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ABSTRACT

In this paper, we study the effect of limited amplitude resolution
(pixel depth) in super-resolution problem. The problem we address
differs from the standard super-resolution problem in that amplitude
resolution is considered as important as spatial resolution. We study
the trade-off between the pixel depth and spatial resolution of low
resolution (LR) images in order to obtain the best visual quality in
the reconstructed high resolution (HR) image. The proposed frame-
work reveals great flexibility in terms of pixel depth and number of
LR images in super-resolution problem, and demonstrates that it is
possible to obtain target visual qualities with different measurement
scenarios including images with different amplitude and spatial res-
olutions.

Index Terms— super-resolution, quantization, amplitude reso-
lution, pixel depth.

1. INTRODUCTION

In this paper, we study the effect of limited amplitude resolution in
super-resolution problem, where multiple images with poor spatial
resolution are used to reconstruct an image of the same scene with
higher spatial resolution [1]. We note that in the standard super-
resolution problems, researchers mostly focus on increasing reso-
lution in space, whereas in our study both resolution in space and
resolution in amplitude are substantial parameters of the framework.

Many applications in image processing will benefit from such a
study including converting available low resolution content to high
definition television (HDTV). This subject is not merely of interest
for practical purposes but can also lead to a better understanding
of the effect of pixel depth in super-resolution problem. We are con-
cerned with questions such as ”To obtain a target resolution, which is
better, a high number of coarsely quantized images or a low number
of densely quantized images?” or “What is the range of admissible
pixel depths at a particular spatial resolution to obtain an image with
a target spatial resolution with a target visual quality?”. Admitting
great flexibility in terms of number and accuracies of the LR images,
our framework is similar to other constrained signal acquisition sce-
narios such as compressed sensing paradigm.

The measurement framework this research is based on was first
proposed in [2, 3]. Here we study an application of this approach
to super-resolution problem. Although super-resolution is a popu-
lar problem with a wide range of applications, no studies exist in
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literature which address super-resolution in multiple domains, i.e.
amplitude and space.

We emphasize that since both resolution in space and resolution
in amplitude are variables, the term low/high resolution image is,
in fact, ambiguous in our framework. Nevertheless, we use them to
refer to images with low/high spatial resolution to be consistent with
the literature.

2. MEASUREMENT MODEL

We consider the following image acquisition scenario where L low
resolution images are obtained from a high resolution image x ac-
cording to the model:

yk = DkHkFk x + vk, k = 1, . . . , L (1)

where yk’s are LR images, vk‘s denote the system noise, Dk rep-
resents the decimation operator, Hk represents the camera blur, Fk

represents the motion operator, L is the number of available LR im-
ages. vk’s are independent of each other, and the components of each
vk are i.i.d. All images are rearranged in lexicographic order. Here
x is of size N1 N2, and yk’s are of size N̄1 N̄2, where N1 = r1N̄1,
and N2 = r2N̄2.

We assume that we only have access to quantized LR images;

y
byk

k = Qbyk
(yk), k = 1, . . . , L (2)

where Qbyk
is the uniform quantizer with 2byk levels. In general,

byk
may be different for different LR images. Here, for simplicity,

we assume that all LR images are quantized with the same number
of bits, i.e. byk

= by.
Our aim is to reconstruct the HR image from the observation of

quantized LR images. We are interested in the trade-offs between
resolution in amplitude and resolution in space.

We describe the spatial resolution of each LR image yk relative
to the spatial resolution of target high resolution image x̂, and it is
given by 1/(r1 r2). The number of LR images may be thought as
a part of spatial resolution, as well as a parameter associated with
resolution in time when considered in a spatio-temporal framework.
The resolution in amplitude associated with an image I is described
by the number of bits used to represent pixel values bI , which is the
pixel depth.

We associate a cost with a particular representation of a scene:
cost of a quantized image is given by the total number of bits needed
to represent this particular representation, i.e. number of pixels in
the image × number of bits used to represent each pixel value. For
example the representation cost of the HR image x is Cx = N1 ×

N2 × bx, and similarly the representation cost of a LR image y
by

k
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Fig. 1: Some of the images used in the experiments.

whose pixel values are quantized with by bits is C
y

by
k

= N̄1 ×

N̄2 × by. The total representation cost of L low resolution images is
L × C

y
by

k

.

The cost parameter provides a way of expressing the combined
effect of the resolution in space, resolution in amplitude, and number
of LR images for a given image acquisition scenario (given set of
LR images) with a single number. We note that the actual number of
bits needed to effectively store or transmit the images may be quite
different from C. Our notion of cost should be considered as a part
of acquisition rather than the coding of information.

The ratio of the total representation cost of L low resolution im-
ages to the representation cost of the target HR image x̂ is a useful
parameter and is given by

Cr =
L × N̄1 × N̄2 × by

N1 × N2 × bx̂
=

L × by
r1 × r2 × bx̂

. (3)

C may be seen as a measure of information in a particular repre-
sentation of scene. Hence it may be argued that if Cr < 1, there
is not as much as information in the LR images as in the target HR
image, and the problem is underdetermined in the sense of number
of bits available. In a typical image, the values of different pixels are
neither independent, nor necessarily identically and uniformly dis-
tributed. Yet C provides an upper bound, and still may be useful in
interpretation of the results. We finally note that in a typical super-
resolution problem effective bit depths of the HR image, and the LR
images and achievable bit depths for the target HR image may take
different but related values, which puts constraints on the values Cr

can take.

3. METHODOLOGY

To study the trade-off between amplitude resolution and spatial reso-
lution within the given framework, we will consider different image
acquisition scenarios and compare their success in generating HR
images with a particular super-resolution method.

As super-resolution method, we use the norm approximation
method recently proposed in [4]. We note that one could use other
image reconstruction methods as well. Although the specifics of
these methods may differ, we believe that the nature of the trade-
offs observed and the general conclusions and insights that will be
presented in this paper will remain useful with a wide variety of
methods. In [4], the reconstructed image x̂ is given as

x̂ = arg min
x

j LX
k=1

‖yk − DkHkFk x‖1

+ λ

PX
l=−P

PX
m=−P

α|m|+|l|‖x − Sm
h Sl

vx‖1

ff
, (4)
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Fig. 2: SSIM for different image acquisition set-ups, HR image is
used to select λ. (a) SSIM vs the number (L) and pixel depth (by) of
LR images, upsampling factor r variable (b) SSIM vs L for r = 2
with varying by (c) SSIM vs by for r = 2 with varying L.
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Fig. 3: SSIM vs Cr , upsampling factor r variable, HR image is used
to select λ.

where operators Sm
h and Sl

v shift x by m and l pixels in the horizon-
tal and vertical directions, respectively. We have used α = 0.6, and
P = 2, which are one of the typical values used in [4]. Here λ > 0
is a scalar parameter used to control the amount of regularization.
The method used to determine λ is explained in each experiment.

Structural similarity (SSIM) index [5] and peak signal to noise
ratio (PSNR) are used as the quality metrics to report the success
of different image acquisition scenarios. SSIM index between two
images x̂ and x are given as the mean of SSIM over aligned image
patches, where the SSIM between image patches from x̂ and x is
given as

SSIM =
(2μxμx̂ + C1) (2σxx̂ + C2)

(μ2
x + μ2

x̂
+ C1) (σ2

x + σ2
x̂

+ C2)
. (5)

Here μx, σx and σxx̂ denote the local estimates of the mean, vari-
ance and cross correlation respectively. We have used the implemen-
tation offered by [5], and reported SSIM over a dynamic range of 1
using C1 and C2 as (0.01)2 and (0.03)2 in accordance with [5].

Finally we give some of the parameters used in the experiments:
The upsampling factors in two dimensions are assumed to be the
same, i.e. r1 = r2 = r. Camera point spread function (p.s.f.) is
assumed be 3 × 3 Gaussian filter. Gaussian noise with a standard
deviation of 0.02 is used to simulate the system noise. Camera p.s.f.
and motion vectors are assumed to be known in the reconstruction.

4. EXPERIMENTAL RESULTS

We will now study the relationship between resolution in ampli-
tude and resolution in space in super-resolution scenarios by ex-
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Fig. 4: (a) HR image, (b) bi-cubic interpolation of 1 LR image with
12 bit quantization, Images reconstructed from (c) 6 LR images with
8 bit quantization (P1) (d) 12 LR images with 4 bit quantization (P2)
(e) 4 LR images with 12 bit quantization (P3).

amining the success of different image acquisition set-ups. This
study will also reveal the trade-off between the quality (SSIM
of the reconstructed images) and cost (the representation costs
of LR images) under the experiment parameters used. We use
Cr = (L × by)/(r2 × bx).
Exp. 1: This experiment investigates the case where HR image is
assumed to be known in the reconstruction process and optimum
λ to obtain the best SSIM is searched heuristically. This exper-
iment serves the purpose of providing a benchmark for the best
performance possible with the reconstruction method used. For this
experiment the 12-bit grayscale image, shown in Fig. 1(a) is used.
This image includes a fair amount of edges as well as textured,
and smooth regions. We consider the image acquisition strategies
with pixel depths by ∈ {1, . . . , 12} and the number of LR images
L ∈ {1, . . . , 4 r2} with upsampling factors r = 2, 3.

Fig. 2, and Fig. 3 gives the SSIM for different image acquisi-
tion scenarios and the associated trade-off between SSIM and Cr,
respectively. We see that it is possible to obtain a given SSIM per-
formance with different image acquisition strategies, and possibly
different costs. In Fig. 3, the boundary of the achievable SSIM-
Cr region shows that SSIM is very sensitive to increases in Cr for
smaller values of Cr. Then it becomes less responsive, and eventu-
ally saturates at an asymptote for high values of Cr . We also note
that in all of the measurement scenarios considered in this experi-
ment, for a given pixel depth, if the total number of pixels available
are the same for varying upsampling factors, SSIM values turn out
to be very close. This also shows that under the image acquisition
set-ups considered in this experiment, resolution in amplitude, not

(a) (b) (c)

Fig. 5: (a) LR image with 4 bit quantization (r = 2) (b) bi-cubic
interpolation (c) after noise removal

Fig. 6: Region 1(Left), Region 2 (Middle), Region 3 (Right):
Patches from the images presented in Fig. 4

resolution in space (upsampling factor), is the key factor determin-
ing the quality of reconstructed images. This trend is strongly related
to the size of camera p.s.f., the size of details in the images as well
as the upsampling factors used in the experiment.

We observe that in general for a given pixel depth, SSIM in-
creases as the number of available LR images increases (see for in-
stance Fig. 2(b)). We also see that for a given number of available
LR images, SSIM increases with increasing pixel depth (see for in-
stance Fig. 2(c)). For low values of pixel depth, the information lost
due to poor resolution in amplitude can be hardly recovered by ac-
quiring more LR images, resulting in very close SSIM values for all
values of L. The increase in SSIM with increasing L is lower for
low values of pixel depth compared to high values. As pixel depth
increases the number of available images becomes more important
in determining the SSIM level that can be reached with a particular
pixel depth. However for all values of pixel depth, the increase in
SSIM with increasing L gradually becomes lower as L increases.

We now take a closer look on the following data points with r =
2: 6 LR images with 8-bit pixel depth (P1), 12 LR images with 4-bit
pixel depth (P2), and 4 LR images with 12-bit pixel depth (P3). The
costs of these acquisition schemes are the same, so it is reasonable
to use them to compare the following different sampling strategies:
a high number of images with a coarse resolution in amplitude (P2),
a low number of images with a dense resolution in amplitude (P3),
and the strategy in between (P1).

The actual HR image, and reconstructed images for P1, P2 and
P3 are shown in Fig. 4(a), Fig. 4(c), Fig. 4(d), and Fig. 4(e) respec-
tively. The regions indicated in Fig. 4(a) are shown in Fig. 6 with the
corresponding SSIM and PSNR values in Table 1.
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Table 1: SSIM and PSNR (dB) values for the image patches ex-
tracted from the image shown in Fig. 4(a) with different image ac-
quisition scenarios corresponding to P1, P2, and P3

P1 P2 P3

image 0.9135- 31.30 0.8540 - 29.33 0.8904 - 29.95

region 1 0.9629 - 43.48 0.8712 - 32.95 0.9300 - 40.88

region 2 0.9340 - 37.23 0.9015 - 33.14 0.9187 - 36.40

region 3 0.7879 - 27.86 0.7668 - 27.98 0.7610 - 27.19

We observe that there are quantization artifacts all over the im-
age reconstructed from the set-up in P2 (Fig. 4(d)). Some image
details on textured regions are lost, and there are fake borders in
smooth regions, which are particularly apparent in the sky region
and on the building. After the noise removal, the low pixel depth
of LR images causes banding in these regions, in which there is ac-
tually a smooth gray level transition. We note that these boundary
effects are a result of successful noise removal. To illustrate this
point, the LR image and bi-cubic interpolation of one LR image is
shown in Fig. 5. We observe that with this naive approach the noise
removal smoothes the edges and results in a blurred image. For P3

(Fig. 4(e)), we observe that although most of the image details are
successfully reconstructed, the image is noisy. In this case the num-
ber of available LR images is relatively low, hence they may not be
sufficient to successfully remove noise without blurring. The noisy
behaviour of the image suggests that using such a high pixel depth
is a waste of resources, since the image pixels are already corrupted
with a noise whose level is much higher than the quantization inter-
val, and these bits could have been used to acquire more LR images.
We note that by adjusting the parameter λ, it may be possible to ob-
tain a smoother but blurred image. We also note that if the system
noise had been lower, the number of LR images at hand could have
been sufficient to construct a less noisy image without blur. Finally,
Fig. 4(c) (P1) presents the image reconstructed from the 6 images
with 8-bit pixel depth. Among the three measurement strategies, this
strategy is the one that gets the highest scores from both of the qual-
ity metrics, SSIM and PSNR. We see that there is still some noise in
this image, but there are no quantization artifacts similar to the ones
present in Fig. 4(d).
Exp. 2: In this experiment, we investigate the trade-off when an-
other image with similar characteristics is used to select λ values:
The image patch shown in Fig. 1(b) which is extracted from an out-
door image is used to learn the optimum λ for different image ac-
quisition schemes. We run the experiments for the first 20 8-bit im-
ages in scene categories “CALsuburb” and “MITinsidecity” from the
database introduced in [6] (examples shown in Fig. 1(c)) and report
the mean SSIM values across each image category. We consider the
image acquisition strategies with pixel depths by ∈ {1, . . . , 8} and
the number of LR images L ∈ {1, r2, 2 r2, 3 r2, 4 r2} with upsam-
pling factors r = 2, 3.

Fig. 7 shows the trade off between SSIM and Cr. We observe
that the nature of these plots are similar to the trade-off curve pre-
sented in Fig. 3, in which HR image is used to select the best λ is to
obtain the best performance. The SSIM values that may be reached
with the image acquisition scenarios under consideration does not
change significantly. We may conclude that it is possible to reach
the benchmark’s performance without knowing the HR image in ad-
vance, which is the case for a typical super-resolution application.
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Fig. 7: SSIM vs Cr: upsampling factor variable, image patch shown
in Fig. 1(b) is used to select λ. (a) database: “CALsuburban” (b)
database: “MITinsidecity”

5. CONCLUSIONS

We have studied on understanding the relationship between resolu-
tion in amplitude and resolution in space in super-resolution prob-
lem. Unlike most previous work, amplitude resolution was con-
sidered as important part of the super-resolution problem as spatial
resolution. We have studied the success of different measurement
set-ups where the resolution in amplitude (pixel depth), resolution in
space (upsampling factor) and the number of LR images are variable.
Our study has revealed great flexibility in terms of spatial-amplitude
resolutions in super-resolution problem. We have seen that it is pos-
sible to reach target visual qualities with different measurement sce-
narios including varying number of images with different amplitude
and spatial resolutions. Our results illustrate how coarsely the im-
ages with low spatial resolution could be quantized in order to obtain
images with high spatial resolution with good visual qualities.We be-
lieve that there is a great deal of exciting work to be done to under-
stand the relationship between resolution in amplitude and resolu-
tion in space in super-resolution problem. An interesting example is
finding all the achievable visual qualities and associated upsampling
factors and amplitude resolutions under a given cost. This point is
left as future work.
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