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ABSTRACT

We propose an algorithm for automatic detection of buildings

with complex shapes and roof structures in very high spatial

resolution remotely sensed images. First, an initial overseg-

mentation is obtained. Then, candidate building regions are

found using shadow and sun azimuth angle information. Fi-

nally, the building regions are selected by clustering the can-

didate regions using minimum spanning trees. The experi-

ments on Ikonos scenes show that the algorithm is able to

detect buildings with complex appearances and shapes.

Index Terms— Building detection, segmentation, spatial

relationships, minimum spanning trees

1. INTRODUCTION

Automatic detection of buildings in very high spatial resolu-

tion remotely sensed imagery has been an important problem

because the detection results can be used in many applications

such as change detection, urbanization monitoring, and digi-

tal map production. For example, as one of the most salient

features of human settlements, precise identification and lo-

calization of buildings provide key information sets needed

for territorial planning and in any assessment related to hu-

man security such as preparedness to natural hazards and to

post-disaster evaluation [1]. Furthermore, human settlement

analysis for slum and unorganized settlement monitoring can

be assisted by automatically extracted building information

because slum areas can generally be characterized by a high

density of short and small buildings in irregular spatial ar-

rangements [2, 3]. Similarly, buildings can be considered as

one of the best indicators for human population estimation.

There is an extensive literature on building detection

where both pixel level and object/region level processing

have been used. However, most of the previous methods

try to solve the problem for specific settings such as images

having buildings with the same type of appearance and im-

ages where the buildings are isolated and have simple roof
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structures. With the increase in the spatial details in the im-

ages obtained from new generation sensors with meter and

sub-meter spatial resolution, the buildings may have very

complicated appearances and may have complex structures

with very different spectral signatures. Popular edge/line-

based and morphology-based approaches also do not often

work for complex urban scenes because the contrast among

the parts of a roof can be higher than the contrast between the

roof and its surroundings (as shown in examples in Figure 1).

Even though different buildings may appear in signifi-

cantly different colors and shapes, a common property of such

buildings can be the existence of shadows. The relationship

between buildings and shadows has actually been exploited

in earlier works [4, 5]. More recently, Sirmacek and Unsalan

[6] detected buildings with red roofs using color information

and verified their existence with the occurrences of shadow-

like nearby regions. However, the assumption of red roofs

is limiting and there may be other sources of shadows in the

image.

This paper proposes a method for detection of buildings

with complex shapes and roof structures in very high spatial

resolution images by exploiting spectral, structural, and con-

textual information using a mathematical morphology-based

context model and minimum spanning tree-based clustering.

First, watershed segmentation is applied to obtain overseg-

mented regions. Then, shadow regions are detected in this

oversegmentation based on their spectral properties (Section

2). Next, candidate building regions are identified using the

directional spatial relationships of all regions with respect

to the detected shadow regions along the sun azimuth an-

gle (Section 3). Finally, the building regions are selected

by clustering the oversegmented regions that satisfy the spa-

tial constraints using minimum spanning trees (Section 4).

Experiments are performed using Ikonos images (Section 5).

2. IMAGE SEGMENTATION AND SHADOW
REGION DETECTION

Image segmentation is performed using the classical water-

shed segmentation algorithm to partition the panchromatic
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(a) Antalya1 image (b) Watershed segmentation of An-

talya1

(c) Antalya2 image (d) Watershed segmentation of An-

talya2

Fig. 1. Examples from an Ikonos panchromatic image of An-

talya, Turkey and the corresponding watershed segmentation

results. The segmentation boundaries are overlayed as white.

image into spectrally homogeneous regions. The results con-

tain oversegmented regions because the test areas in this study

include buildings with complex roof structures as shown in

Figure 1. Other segmentation methods can also be used but

similar results are likely to be obtained because of the com-

plex spectral appearance within building regions.

Among all regions, the ones that are likely to belong to

shadows are selected using their spectral properties. First, the

normalized difference vegetation index (NDVI) is computed

using the pan-sharpened image. Then, the regions whose av-

erage brightness values are lower than a brightness threshold

and average NDVI values are lower than an NDVI threshold

are denoted as shadow regions. More complicated shadow

detection methods can also be used but the aforementioned

method performed sufficiently well in the experiments.

3. DIRECTIONAL SPATIAL CONSTRAINTS

The candidate building regions are identified by using the

shadow regions as directional spatial constraints in a model

that we recently proposed for contextual classification and re-

trieval [7]. Given a reference object B and a direction spec-

ified by the angle α, the landscape βα(B) around the refer-

ence object along the given direction can be defined as a fuzzy

function from the image space I into [0, 1]. The fuzzy mem-

bership value βα(B)(x) of an image point x ∈ I corresponds

to the degree of its satisfaction of the directional spatial rela-

tion relative to the reference object B.

In [7], we proposed to compute the fuzzy landscape using

the morphological dilation of B,

βα(B)(x) = (B ⊕ να,λ,τ )(x) ∩ Bc, (1)

using the fuzzy structuring element

να,λ,τ (x) = gλ

(
2
π

θα(x, o)
)

max
{

0, 1 − ‖−→ox‖
τ

}
(2)

where o is the origin (center) of the structuring element,

θα(x, o) is the angle measured between the unit vector along

the direction α with respect to the horizontal axis and the

vector from o to the image point x, gλ(·) is a nonlinearly

decreasing function with the shape of a Bézier curve, and

‖−→ox‖ is the Euclidean distance of point x from o. The func-

tion g decreases the degree of the relationship as the angle

θ increases when the point x departs from α (λ models the

extent of the decrease). The second part of (2) decreases the

degree of the point’s spatial relation to the reference object

according to its distance to that object where τ is a thresh-

old corresponding to the distance where a point is no longer

visible from the reference object. This definition provides

a structuring element that is tunable along both angular and

radial dimensions (see [7] for more details).

Given the sun azimuth angle, we can find the directional

landscapes of the shadow regions along this direction by us-

ing (1). The resulting directional landscapes give high re-

sponses in areas close to the shadow regions along the sun

azimuth angle. These areas correspond to the locations where

the probability of the presence of buildings is high. Figures

2(a) and 2(c) show the shadow regions and the corresponding

landscapes. Consequently, the regions whose average satis-

faction degrees are higher than a satisfaction threshold, av-

erage NDVI values are lower than the NDVI threshold, and

sizes are lower than a size threshold are identified as candi-

date building regions. Figures 2(b) and 2(d) show examples

for candidate regions. As can be seen from the figures, most

of the regions are correctly identified with a small number of

misdetections and several false alarms.

4. GRAPH-THEORETIC BUILDING MODEL

After obtaining the candidate regions, our aim is to identify

the regions corresponding to building parts. An important

observation is that regions forming a building are densely

located whereas regions separating different buildings are

found far from their neighbors. The distance between two

regions is measured as the distance between their centroids.

This seems to be a valid assumption because the regions are

obtained from oversegmentation and mostly have compact
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(a) Shadows and spatial constraints

in Antalya1

(b) Candidate building regions in An-

talya1

(c) Shadows and spatial constraints

in Antalya2

(d) Candidate building regions in An-

talya2

Fig. 2. Examples of shadow regions, directional landscapes,

and candidate building regions.

shapes. Hence, we construct a graph where the graph nodes

correspond to the candidate regions’ centroids and the edges

are created between two neighboring nodes. What we expect

is that the nodes representing parts of building regions will

form dense subgraph components.

After constructing the graph, the goal is to group the re-

gions into clusters so that each group corresponds to a build-

ing or a non-building area. Therefore, we assign a weight

to each edge as the spatial distance between the correspond-

ing nodes. Then, to determine the most relevant neighbors

of each node, we construct the minimum spanning tree of the

graph by using these edge weights. By constructing the tree,

a node is connected to its most important and most related

neighbors while its relationships with the neighbors that are

further away can be ignored.

To cluster the nodes into groups, some edges of the min-

imum spanning tree should be removed. This is achieved by

removing the edges that are longer than a length threshold.

As a result, the nodes that are spatially close enough remain

in the same cluster. Figure 3 shows examples for graph con-

struction and clustering.

Next, the regions whose average satisfaction degrees are

higher than a marker threshold are selected as building mark-

ers. The marker threshold is selected high enough so that

building markers do not overflow the building boundaries. Fi-

(a) Graph for Antalya1 (b) Clustering for Antalya1

(c) Graph for Antalya2 (d) Clustering for Antalya2

Fig. 3. Examples of graph construction and minimum span-

ning tree-based clustering. The removed edges are colored in

red.

nally, the clusters that contain the nodes corresponding to the

building markers are identified as building clusters.

5. EXPERIMENTS

Six sub-scenes of 1 m spatial resolution Ikonos images of An-

talya, Turkey were used to evaluate the proposed algorithm.

Figure 4 shows example detection results. It can be seen that

most of the building regions that cannot be obtained by tradi-

tional spectral segmentation methods that cannot incorporate

structural and contextual information were correctly extracted

by the proposed method. However, some building boundaries

were not delineated correctly. When the overall detections

were considered, the following sources of error were iden-

tified. Most of the errors were caused by the sensitivity of

the length threshold to different building appearances. The

length threshold was used in the minimum spanning tree clus-

tering for grouping the regions of a building into a cluster

while separating the non-building regions. In this paper, the

length threshold was selected large enough so that buildings

with large structures were not divided into smaller parts. In

case of some buildings with small structures on the roof, this

selection caused building and non-building regions to remain

in the same cluster. As a result, such buildings merged with

their surroundings. Missed detections were mostly caused by

missed detections of shadows. In particular, short buildings
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(a) Results for Antalya1 (b) Results for Antalya2

(c) Results for Antalya3 (d) Results for Antalya4

(e) Results for Antalya5 (f) Results for Antalya6

Fig. 4. Building detection results. The detected buildings are

highlighted in red.

not creating sufficiently visible shadows were not detected. In

some cases, walls creating shadows resulted in false alarms.

Buildings were partially detected when some part of a build-

ing was very similar to the adjacent road in terms of gray

level content. In this case, the corresponding building part

merged with the road instead of the remaining building parts

during the initial segmentation. In some cases, detected build-

ing boundaries overflowed the true boundaries mostly due to

the small road segments adjacent to the buildings. Most of the

road segments had uniform intensity and appeared as large

regions after the initial segmentation. When road segments

appeared as small regions after the initial segmentation, these

regions were sometimes grouped into the same cluster with

the adjacent building regions during the minimum spanning

tree clustering.

6. CONCLUSIONS

We described an algorithm for detecting buildings in very

high spatial resolution imagery. After an initial oversegmen-

tation, we used directional spatial constraints to find candidate

building regions that were close to shadows along the sun az-

imuth angle. The building regions were selected by cluster-

ing the candidate regions using minimum spanning trees. We

evaluated the proposed approach on different scenes with dif-

ferent building characteristics. The experiments showed that

the proposed algorithm is able to detect buildings with dif-

ferent shapes and colors. Future work includes investigating

ways of automating the selection of the thresholds for differ-

ent scenes. In addition, once the building regions are detected,

they can be used to improve scene analysis [8] and urban area

classification [2].

7. REFERENCES

[1] M. Pesaresi, A. Gerhardinger, and F. Kayitakire, “A ro-

bust built-up area presence index by anisotropic rotation-

invariant textural measure,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sens-
ing, vol. 1, no. 3, pp. 180–192, 2008.

[2] E. Dogrusoz and S. Aksoy, “Modeling urban structures

using graph-based spatial patterns,” in IGARSS, 2007.

[3] M. Stasolla and P. Gamba, “Spatial indexes for the ex-

traction of formal and informal human settlements from

high-resolution SAR images,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sens-
ing, vol. 1, no. 2, pp. 98–106, 2008.

[4] A. Huertas and R. Nevatia, “Detecting buildings in aerial

images,” Computer Vision, Graphics, and Image Pro-
cessing, vol. 41, no. 2, pp. 131–152, 1988.

[5] R. B. Irvin and D. M. McKeown Jr, “Methods for explot-

ing the relationship between buildings and their shadows

in aerial imagery,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 19, no. 6, pp. 1564–1575, 1989.

[6] B. Sirmacek and C. Unsalan, “Building detection from

aerial images using invariant color features and shadow

information,” in ISCIS, 2008.

[7] S. Aksoy and R. G. Cinbis, “Image mining using direc-

tional spatial constraints,” IEEE Geoscience and Remote
Sensing Letters, vol. 7, no. 1, pp. 33–37, January 2010.

[8] H. G. Akcay and S. Aksoy, “Automatic detection of

geospatial objects using multiple hierarchical segmenta-

tions,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 46, no. 7, pp. 2097–2111, 2008.

1935


