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Abstract—A novel recursive framework for sparse reconstruc-
tion of continuous parameter spaces is proposed by adaptive
partitioning and discretization of the parameter space together
with expectation maximization type iterations. Any sparse solver
or reconstruction technique can be used within the proposed
recursive framework. Experimental results show that proposed
technique improves the parameter estimation performance of
classical sparse solvers while achieving Cramér-Rao lower bound
on the tested frequency estimation problem.
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targets, recursive solver, sparse reconstruction.

I. INTRODUCTION

SPARSE signal representations and the theory of com-

pressive sensing (CS) [1], [2] has received considerable

attention in many research communities and has a wide range

of applications. CS states that a sparse signal in some known

basis can be efficiently acquired using a small set of nonadap-

tive and linear measurements. The classical CS approaches

assume a pre-defined known sparsity basis and mainly focuses

on solution of an underdetermined linear systems such as:

y � ΦΨx� n (1)

where y � �M and n � �M are the measurement and noise

vectors of dimension M. Ψ is the a N � N basis matrix

and Φ � �M�N is the compressive measurement matrix

where M � N . Since the sparsity basis Ψ is assumed to

be known, length of the sparse signal N is also fixed. Hence

in classical CS, the number of measurements is considered

as a free parameter and analysis on the required number

of measurements for given sparsity levels are done. Proven

bounds are also obtained with conditions on A � ΦΨ.

In practical systems, even though it is known that the

given signal has a sparse representation in some continuous

parametric space, an exact predefined basis may not be known,

even it may not exist. For example in the frequency estimation

problem, assume a given set of observations consist of a few

number of frequency components. However, those frequencies

can be anything from the continuous range. In this case,

it is not possible to use the classical model of y � Ax
for an arbitrary observation vector with fixed basis. Even

though y has a sparse representation, actual parameters lie

in a continuous domain and cannot be exactly represented

by a finite length sparse vector x. In order to utilize sparse
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solvers, mere attempt to use a matrix-vector model requires the

discretization of the parameter space. If discretization creates

N distinct points, then sparse parameters are approximated

by the vector x. In general approximation does not hold very

well and off-grid problem is introduced. In the literature, the

effect of this basis mismatch has been observed and analyzed

in several studies [3]–[6].

Unlike the classical approach, in a practical problem anal-

ysis starts with a given set of observations y, hence M is

fixed. Since discretization resolution determines the length

of the sparse signal, N becomes a design parameter. The

discretization level, hence N , should be determined together

with number of measurement M and sparsity level K in order

to achieve required incoherency in the obtained dictionary

A. Dense discretization of the parameter space violates the

restricted isometry property (RIP) [7]. As a result, a fixed

discretization of the parameter space is not suitable for an arbi-

trary observation. Dictionary should be constructed according

to the set of observations and the sparsity level of the signal.

II. COMPRESSIVE SENSING AND CONTINUOUS SIGNAL

SPACES

In a practical system, observation can be modeled as fol-

lows:

y�t� �
K�

i�1

αi ψ�θHi
; t� � n�t�, (2)

where ψ�θHi ; t� is a component of the observation y�t�
corresponding to parameter θHi , αi is the scale for the

ith component and n�t� is the measurement noise. In this

model, signal atom ψ�θ; t� is a parametric function that may

depend on one or more parameters. In a delay-Doppler radar

application, for example, ψ�θHi
; t� is defined as follows:

ψ�θ; t� � s�t� τ� e�j2πνt, (3)

where s�t� is the transmitted signal and θ � 	τ, ν
 is

2 dimensional continuous parameter space in which τ and

ν corresponds to delay and Doppler shift, respectively. In

the frequency estimation problem signal atoms are complex

exponentials, hence ψ�θHi ; t� can be defined as follows:

ψ�θ; t� � e�j2πft, (4)

where one dimensional θ � f corresponds to frequency.



To use efficient digital signal processing techniques, samples

of the continuous model in (2) are obtained. For t � �M ,

vector holding the sampling times in �0, T � interval, sampled

data model can be written as follows:

y �
K�

i�1

αi ψ�θHi
; t� � n. (5)

This form can be reduced to commonly used compressive

sensing setup by discretizing the continuous and bounded

parameter space, P . For a more abstract formulation that

will be useful in the presentation of the proposed approach,

let d��, �� be a functional that takes the continuous space P
and a discretization interval λθ and returns a set of discrete

parameter points:

	θ1, θ2, . . . , θN
 � d�P, λθ�. (6)

This discretization provides N grid points, θi � P , for 1 �
i � N . For each θi, the M -dimensional corresponding signal

atom is computed using the given sampling times as:

ai � ψ�θi; t�. (7)

By using (7) for each θi, M � N dimensional dictionary is

constructed as A � �a1, a2, . . . ,aN �. Note that the dictionary

composed with the discretization of the parameter space has

to guarantee the reconstruction of arbitrary K-sparse signal

in the column space of A. Each CS technique has its own

guarantees for the recovery. For simplicity in the development,

we will assume that OMP is used as the sparse solver. For an

alternative CS reconstruction technique, it is straightforward

to make proper changes in the following development.

Recovery guarantees of OMP has been discussed in the

literature. In [8], a sufficient condition for the recovery of a

K-sparse signal in terms of mutual coherence is provided as:

μ�A� �
1

2K  1
, (8)

where μ�A� is:

μ�A� � max
k�l

�aH
k al�

�ak�2 �al�2
. (9)

Notice that mutual coherence is a functional of the basis

vectors defined in (7), hence it has to be computed accord-

ingly. To illustrate the effect of sufficient recovery condition

on the discretization of the continuous parameter space, we

will concentrate on the frequency estimation problem, hence

complex exponentials defined in (4) will be used as the basis

functions.

Let the discretization interval between two adjacent discrete

parameter points be λf , hence fl�k  fl � k λf . In this case,

normalized inner product of basis vectors corresponding two

grid points can be computed as:

�aH
k al�

�ak�2 �al�2
�

�a�fk; t�
Ha�fl; t� �

�a�fk; t��2 �a�fl; t��2
�

1

M

�����
M�
i�1

ej2π�k�l�λf ti

�����
�

��� sinc��k  l�λf T
����, (10)

which is a close approximation when the sampling instants

have uniform distribution in �0, T �. Since � sinc�x�� �
� sinc�nx�� holds true for all non-zero real x and non-zero

integer n, mutual coherence of the dictionary is found as:

μ�A� � max
k�l

��� sinc��k  l�λf T
���� � � sinc�λf T � �. (11)

In order to guarantee that OMP will recover a K-sparse

solution, the discretization interval λf has to satisfy the

condition given in (8) resulting in the following inequality:

μ�A� � � sinc�λf T � � �
1

2K  1
. (12)

Assuming 0 � λfT � 1, we can safely take the inverse of

the sinc function. Hence, the smallest possible discretization

interval for the frequency estimation problem that OMP is

guaranteed to recover a K-sparse signal is:

λf �K� �
1

T
sinc�1

�
1

2K  1

�
. (13)

Since sinc�1�x� is a monotonic decreasing function for 0 �
x � 1, for larger K values λf �K� becomes larger as well. This

implies that for less sparse signals, we have to use a coarser

discretization in the continuous parameter space resulting in

more severe performance degradation due to off-grid problem.

Fig. 1 shows the discretization intervals as a function of K.
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Fig. 1. Lower bound of feasible discretization interval with respect to sparsity
level that guarantees the recovery of the sparse signal in the frequency
estimation problem, using OMP as the sparse solver.

As expected, the discretization interval is an increasing

function of K. Also, we observe that the discretization interval

is always less than 1�T . It is known that if a system with

classical sampling procedure takes samples in the �0, T � time

range, its frequency resolution is 1�T . Having a discretization

interval smaller than 1�T in the least sparse case is consistent

with this fact. Finally, we observe that the allowed interval

for 1-sparse case is 0. In other words, for 1-sparse signals

discretization interval can be set arbitrarily small, yet the

recovery is still guaranteed in the noiseless setting. This last

fact will provide the foundation of the proposed recursive

approach presented in the following section.

It is important to note that (13) provides the allowed

minimum interval for the frequency estimation problem when

OMP is used as the sparse solver. The allowed interval for



another solver or basis function may differ. In a more general

and abstract sense, the required discretization interval can be

represented as follows:

λθ � f�M,K�. (14)

Here, the function f��, �� can be computed analytically or

numerically depending on the recovery condition imposed

by the solver of choice on the basis functions. However,

the observations based on the OMP case are valid for other

solvers.

III. PROPOSED RECURSIVE COMPRESSIVE

SENSING FRAMEWORK

For the model given in (2), for a given measurement vector

y � CM and a provisional estimate of the sparsity level K, a

sparse solver can be written in the following abstract form:

�α�,θ�� � S�y,K,P�, (15)

where θ� is the estimated parameter values, α� are the

corresponding representation coefficients and P is the bounded

and continuous parameter space. A dictionary is required in

order to utilize CS based solvers in (15). At this step, the first

thing is to determine the finest discretization interval dictated

by (14). Then the parameter space P is discretized accordingly

and the dictionary A is constructed using (7). In this way, we

can define the problem as y � Ax�n and solve for the K-

sparse reconstruction of the signal for a selected sparse solver

of choice yielding α� and θ�. Using �α�, θ��, the observation

vector can be represented as:

y �
K�

i�1

α�i ψ�θ
�

i ; t� � n, (16)

where n corresponds to the fit error of the sparse solver.

The important thing to notice is that the matrix-vector model

is an approximate relationship due to discretization of the

parameter space. However, if the problem is highly sparse,

this approximate relationship has a relatively high accuracy

since the allowed discretization interval in (14) is a decreasing

function of the sparsity. Therefore our main purpose is to split

the K-sparse problem into set of smaller problems with higher

sparsity. For this purpose, assume that we divide the problem

into c partitions as follows:

y �
K1�

i�1

α�1,i ψ�θ
�

1,i; t� � . . .�
Kc�

i�1

α�c,i ψ�θ
�

c,i; t� � n, (17)

where
�c

j�1Kj � K,
�

j,i α
�
j,i � α� and

�
j,i θ

�
j,i � θ�.

This process also partitions the given parameter space P into

disjoint sets such that P �
�

j Pj and Pj 	 Pk � 
 if

j � k with θ�j,i � Pj . Expectation-Maximization (E-M) based

frameworks provide an effective solution for the partitioned

problems [9], [10]. Assuming the estimates of the last c � 1
partitions’ parameters are precise enough, we can construct

the observation vector corresponding to those partitions and

then find the partial observation vector corresponding to the

first partition. This is the E-step of the framework. The M-step

is to solve the problem with partial observation vector in its

corresponding domain.

In general, in the E-step for an arbitrary lth partition, the

corresponding partial observation vector is written as:

yl � y �
c�

j�1
j�l

Kj�

i�1

α�j,i ψ�θ
�

j,i; t�. (18)

In the M-step, in order to estimate parameters with higher

accuracy, we solve the sparse reconstruction problem of obser-

vation vector yl with sparsity estimation Kl in the domain Pl.

Therefore, M-step of the framework is written as the solution

of the following problem,

�α�l ,θ
�

l � � S�yl,Kl,Pl�. (19)

Iteratively solving (18) and (19) from l � 1 to l � c realizes

one pass of the EM approach. The most important thing to

notice in the transformation of (15) to (19) under the EM

framework is that the problems are identical to each other in

the structural sense: all take an observation vector, provisional

sparsity level and a parameter space to operate on. Thus, the

approach used in the solution of (15) can also be applied to

(19). Successively applying the very same approach to each

sub-problem, the main problem splits itself into smaller, and

sparser sub-problems with denser discretization of the param-

eter space in a recursive manner. The remarkable advantage

of this approach lies in the reduction of the sparsity levels

in the sub-problems. In the fragmentation from (15) to (19),

the immediate observation is that Kl  K for all 1 � l � c
provided that c � 1. Due to decreasing characteristics of (14),

finer discretization of corresponding parameter spaces can be

performed in the sub-problems, which improves the accuracy

of the parameter estimations.

The proposed EM based recursive solution approach is

summarized in Table I. Some of the steps are taken general so

that the framework can be utilized in a wide range of problems

with different characteristics specific to implementation of

those steps. Note that the 5.2.2 step of the algorithm calls

the same technique with partition l, hence the algorithm is

recursive in this sense. In the following sub-sections, we will

elaborate on the individual steps for clarity.

A. Base Case of the Recursion

Separation of the problem will be terminated in a finite

amount of recursive calls since the sparsity of the main

problem K is finite. The most interesting case, which is also

the base case of the recursion, happens when the sparsity of

that partition reduces to one. Contrary to Fig. 1, discretization

interval is lower-bounded by the Cramér-Rao lower bound

(CRLB) in the noisy setting. This case will be illustrated on the

frequency estimation problem using basis functions given in

(4). In this model, observations are in the following structure

in the 1-sparse case:

y � α ejφ ejωt � n, (20)

where α, φ and ω are the unknown amplitude, phase and



TABLE I
EM BASED RECURSIVE ALGORITHM

Signature: ��α, �θ� = S�y,K,P�
1� λθ � f�M,K�, find the required discretization interval,

2� �θ1, . . . , θN� � d�P, λθ�, discretization,

3� A � �ψ�θ1; t� . . . ψ�θN ; t��, construct the dictionary,

4� �α,θ� � SparseSolver�y,A,K�, a provisional solution,

5� While �α,θ� is not a satisfactory solution,

5.1�
�
�α1,θ1,P1�, ..., �αc,θc,Pc�

�
�Partition�α,θ,P�,

5.2� For each partition l from 1 to c

5.2.1� yl � y �
c�

j�1
j�l

Kj�
i�1

αj,i ψ�θj,i; t�

5.2.2� �αl, θl� = S�yl,Kl,Pl�
5.3� α �

�
j,i αj,i, θ �

�
j,i θj,i, combine,

6� �α � α and �θ � θ, finalize the solution.

angular frequency, respectively; n is a zero mean circularly

symmetric i.i.d. complex Gaussian noise with variance σ2, and

t is the vector of sampling times.

In the frequency estimation problem, 1-sparse case is similar

to the single tone frequency estimation problem. In the regular

sampling, this is a well studied problem [11]. However, to best

of our knowledge there is no reported study on the CRLB of

the single tone frequency estimation under random sampling.

In (20), important difference from the regular sampling is

that time sampling is also random. In this case, CRLB for the

single tone frequency estimation under the random sampling,

whose derivation is omitted due to limited space, is:

var��ω� 	 �σ
α�2

M

1

var�ti�
, (21)

where var�ti� is the variance of the random time samples.

When sampling times are generated from an i.i.d. uniform

distribution in the �0, T � range, CRLB of the frequency

estimation becomes:

var��ω� 	 Ju �
�σ
α�2

M

12

T 2
, (22)

which is asymptotically equivalent to the CRLB in the regular

sampling case [11].

If we use an unbiased estimator of the parameters, square-

root of the CRLB can be thought as the finest partition size that

the estimator can achieve under the assumed noise statistics.

Even though (14) allows arbitrarily dense discretization in the

1-sparse case, intervals smaller than square-root of the CRLB

will not provide any further improvement in the estimation

performance. Therefore, treatment to this important case is to

re-define (13) for K � 1 as a fraction of (22).

B. Sparse Solver

The proposed framework can be used with any sparse

solver of choice. However, algorithms with low complexity are

preferable since the proposed framework recursively initiates

several instances of the same problem. More importantly,

selected sparse solver is expected to be a minimum variance

unbiased estimator (MVUE) of the parameters for a sparsity

level so that the proposed framework achieves the Cramér-

Rao lower bound in the estimation variance. OMP with dense

discretization has this property at K � 1 [11].

C. Satisfactory Solution

One straightforward way to terminate the iterations is to

observe the residual error. Using a predefined threshold ε1, the

provisional solution, �α,θ�, can be qualified as satisfactory if

�y � y��2 � ε1, where y� is the reconstructed observation.

Another approach is to monitor the residual norm and termi-

nate the iterations when rate of decrease in the residual is

below a certain threshold ε2, �y�q�1�2
�y
�
q �2 � ε2, where q is

the index of iterations. Also, total number of iterations can be

bounded. For a robust behavior, some of the discussed metrics

can be used in conjunction.

D. Partitioning

Splitting the problem into self-similar sub-problems re-

quires a partitioning operation on the provisional solution

set. In the proposed framework any clustering algorithm can

be implemented to partition the original problem into sub-

problems. However, to reduce the required computational load,

we propose to use fixed c � 2, and split the main problem

into two distinct parts as “the most dominant” and “the rest”.

Thus, in each recursive call, problem will be split into two

sub-problems with sparsity 1 and K � 1.

E. Parallelization

Due to sequential solutions in sub-problems, current form of

the algorithm is not suitable for parallelization. However, it is

possible to solve each sub-problem independently from each

other. Independent solutions can run on different processors

resulting in savings on the computational time. Although

not reported here, preliminary investigations indicate that the

obtained results are in close proximity of the CRLB.

IV. SIMULATIONS

In this section, performance of the proposed framework

is investigated in sparse spectral estimation. The observation

vector with K-sparse components is constructed as:

y �
K�
i�1

αi e
jφi ej2πfit  n (23)

where t � �M is constructed by selecting time samples

uniformly from �0, T � range with T � 1 s. φi’s are selected

uniformly in �0, 2π� range and αi � 1 for 1 � i � K.

The frequency of the components, fi, are selected uniformly

random in �100, 300� Hz range; n � C
M is i.i.d. complex

Gaussian noise with zero mean and standard deviation σ. In

the following parts, α
σ will be considered as the measure of

Signal-to-Noise Ratio (SNR).

OMP and CoSaMP [12] are compared to their recursive

counterparts in the proposed framework. Even though OMP

with a fine grid has been reported with a limited performance

gain [13], the results of OMP with a dense grid is also



provided for the comparison purposes. Together with the

standard deviations of the error in the estimated frequencies,

the CRLB given in (22) is presented in Fig. 2.
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Fig. 2. Standard deviation of the error in the solution of the frequency (a)
w.r.t. SNR at K = 5, M = 100, (b) w.r.t. number of measurements at K = 5,
SNR = 40dB, (c) w.r.t. sparsity at M = 100, SNR = 40dB.

In Fig. 2(a), the proposed framework is tested against

various level of SNR. Regular solvers and their recursive

counterparts have a transition around 0 dB. For SNR�0 dB,

regular and their recursive counterparts behave similarly with

a significant deviation from the CRLB. When SNR is higher

than 0 dB, there is a little improvement in the regular solvers.

Due to the off-grid problem, solvers do not provide significant

improvements even at high SNR. For OMP, a denser grid

brings a reduction in the error variance. Yet, the improved

estimation performance is still far from the CRLB. Error

variance of the solvers in the proposed framework scales

down with the noise variance achieving the CRLB for SNR’s

greater than 10 dB. In Fig.2(b), the same behavior is observed

for the varying number of measurements. The Nyquist rate

sampling would require 400 samples, whereas regular solvers

and their recursive counterparts have similar break points

around 10� 12% of the Nyquist rate samples, i.e. M � 45.

In Fig.2(c) the proposed framework is tested against various

level of sparsity. In the regular solvers, error variance increases

with the sparsity level. When K � 1, OMP with a denser grid

coincides with the base case of the recursion and achieves

the CRLB. For sparsity K � 1, denser grid again provides

a limited increase in the estimation performance for OMP.

The recursive solvers, on the other hand, provide significantly

better estimates achieving CRLB compared to their non-

recursive counterparts.

V. CONCLUSIONS

In this paper, a novel recursive framework is presented.

The proposed framework partitions the original problem into

sparser sub-problems and discretizes the given continuous pa-

rameter space adaptively depending on the sparsity of the prob-

lem in order to guarantee the reconstruction with the specified

sparse solver. The performance of the proposed framework

is illustrated in a sparse spectral estimation problem. Results

indicate that, in comparison with the direct use of a solver,

its recursive implementation in the proposed framework can

result significantly lower error variances achieving the CRLB.

Due to its modular structure, the proposed framework is highly

flexible and can conduct its iterations using any solver of

choice. Also, its parallelizable structure can be exploited for

improved performance/complexity gains in multi-processors

systems.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Trans. Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[2] E. Candes, J. Romberg, and T. Tao, “Robust uncertanity principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Information Theory, vol. 52, pp. 489–509, 2006.

[3] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
off the grid,” Arxiv, vol. abs/1207.6053, 2012.

[4] M. Herman and T. Strohmer, “General deviants: An analysis of per-
turbations in compressed sensing,” IEEE Journal of Selected Topics in
Signal Processing, vol. 4, no. 2, pp. 342 – 349, 2010.

[5] H. Zhu, G. Leus, and G. Giannakis, “Sparsity-cognizant total least-
squares for perturbed compressive sampling,” IEEE Trans. on Signal
Processing, vol. 59, no. 5, pp. 2002 – 2016, 2011.

[6] O. Teke, A. C. Gurbuz, and O. Arikan, “A robust compressive sensing
based technique for reconstruction of sparse radar scenes,” Digital Signal
Processing, vol. 27, no. 0, pp. 23 – 32, 2014.

[7] R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, “A simple proof
of the restricted isometry property for random matrices,” Constr. Approx,
vol. 2008, 2007.

[8] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Trans. Information Theory, vol. 50, no. 10, pp. 2231–2242, Oct.
2004.

[9] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the em algorithm,” Journal of the Royal Statistical
Societys Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[10] A. Gurbuz, M. Pilanci, and O. Arikan, “Expectation maximization
based matching pursuit,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, March 2012, pp.
3313–3316.

[11] D. Rife and R. Boorstyn, “Single tone parameter estimation from
discrete-time observations,” Information Theory, IEEE Transactions on,
vol. 20, no. 5, pp. 591–598, Sep 1974.

[12] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incom-
plete and inaccurate samples,” Applied and Computational Harmonic
Analysis, vol. 26, no. 3, pp. 301 – 321, 2009.

[13] O. Teke, A. Gurbuz, and O. Arikan, “Perturbed orthogonal matching
pursuit,” Signal Processing, IEEE Transactions on, vol. 61, no. 24, pp.
6220–6231, 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


