sign(Re(JKr)). Since n can be

both positive or negative, this term is given by

J = |n|−µ
(cos(µπ/2)±  sin(µπ/2)) . (16)

Multiplying J by Kr and getting its real part leads to

Re(JKr) =
1

|n|µ
(

cos
(µπ

2

)

Re(Kr)∓ sin
(µπ

2

)

Im(Kr)
)

(17)

from where (15) follows from the fact that 0 < µ < 1.

Some aspects can be seen from this corollary. First, the

numerical value of the delay does not appear explicitly in

equation (15). This means that for all h > 0 the chains of

poles present the same behavior in the sense that they do not

change sides with respect to the vertical line in question as a

function of an increasing delay. Second, as (15) involves only

the absolute value of Im(Kr), the results obtained would be

equivalent if we had dealt with the complex conjugate of Kr.

But indeed, it is direct to see that complex conjugated roots

of the polynomial c(z) in equation (5) will define complex

conjugated Kr.

Therefore, as stated before, differently from the case µ =
1, in the present context it might be possible to state if all

the poles are in the left of the vertical line (6) up to this level

of approximation. Indeed, as αk and βk given in equations

(3) and (4) are independent of µ, the next corollary can be

stated.

Corollary 2.2: Let 0 < µ < 1, δn be given by (9) and

its associated Kr by (14). Then, if Re(Kr) < 0, all poles of

the respective chain asymptotic to the vertical line (6) will

be on the left of this line if

µ <
2

π
arctan

(

− Re(Kr)

| Im(Kr)|

)

. (18)

Proof: This follows directly from corollary 2.1.

Although some cases might still require further analysis,

as for example if all βk are equal to zero, the procedure

resembles the one given in [2] and therefore will be omitted.

With these results in hand, in the next section we will

consider the H∞ stability of G(s).

III. H∞ STABILITY

We are now interested in answering the question of

stability of G(s). The notion on which we will concentrate

is H∞ stability, that is, the system has a finite L2(0,∞)
input/output gain.

We will refer to poles in the closed right half-plane C+

as unstable poles, and those in the open left half-plane C−

as stable poles.

The case where equation (5) possesses only roots of

modulus strictly greater than one is easy to handle as there

exists a > 0 such that the system has a finite number of

poles in {Re(s) > −a}. Also, the case where equation (5)

possesses at least one root of modulus strictly less than one

is obvious, since there will be a chain of poles asymptotic

to a vertical line in the right half-plane, and consequently an

infinite number of unstable poles.

Proposition 3.1: Let G(s) be a transfer function given

as (1) and suppose that (5) has at least one simple root of

modulus one, the other roots being of modulus strictly greater

than one.

1) Suppose that Re(δn) < 0 for all n ∈ N and that G has

no unstable pole (which could exist only in a finite

number), then G is H∞-stable if and only if deg p ≥
deg t+ 1.

2) If Re(δn) = 0, then the condition deg p ≥ deg t+1 is

necessary for H∞-stability.

Proof: Let s = sn + η ∈ R, we have
∣

∣

∣

∣

∣

p(s) +
N
∑

k=1

qk(s)e
−ksh

∣

∣

∣

∣

∣

(19)

≈ |η|
∣

∣

∣

∣

∣

p′(sn) +
N
∑

k=1

(q′k(sn)− khq(sn)) e
−ksnh

∣

∣

∣

∣

∣

(20)

≈ h |η| |p(sn)|
∣

∣

∣

∣

∣

N
∑

k=1

αkr
kk

∣

∣

∣

∣

∣

(21)

as n → ∞, n ∈ Z.

Recall that
∑N

k=1
αkr

kk is non zero by assumption.

If Re(δn) 6= 0, then η is at least of order n−µ and a

necessary and sufficient condition of H∞-stability is that

deg p ≥ deg t + 1. If Re(δn) = 0 the condition is still

necessary.

IV. EXAMPLES

As a first example, let us consider the following fractional

delay system

G1(s) = (sµ + e−s + (−sµ + 2)e−2s)−1. (22)

It is in form of (1) with h = 1. Evaluating (2) for this

system leads to α1 = 0, α2 = −β1 = −1 and β2 = 2. The

two roots of the polynomial c̃(z) given in (5) are r = ±1,

and so, (22) has two chains of neutral poles asymptotic to the

imaginary axis. The associated values of Kr are Kr = −1.5
and Kr = −0.5 for r = 1 and r = −1 respectively.

Since Re(Kr) < 0 and Im(Kr) = 0 for both roots of

c̃(z), this system has both its neutral chains of poles on the

left of the imaginary axis for all 0 < µ < 1. This means that

for all these values of µ there are only finitely many poles

on the right half-plane. Interesting is to note that, applying

the results of [2] for the case µ = 1, we find out that for

this particular value, both chains are located in the right

half-plane, and therefore there exist infinitely many unstable

poles.

Figures (1) and (2) show these phenomena. The first one

brings the location of the chains of poles for µ = 0.9 and

the second for µ = 0.99. Both graphics were obtained by

the use of the QPmR algorithm [16]. One can notice that by

increasing µ < 1, although the infinitely number of poles of

the chain are still located on the left half-plane, an increasing

number of unstable poles will be present. This somehow

agrees with equation (18), in the sense that a lower µ is

advantageous when dealing with the stability of the neutral

chains.
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Fig. 1. Neutral Chains of Poles for G1(s) and µ = 0.9

0 5 10 15 20

x 10
−4

−300

−200

−100

0

100

200

300

Re(s)

Im
(s
)

Fig. 2. Neutral Chains of Poles for G1(s) and µ = 0.99

The second example consists of the following system

G2 = (sµ − sµe−s + (sµ − 2)e−2s)−1. (23)

It presents h = 1, and its asymptotic behavior is described

by α1 = −α2 = −1, β1 = 0 and β2 = −2. The two roots of

the polynomial c̃(z) are r = 1/2±
√
3/, and therefore it also

has two chains of neutral poles asymptotic to the imaginary

axis. The associated values of Kr are Kr = −1± 0.5774.

Since Re(Kr) < 0 and Im(Kr) 6= 0, we know that there

exists a µ⋆ such that for µ < µ⋆ the two chains of poles

will be on the left of the imaginary axis. Applying equation

(18), we discover that this will happen if µ < 2/3. Figure

(3) brings the location of the chains of poles for µ = 0.6 and

Figure (4) the one for µ = 0.7. Again, in the first image, we

can see the occurrence of some poles of the stable chains

already moving towards the right half-plane, creating the

shape for the unstable chain that is present for µ = 0.7. The

analysis exactly in the transition point, that is, for µ = 2/3,

needs a higher order approximation in (2).

For the last example, let

G3(s) =
t(s)

s0.5 + 10− (0.8s0.5 + 2)e−s + (s0.5 − 5)e−2s

(24)

This system has two chains of stable poles asymptotic to

the imaginary axis and no unstable poles of small modulus.

Figure (5) brings the Bode plot of the system for two cases of

t(s). In the upper part, t(s) = s0.5 +1 and in the lower part

t(s) = 1. One can see that for the first case, even with all
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Fig. 3. Neutral Chains of Poles for G2(s) and µ = 0.6
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Fig. 4. Neutral Chains of Poles for G2(s) and µ = 0.7

poles on the left half-plane, the maximum of the magnitude

of the bode plot is unbounded, and therefore the system is

not H∞ stable. On the other hand, for the second case, we

have a bounded maximum value of the magnitude, and with

that the H∞ stability of the system is achieved.

This figure illustrates the fact that the rule “No poles in

the closed right half-plane” is only a necessary condition for

the H∞ stability of a system with chains of poles asymptotic

to the imaginary axis. As shown before, for this case, another

necessary condition is that the relative degree between the

numerator and the denominator interpreted as the degree

in sµ, must be at least one. When these two necessary

conditions are satisfied then the system is H∞ stable.

V. CONCLUSION

In this paper we have proposed some procedures to find

the asymptotic behavior of the neutral chains of poles of

fractional time-delay systems. This information is necessary

in order to guarantee stability of systems when the chain

approaches the imaginary axis. We also derived conditions

for H∞ stability of systems with all poles in the left half-

plane but chains asymptotic to the imaginary axis.

We are currently considering the problem of a design

procedure of controllers for such systems.
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