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Abstract—The problem of positioning a target node is studied
for wireless sensor networks with cooperative active and passive
sensors. Two-way time-of-arrival and time-difference-of-arrival
measurements made by both active and passive nodes are used
to estimate the position of the target node. A maximum likelihood
estimator (MLE) can be employed to solve the problem. Due to
the nonlinear nature of the cost function in the MLE, an iterative
search might converge to local minima which often results in
large estimation errors. To avoid this drawback, we instead
formulate the problem of positioning as finding the intersection
of a number of convex sets derived from measurements. To
obtain this intersection, we apply the projection onto convex
sets approach, which is robust and can be implemented in a
distributed manner. Simulations are performed to compare the
performance of the MLE and the proposed method.

Index Terms– Cooperative positioning, projection onto convex
sets, wireless sensor networks.

I. INTRODUCTION

Nowadays wireless sensor networks (WSNs) have been
considered for many civil and military applications. Accurate
positioning of the sensor nodes in a WSN is often necessary
in order for the WSN to be able to function as intended
[1]. Most studies in the literature assume that there are some
reference nodes, also called anchor nodes, that can be used
to estimate the position of a target node [2], [3]. In general,
there are various positioning algorithms based on time-of-
arrival (TOA), time-difference-of-arrival (TDOA), received
signal-strength (RSS), and angle-of-arrival that can be used
in different applications [4].

Two-way TOA (TW-TOA) has been considered as an ef-
fective approach in the literature (e.g., [5]), mainly because
of its relatively high accuracy and lack of synchronization
requirements. In this approach, a reference node sends a signal
to a target node, and waits for a response from it. The round-
trip time delay between the reference node and the target
node gives an estimate of the distance between them. As the
number of reference nodes in a WSN increases, the position
of the target node can be estimated more accurately via TW-
TOA estimation. Since, in practice, there are some limitations
on increasing the number of reference nodes due to power
and complexity constraints, the idea of cooperation between
reference nodes is proposed in [6] to decrease the number
of transmissions, and its theoretical analysis is presented in
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[5]. In this method, some reference nodes, called primary
reference nodes (PRNs), initiate range estimation by sending
a signal. The target replies to received signals by sending an
acknowledgement. Suppose that there are some other reference
nodes, which can listen to both signals, and are called as
secondary reference nodes (SRNs). It has been shown that
the SRNs can help the PRNs to estimate the target position
more accurately [5]. In fact, it is possible to get the same
performance with fewer PRNs when measurements from the
SRNs are involved in the positioning process. In this model,
the PRNs are active nodes and the SRNs play the role of
passive nodes (i.e., they just listen to the signals between the
target and the PRNs). The model considered here is based
on cooperation between active and passive reference nodes,
which is different from targets’ cooperation in a cooperative
network [7].

In this paper, it is assumed that the SRNs are able to
receive signals from both the target and the PRNs. Therefore,
the SRNs are able to measure the TDOA between the target
signal and the signals of the PRNs. In this case, a maximum
likelihood estimator (MLE) derived in [5] can be employed to
improve positioning accuracy compared to the non-cooperative
approach. However, due to the nonlinear nature of the cost
function in the MLE, an iterative search may converge to local
minima which often results in large estimation errors. Using a
geometric interpretation, we instead formulate the positioning
problem as finding the intersection of a number of convex
sets obtained from the TW-TOA and TDOA measurements
in SRNs and PRNs. Successive orthogonal projections onto
discs and elliptical sets are employed to solve the optimization
problem of cooperative positioning. The proposed algorithm is
robust and converges after a few iterations. The nature of the
algorithm makes it suitable for a distributed implementation
in a WSN.

The remainder of the paper is organized as follows. Sec. II
explains the signal model considered in this paper. The po-
sitioning algorithms are explained in Sec. III and simulation
results are discussed in Sec. IV. Finally,Sec. V makes some
concluding remarks.

II. SIGNAL MODEL

Let us consider a two-dimensional network1 with N + M
reference nodes located at known positions, zi = [xi, yi]

T ∈
1The generalization to a three-dimensional scenario is straightforward, but

is not explored here.
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R
2, i = 1, ..., N + M . Suppose that N PRNs are used to

measure the TW-TOA between the PRNs and the target to
be located, and that M SRNs are able to listen and measure
signals transmitted by the PRNs and the target. For simplicity,
we assume that the first N sensors are the primary nodes and
the remaining M sensors are the secondary nodes.

Let us define C = {(i, j) : i = 1, ..., N, j = N + 1, ..., N +
M} as the set of all pairs with one active and one passive
sensor which are connected. The TW-TOA measurement be-
tween reference node i and the target, located at coordinates
θ = [x, y]T ∈ R

2, can be written as [5]

t̂i =
ri(θ)

c
+

nT,i

2
+

ni,T

2
, i = 1, ..., N, (1)

where c is the propagation speed of light, ri(θ) = ‖zi − θ‖ is
the distance between the ith PRN and the point θ, ni,T is the
TOA estimation error at the target node for the signal transmit-
ted from the ith PRN, and nT,i is the TOA estimation at the
ith PRN for the signal transmitted from the target node. The
estimation errors are modeled as zero-mean Gaussian random
variables with variances σ2

T,i and σ2
i,T ; i.e., nT,i ∼ N (0, σ2

T,i)
and ni,T ∼ N (0, σ2

i,T ) [5].
Suppose that the SRNs are able to measure the TOA based

on the received signal from the target and the PRNs. The TOA
estimate of the ith PRN in the jth SRN is

t̂i,j = Toi
+

ri,j

c
+ ni,j , (i, j) ∈ C, (2)

where the ith PRN sends its signal at time instant Toi
, that

is unknown to the SRN, and ni,j is modeled as a Gaussian
random variable ni,j ∼ N (0, σ2

i,j). Suppose that the response
signal from the target to this signal is also received by the jth
SRN. The TOA estimate for this signal is given by

t̂i,T,j = Toi
+

ri(θ)

c
+

rj(θ)

c
+ni,T +nT,j , (i, j) ∈ C. (3)

Having these two measurements in the SRN, namely, mea-
surement in (2) and in (3), we are able to measure the TDOA
between the ith PRN and the target which corresponds to the
distance from the ith PRN to the target plus the distance from
the target to the jth SRN.

III. POSITIONING ALGORITHMS

In this section we propose an iterative algorithm to extract
position information based on measurements collected by the
PRNs and SRNs. To gain some insight into the problem, let us
consider Fig. 1, where one PRN performs TW-TOA estimation
with the target. Namely, the PRN sends a signal to the target,
and the target replies to this signal. Here, we assume that the
turn-around time in the target is extremely small; Hence, it
can be neglected. Suppose that two other nodes (SRN1 and
SRN2) listen to both signals. Since the distances between the
reference nodes are known, it is possible in the secondary node
to estimate the time reference from (2); Hence, the SRNs are
able to estimate the overall distance from the PRN to the target
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Fig. 1: A primary node initiates positioning by transmitting a
signal to the target whereupon the target replies to the received
signal. Both signals are received in the secondary nodes.

and the target to the SRN as follows:

r̂i,T,j = c(t̂i,T,j − T̂oi
)

= ri(θ) + rj(θ) + c nj,T + c ni,T − c ni,j , (i, j) ∈ C, (4)

where T̂oi
is an estimate of Toi

. From (1), the distance estimate
to the target in the ith PRN is expressed as

r̂i = c t̂i = ri(θ) +
c

2
ni,T +

c

2
nT,i , i = 1, ..., N. (5)

It is observed that there is correlation between the TW-
TOA and the TDOA measurements in the PRNs and SRNs.
Considering all the collected measurements in both the PRNs
and SRNs, the MLE can be obtained as [5]

θ̂ = arg min
θ

N
∑

i=1

{(

2

σ2
i

− 1

siσ4
i

)

(r̂i − ri(θ))2

− 1

si

(

M+N
∑

j=N+1

r̂i,T,j − ri(θ) − rj(θ)

4σ2
j

)2

− r̂i − ri(θ)

siσ2
i

N+M
∑

j=N+1

(r̂i,T,j − ri(θ) − rj(θ))

2σ2
j

+

N+M
∑

j=N+1

(r̂i,T,j − ri(θ) − rj(θ))2

2σ2
j

}

, (6)

where

si ,
1

2σ2
T

+
1

2σ2
i

+

M+N
∑

j=N+1

1

4σ2
j

. (7)

Due to the nonlinear nature of the cost function in (6),
an iterative search may converge to local minima, resulting
in large estimation errors. In the sequel, using a geometric
interpretation of the problem, we propose an iterative method
to estimate the target position.

Initially, suppose that there is no noise in the TOA esti-
mation based on the TW-TOA measurement. Then, it is clear
that the target can be found on a circle with radius ri centered
around zi. Similarly, a TDOA measurement made by an SRN
defines an ellipse with foci zi and zj on which the target is
located. In absence of noise, the target position can be found
in the intersection of a number of circles and a number of

1714



ellipses. For the ith PRN and distance estimate r̂i, consider
the disc

Di = {θ ∈ R
2 : ri(θ) ≤ r̂i} , (8)

and for the ith SRN and the jth PRN and distance r̂i,T,j ,
define the elliptic set El

El = {θ ∈ R
2 : ri(θ) + rj(θ) ≤ r̂i,T,j} . (9)

Now, the target can be found in the intersection of sets Di, i =
1, ..., N and El, l = 1, ..., NM . Hence the proposed estimator
is

θ̂ ∈ J =

N(1+M)
⋂

i=1

Ji , (10)

where Ji = Di for i ≤ N and Ji = Ei if i > N . For the
case of an empty intersection, which can occur for instance
due to the measurement noise, the estimator finds a point that
minimizes the sum of squared distances to the sets Ji, i =
1, ..., N(1 + M), that is,

θ̂ = arg min
θ

N(1+M)
∑

i=1

‖θ −PJi
(θ)‖2 , (11)

where PJi
(θ) is the orthogonal projection of θ onto convex

set Ji. For a disc with radius r̂i, the projection function is
defined as follows:

PJi
(θ) =

{

θ , if ri(θ) ≤ r̂i
θ−zi

‖θ−zi‖
r̂i , otherwise. (12)

For an elliptic set, we need to project a point onto an ellipse.
Here we consider a geometric solution to the elliptic projection
problem. A general form of an ellipse can be expressed as

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 . (13)

The parameters (A, B, C, D, E and F ) of an ellipse can be
obtained versus known positions of the reference nodes and
the distance estimates to the target. In the absence of noise
in the TOA measurements, for primary node i and secondary
node j, we obtain the following relation from (4):

ri(θ) + rj(θ) = ri,T,j = ‖zi − θ‖ + ‖zj − θ‖ . (14)

Moving one term of (14) to the left-hand-side and squaring
both sides, we have

‖zi − θ‖2 = r2
i,T,j − 2ri,T,j‖zj − θ‖+ ‖zj − θ‖2 . (15)

With some similar manipulations, we obtain

4r2
i,T,j((x − xi)

2 + (y − yi)
2)

= a2x2 + b2y2 + d2 + 2adx + 2bdy + 2abxy , (16)

where a = 2(xi−xj), b = 2(yi−yj), and d = x2
j−x2

i +y2
j−y2

i .
Finally, the general form of the ellipse becomes

(a2 − 4r2
i,T,j)x

2 + 2abxy + (b2 − 4r2
i,T,j)y

2 + 2(ad+

4r2
i,T,jxi)x + 2(bd + 4r2

i,T,jyi)y + d2 − 4r2
i,T,j(x

2
i + y2

i ) = 0.
(17)

Therefore, the parameters A, B, C, D, E and F can be com-
puted from (17). Equation (13) can be written in a matrix form
as

zT Mz = 0 , (18)

where z = [x y 1]T and the symmetric matrix M ∈ R
3 is

defined as follows:

M =





A B D
B C E
D E F



 . (19)

To project a point onto an ellipse, we first find a transform
that transforms the ellipse into a unit circle. We subject the
point to this transform, project onto the unit circle, and subject
the projected point to the inverse transform. A unit circle can
be expressed as

z̃T I−1z̃ = 0 , (20)

where the diagonal matrix I−1 is

I−1 =





1 0 0
0 1 0
0 0 −1



 . (21)

Now, we try to find a function that transforms the ellipse
(18) to a unit circle (20). In general every ellipse can be
obtained by translating, rotating and scaling a unit circle, i.e.,
through transform function F = TRS [8]. Matrices S, R and
T are defined as follows:

S =





s1,1 0 0
0 s2,2 0
0 0 1



 =

[

S2×2 0
0T 1

]

, (22)

where 0 = [0, 0]T ,

R =





cosα − sinα 0
sin α cosα 0

0 0 1



 =

[

R2×2 0
0 1

]

, (23)

and 2

T =





1 0 xc

0 1 yc

0 0 1



 =

[

I2×2 zT
c

0 1

]

, (24)

where zc = [xc, yc]
T is the center of the ellipse. Now the

relation between the ellipse and a unit circle can be expressed
as z = Fz̃. To find the matrices T, R and S, we replace the
inverse transform of F in (20) and compare with (18) to yield

M = (TRS)−T I−1(TRS)−1, (25)

After some manipulations we get [8]

M =

[

R2×2S−2
2×2RT

2×2 −R2×2S−2
2×2RT

2×2zc

−zT
c R2×2S−2

2×2RT
2×2 zT

c R2×2S−2
2×2RT

2×2zc

]

. (26)

To find the transformed matrix, it is enough to find sub-
matrices R2×2 and S−2

2×2. Since matrix M is symmetric, we

2In this paper, Am×n, in general, denotes the upper left m× n part of A.
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Fig. 2: Projection of a point onto an ellipse

can use the singular value decomposition technique for the
upper left 2 × 2 matrix of M, i.e.,

M2×2 = UT
λU = R2×2S−2

2×2RT
2×2 . (27)

It is clear that R2×2 = UT . To find the scaling matrix, (25)
can be written based on the scaling matrix,

S−T I−1S−1 =







1
s2
1,1

0 0

0 1
s2
2,2

0

0 0 −1






= (TR)T M(TR). (28)

Finally, the projection of a point θ outside of an ellipse onto
the ellipse can be performed as follows:

1) Compute the transform function F = (TRS)−1.
2) Transform the point to the new coordinate, where the

ellipse is transformed to the unit circle, i.e. θT =
[

F
[

θ

1

]]

2×1

.

3) Find the projection of θT onto the unit circle, P(θT ) =
θT /‖θT ‖.

4) In the final step, using the inverse transform F−1 =
TRS, transform the projected point on the unit circle to a

point on the ellipse, i.e, P(θ) =

[

F−1

[

P(θT )
1

]]

2×1

.

Fig. 2 shows how a point outside of an ellipse is projected
onto the ellipse.

To find the position of the target, we employ orthogonal
projection onto convex sets (POCS). In the non-cooperative
case, POCS is applied to a number of discs derived by the
PRNs (C-POCS), while for the cooperative case, it is applied
to both circular and elliptical sets (CE-POCS). Algorithm 1
shows one type of CE-POCS implementation where POCS is
sequentially applied to circular and elliptical sets (CE-POCS1).
We also suggest a different type of CE-POCS implementation
in the following.

Since there are two different convex sets derived from
different measurements, circular and elliptical sets, one method
of implementing CE-POCS is to apply POCS to circular
and elliptical sets individually, i.e., orthogonal projection onto
circular convex set and orthogonal projection onto elliptical

Algorithm 1 CE-POCS1

1: Initialization θ
0 is arbitrary

2: for k = 0 until convergence do
3: ν(k) ⇐=k mod N(1 + M)
4: if θ

k ∈ Iν(k) then
5: θ

k+1 ⇐= θ
k

6: else
7: if ν(k) ≤ N then

8: PIν(k)
(θk) ⇐=

θ
k−zν(k)

‖θk−zν(k)‖
r̂ν(k)

9: else
10: θT ⇐=

[

Fν(k)

[

θ
k

1

]]

2×1

11: PIν(k)
(θk) ⇐=

[

F−1
ν(k)

[

θT

‖θT ‖

1

]]

2×1
12: end if
13: θ

k+1 ⇐= (1 − λk)θk + λkPIν(k)
(θk)

14: end if
15: end for

Algorithm 2 CE-POCS2

1: Initialization θ
0
p and θ

0
s are arbitrary

2: for k = 0 until convergence do
3: for l = 0 until a predefined number L do
4: ν(l) ⇐= l mod N
5: if θ

l
p ∈ Dν(l) then

6: θ
l+1
p ⇐= θp

l

7: else
8: PDν(l)

(θl
p) ⇐=

θp−zν(l)

‖θl
p−zν(l)‖

r̂ν(l)

9: θp
l+1 ⇐= (1 − λl)θp

l + λlPDν(l)
(θp

l)
10: end if
11: end for
12: for j = 0 until a predefined number J do
13: ν(j) ⇐= j mod NM
14: if θ

j
s ∈ Eν(j) then

15: θ
j+1
s ⇐= θs

j

16: else
17: θT ⇐=

[

Fν(j)

[

θ
j
s

1

]]

2×1

18: PEν(j)
(θj

s) ⇐=

[

F−1
ν(j)

[

θT

‖θT ‖

1

]]

2×1

19: θs
j+1 ⇐= (1 − λj)θs

j + λjPEν(j)
(θs

j)
20: end if
21: end for
22: θk =

(

θ
L+1
c + θ

J+1
s

)

/2

23: θ
0
p = θk and θ

0
s = θk

24: end for
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convex set. The estimation accuracy can be improved by com-
bining the two estimates, namely by computing the average
and using it as a new initial value. This procedure continues for
a certain number of iterations. Algorithm 2 shows the modified
version of POCS in cooperative mode (CE-POCS2).

In both algorithms, {λk}∞k=0 are relaxation parameters. In
the simulations, the relaxation parameters are first set to one,
and after a given number k0 iterations, they decrease as

λk =

⌈

k − k0 + 1

N

⌉−1

, (29)

where dxe denotes the smallest integer greater than or equal
to x.

IV. SIMULATION RESULTS

We consider a 100×100 square area. To set reasonable val-
ues for the variances of TOA estimation errors, we consider the
Cramér-Rao lower bound (CRLB). Suppose that we are using
a signal with 2 MHz null-to-null bandwidth with rectangular
pulse shaping. The CRLB for the TOA estimation is given by
[9]

√

var(r̂i) ≥
c

2
√

2π
√

SNR ξ
, (30)

where SNR is the signal-to-noise ratio and ξ is the effective
bandwidth, which is defined as follows [10],

ξ =

[
∫∞

−∞
f2|S(f)|2df

∫∞

−∞
|S(f)|2df

]2

. (31)

For the noise spectral density, N0 = 10−12W/Hz is considered.
To compute the SNR, we need the ensemble mean power at

the ith node, measured in dB, which can be modeled as [11]

Pi = P0 − 10β log10

(

ri(θ)

d0

)

+ wPi
, (32)

where β is a path-loss factor and P0 is the received power in
dBm at a calibration distance d0. Variable wPi

is a log-normal
shadowing term, i.e, wPj

∼ N (0, σ2
Pi). In the simulations, we

set the following values for different parameters in (32):

β = 2.5, P0 = −70 dBm, d0 = 1m, σ2
Pi = σ2

P = 4 dB2.

The cumulative distribution function (CDF) is used to compare
the performance of the different methods. The performance of
the POCS approach is compared with the MLE derived in [5].
We use the same network deployment as in [5], where four
reference nodes are located at the corners of the square area.
To investigate the performance of the proposed method, we
consider two cases as in [5]. In one case, three reference nodes
are to be the PRNs and the remaining last one plays as the
SRN. In the second case, two nodes on two non-consecutive
vertices of the square area are the PRNs and the two other
nodes are the SRNs. The target is randomly placed inside
the square area over a grid of 19 × 19. For algorithm 2, the
procedure is repeated for five iterations. To implement the
MLE, Matlab’s gradient-based lsqnonlin routine [12] is
used.
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Fig. 3: CDF of cooperative and non-cooperative MLE and
POCS for TW-TOA/TDOA measurements (a) N = 3, M = 0,
and (b) N = 3, M = 1.
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Fig. 4: CDF of cooperative and non-cooperative MLE and
POCS for TW-TOA/TDOA measurements (a) N = 3, M = 0,
and (b) N = 2, M = 2.

Fig. 3 shows the CDFs of the positioning errors for the
MLE and POCS methods. It is clear that the MLE in co-
operation mode shows good performance compared to the
other methods. It only converges in a small percentage of
cases to local minima resulting in large errors. It is also seen
that cooperation can improve the performance of CE-POCS
for large measurement errors. For this network, we can see
that the second algorithm with five iterations improves CE-
POCS such that it becomes comparable to the MLE. Another
important observation is that the gain obtained in the POCS
approach due to cooperation is significantly greater than that
of the MLE.

Fig. 4 shows the CDF for cooperative and non-cooperative
algorithms in the second case, where the network contains two
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PRNs and two SRNs. Again the figure shows that cooperation
improves the performance of both the MLE and POCS. For the
POCS approach, the improvements for large errors are higher
than those for the MLE. It also shows that algorithms 2 and
1 approximately give the same performance. In other simu-
lations, we have observed that algorithm 2 often outperforms
algorithm 1.

V. CONCLUSION

In this paper we have studied the positioning problem in
cooperative networks with both active and passive sensors. An
MLE can be derived based on measurements in different nodes
and an iterative search can be employed to solve it. However,
due to the nonlinear cost function of the MLE, it needs a good
initialization, which increases the computational complexity.
Using a geometric interpretation, we have formulated the
positioning problem as finding the intersection of a number of
convex sets. The proposed method is a robust technique and
can be implemented in a fully distributed manner. Simulation
results indicate a good performance for the proposed method.
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