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ABSTRACT 

Stochastic signaling is investigated under second and fourth 
moment constraints for the detection of scalar-valued binary 
signals in additive noise channels. Sufficient conditions are 
derived to determine when the use of stochastic signals in­
stead of deterministic ones can or cannot enhance the error 
performance of a given binary communications system. Also, 
a convex relaxation approach is employed to obtain approx­
imate solutions of the optimal stochastic signaling problem. 
Finally, numerical examples are presented, and extensions of 
the results to M -ary communications systems and to other 
criteria than the average probability of error are discussed. 
Index Terms- Probability of error, additive noise channels, 
stochastic signaling, convex optimization. 

1. INTRODUCTION 

In this study, the optimal signaling approach is investigated 
for minimizing the average probability of error of a binary 
communications system under second and fourth moment con­
straints. Optimal signaling in the presence of zero-mean Gaus­
sian noise has been studied extensively [1], [2]. It is known 
that deterministic antipodal signals; that is, 81 = -80, min­
imize the average probability of error of a binary communi­
cations system in additive Gaussian noise channels. Also, for 
vector observations, selecting the deterministic signals along 
the eigenvector of the covariance matrix of the Gaussian noise 
corresponding to the minimum eigenvalue minimizes the av­
erage probability of error under power constraints in the form 
of IISol12 ::; A and IIS1112 ::; A [2]. Although the average 
probability of error expressions and optimal signaling tech­
niques have been investigated for Gaussian noise, the noise 
can have significantly different probability distribution than 
the Gaussian distribution in some cases due to effects such as 
multiuser interference and jamming [3], [4]. In [5], additive 
noise channels with binary inputs and scalar outputs are stud­
ied, and it is proven that the least-favorable noise distribution 
that maximizes the average probability of error and minimizes 
the channel capacity is a mixture of discrete lattices [5]. A 
similar problem is investigated in [6] for a binary communi­
cations system in the presence of an additive jammer, and the 
properties of optimal jammer distribution and signal distribu­
tion are obtained. 

The convexity properties of the average probability of er­
ror are investigated in [3] for binary-valued scalar signals in 
additive noise channels under an average power constraint. 
It is proven that the average probability of error is a con­
vex non-increasing function for unimodal differentiable noise 
probability density functions (PDFs) and for maximum like­
lihood (ML) receivers. Then, it is concluded that random-

ization of signal values (or, stochastic signaling) cannot im­
prove error performance for the considered communications 
system. Also, the problem of maximizing the average prob­
ability of error is studied for an average power constrained 
jammer, and it is obtained that the optimal solution can be 
achieved when the jammer randomizes its power between at 
most two power levels [3]. In a related study [7], optimal 
randomization of signal amplitude is investigated for an aver­
age power constrained antipodal binary communications sys­
tem that employs an ML receiver. Similar to [3], the optimal 
signal is shown to be a randomization of at most two signal 
levels. 

Although the average probability of error for a binary com­
munications system is minimized by deterministic antipodal 
signals in additive Gaussian noise channels [2], the studies in 
[3], [6], [7] imply that stochastic signaling can provide lower 
average probabilities of error in some cases when the noise is 
non-Gaussian. Hence, a generic formulation of the optimal 
signaling problem for binary communications systems can be 
stated as the calculation of optimal probability distributions 
for signals 80 and 81 such that the average probability of er­
ror of the system is minimized under certain constraints on 
the moments of 80 and 81. The main difference of this opti­
mal stochastic signaling approach from the conventional (de­
terministic) approach [1], [2] is that signals 80 and 81 are 
modeled as random variables in the former whereas they are 
considered as deterministic quantities in the latter. 

In this paper, a generic formulation of the optimal stochas­
tic signaling problem is considered, which is valid for any re­
ceiver structure and noise probability distribution. Also, both 
average power and peakedness constraints are imposed on the 
signals. In addition, sufficient conditions are derived to de­
termine if the error performance of a receiver can or cannot 
be improved by using stochastic signaling instead of conven­
tional signaling. Furthermore, an optimization theoretic ap­
proach is proposed for approximately solving the generic op­
timal signaling problem via a convex relaxation technique [8]. 
Finally, it is mentioned that the results obtained for minimiz­
ing the average probability of error for a binary communica­
tions system can be extended to M -ary systems, as well as 
to other performance criteria than the average probability of 
error, such as the Bayes risk [2], [9]. 

2. SYSTEM MODEL AND MOTIVATION 

Consider a scalar binary communications system, as in [3] 
and [5], in which the received signal is given by 

Y = 8i + N , i E {O , I} , (1) 

where 80 and 81 denote the transmitted signal values for sym­
bolO and symbol 1, respectively, and N is the noise compo-



nent that is independent of Si. In addition, the prior proba­
bilities of the symbols, which are denoted by 1fo and 1fl, are 
assumed to be known. 

As stated in [3], the scalar channel model in (1) presents 
an abstraction for a continuous-time system that processes the 
received signal by a linear filter and samples it once per sym­
bol interval. Also, although the signal model in (1) is in the 
form of a simple additive noise channel, it also holds for flat­
fading channels assuming perfect channel estimation. In that 
case, the signal model in (1) can be obtained after appropriate 
equalization [1]. Note that the probability distribution of the 
noise component in (1) is not necessarily Gaussian. Due to 
interference, such as multiple-access interference, the noise 
component can have a probability distribution that is different 
from the Gaussian distribution [3], [4]. 

A generic decision rule is considered at the receiver to es­
timate the symbol in (1). Specifically, for a given observation 
y = y, the decision rule ¢(y) is expressed as 

A- ( ) = 
{O, Y E fo 

'f' Y 1 ,  y E fl ' (2) 

where f 0 and f 1 are the decision regions for symbol ° and 
symbol 1, respectively [2]. 

In this study, the aim is to design signals So and SI in 
(1) in order to minimize the average probability of error for a 
given decision rule, which is calculated as 

(3) 

where Pi (f j) is the probability of selecting symbol j when 
symbol i is transmitted. In practical systems, there exist con­
straints on the average power and the peakedness of signals, 
which can be expressed as 

(4) 

for i = 0, 1, where A is the average power limit and the sec­
ond constraint imposes a limit on the peakedness of the signal 
depending on the Ii E (1,00) parameter [10]. Therefore, the 
problem is to calculate the optimal PDFs for signals So and 
SI that minimize the average probability of error in (3) under 
the second and fourth moment constraints in (4). 

The main motivation for the optimal stochastic signaling 
problem is to enhance the error performance of a communi­
cations system by considering the signals at the transmitter as 
random variables and obtaining the optimal probability distri­
butions for those signals [3], [7]. Therefore, the generic prob­
lem can be formulated as the calculation of the optimal prob­
ability distributions for signals So and SI for a given decision 
rule at the receiver under the average power and peakedness 
constraints in (4). 

Since the optimal signal design is performed at the trans­
mitter, the transmitter is supposed to have the knowledge of 
the statistics of the noise at the receiver and the channel state 
information. If this information is not available, the probabil­
ity of error expression obtained via the optimal stochastic sig­
nal design (cf. (6)-(7)) provides a lower bound on the proba­
bility of error. Although this information may not be available 
in some cases, there exist certain scenarios in which it can 
be valid. For example, consider the downlink of a multiple­
access communications system, in which the received signal 

is modeled as Y = S(1) + 'Lf=2 S(k) + 'fJ, where S(k) 
is the signal of the kth user and 'fJ is a zero-mean Gaussian 
noise component. For the desired signal component S(I), 
N = 'Lf=2 S(k) + 'fJ constitutes the total noise, which has 
Gaussian mixture distribution. When the receiver sends via 
feedback the variance of noise 'fJ and the signal-to-noise ratio 
(SNR) to the transmitter, the transmitter can fully characterize 
the PDF of the total noise N, as it already knows the trans­
mitted signal levels of all the users. 

In the conventional signal design, So and SI are consid­
ered as deterministic signals, and set to So = -vA and 
SI = vA [1], [2]. Then, the average probability of error 
in (3) becomes 

p��v = 1fo { PN(y + vA)dy + 1fl ( PN(y - vA)dy 
irl �o 

(5) 
where PNO is the PDF of the noise in (1). As studied in Sec­
tion 3.1, the conventional signal design is optimal for certain 
classes of noise PDFs and decision rules. However, in some 
cases, use of stochastic signals instead of deterministic ones 
can improve the system performance, as studied next. 

3. OPTIMAL STOCHASTIC SIGNALING 

Instead of using constant levels for So and SI as in the con­
ventional case, one can consider a more generic scenario in 
which the signals can be stochastic. Then, the aim is to calcu­
late the optimal PDFs for So and SI in (1) that minimize the 
average probability of error under the constraints in (4). 

Let PSo 0 and PSI 0 denote the PDFs for So and SI, re­
spectively. Then, from (3), the average probability of error 
for the decision rule in (2) is given by 

Therefore, the optimal stochastic signal design problem can 
be expressed as 

min pstoc avg Pso,PSI 
(7) 

Note that there are also implicit constraints in the optimiza­
tion problem in (7), since Pso (t) and PSI (t) are PDFs. Namely, 
PSi (t) ::::: ° Vt and f�oo PSi (t)dt = 1 for i = 0, l. 

Because the aim is to obtain optimal stochastic signals for 
a given receiver, the decision rule in (2) is fixed. Therefore, 
the structure of the objective function p��� in (6) and the indi­
vidual constraints on each signal imply that the optimization 
problem in (7) can be stated as two decoupled optimization 
problems. Specifically, the optimal signal for symbol 1 can 
be obtained from the solution of the following optimization 
problem: 

min 100 PSI (t) ( PN(y - t) dydt PSI -00 iro 
subject to E{ISI12} ::; A ,  E{ISI14}::; IiA2 . (8) 



A similar problem can also be formulated for 80• As the sig­
nals can be designed separately, the remainder of this study 
focuses on the design of optimal 81 according to (8). 

The objective function in (8) can be expressed as the ex­
pectation of G(8d over 81> where 

(9) 

Then, the optimization problem in (8) can be stated as 

min E{G(8t)} 
PSl 

In the following, the signal subscripts are dropped for nota­
tional simplicity. 

3.1. On the Optimality of Conventional Signals 

In some cases, the conventional signaling is an optimal ap­
proach; that is, setting 8 = VA [or, ps(x) = 15(x - VA)] 
can solve the optimization problem in (10). For example, 
if G(x) in (9) achieves its minimum at x = VA ;  that is, 
arg minx G(x) = VA, then ps(x) = 15(x-VA) is the opti­
mal solution as it provides the minimum value for E{ G (81) } 
under the constraints. However, the definition of G(x) in (9) 
reveals that it is the probability of deciding symbol ° instead 
of symbol 1 when signal 81 takes a constant value of x; hence, 
it is commonly a decreasing function of x, as larger signal val­
ues can lead to smaller error probabilities. Therefore, a more 
generic condition is obtained in the following proposition for 
the optimality of the conventional algorithm. 

Proposition 1: IfG(x) is a strictly convex and monotone 

decreasing function, then Ps (x) = 5 (x - VA )  is a solution 
of the optimization problem in (10). 

Proof: The result can be obtained by showing, via Jensen's 
inequality, that no signal PDF can satisfy E{ G (8)} < G ( VA) 
and the constraints in (10) at the same time when G(x) is a 
strictly convex and monotone decreasing function. 0 

As an example, consider zero-mean Gaussian noise N in 
(1) with P N (x) = exp{ -x2 / (20"2)} / V21T 0", and a decision 
rule of the form r 0 = (-00,0] and r 1 = [0,(0) ; that is, 
the sign detector. Then, G(x) in (9) can be calculated as 
G(x) = Q(x/O"), where Q(x) = (1/V21T) Jxoo e-t2j2dt de­
fines the Q-function. Since G(x) is a monotone decreasing 
and strictly convex function for x > 0, I the optimal signal 
can be specified by ps(x) = 15(x - VA) based on Propo­
sition 1. Similarly, the optimal signal for symbol ° can be 
calculated as ps(x) = 15(x + VA). Hence, the conventional 
signaling is optimal in this scenario. 

3.2. Sufficient Conditions for Improvability 

In this section, we study the conditions under which the per­
formance of the conventional signaling approach can be im­
proved via stochastic signaling. A simple observation from 

1 It is sufficient to consider the positive signal values only, because G(x) 
is monotone decreasing and the constraints x2 and x4 are even functions. 

(10) reveals that if a' (VA) > 0, where G' (x) is the first 
derivative of G(x), a signal PDF in the form of PS2(X) = 

5 (x -VA + E) provides a smaller average probability of error 
than the conventional solution for infinitesimally small E > 0. 
Hence, the conventional signaling is suboptimal in that case. 
Although this condition is sufficient for the improvability of 
the conventional solution, it is rarely met in practice since 
G(x) is commonly a decreasing function of x as discussed 
before. Therefore, a sufficient condition is derived for more 
generic and practical G(x) functions in the following. 

Proposition 2: Assume that G(x) is twice continuously 

differentiable. If G" (VA) < G' (VA)/VA, then ps(x) = 

5 (x -VA )  is not an optimal solution of (10). 
Proof: In order to prove the suboptimality of the conven­

tional solution ps(x) = 15(x - VA), it is shown that, under 
the conditions in the proposition, there exist..\ E (0,1), E > ° 
and � > ° such that PS2(X) = ..\15(x - VA + E) + (1 -

..\) 15(x -VA -�) yields a lower error probability than ps(x) 
and satisfies the constraints in (10). Specifically, the existence 
of"\ E (0,1), E > ° and � > ° that satisfy 

..\G(VA - E) + (1-,,\) G(VA + �) < G(VA) (11) 

..\( VA - E )2 + (1 -..\) ( VA + �)2 = A (12) 

..\( VA - E)4 + (1 -..\) ( VA + �)4 ::; A;A2 (13) 

is sufficient to prove the suboptimality of the conventional sig­
naling. From (12), the following relation is obtained. 

For infinitesimally small E and �, the first three terms of the 
Taylor series expansions for G( VA -E) and G( VA +�) can 
be used to approximate (11) as 

d (VA) [(1- ..\)� -..\E] + G
" �VA) [..\E2 + (1-..\)�2] < 0. 

Based on the relation in (14), (15) can be expressed as 
(15) 

Since (1 - ..\)� -..\ E is always negative, which can be ob­
served from (14), the G' (VA) - VAG" (VA) term in (16) 
must be positive to satisfy the condition. In other words, when 
G" (VA) < G' (VA)/VA, PS2(X) can have a smaller error 
value than the conventional solution for infinitesimally small 
E and � values that satisfy (14). 

Finally, the condition in (13) can be verified in a similar 
fashion, which is not shown here due to space limitations. 0 

The reasoning behind Proposition 2 is explained as fol­
lows. Since the optimization problem in (10) aims to mini­
mize E{ G (8) } while keeping E{ 82} and E{ 84} below thresh­
olds A and A;A2, respectively, a better solution than ps(x) = 

15(x -VA) can be obtained with multiple mass points if G(x) 
is decreasing at an increasing rate (i.e., with a negative second 
derivative) such that an increase from x = VA causes a fast 
decrease in G(x) but a relatively slow increase in x2 and x4, 
and a decrease from x = VA causes a fast decrease in x2 



and x4 but a relatively slow increase in G(x). Then, it be­
comes possible to use a PDF with multiple mass points and to 
achieve a smaller E{ G(S)} while satisfying E{ S2} :S A and 
E{S4} :S /'\:A2. 

3.3. Calculatiou of Optimal Siguals 

In order to obtain the PDF of an optimal signal, the con­
strained optimization problem in (10) should be solved. In 
this section, a convex optimization approach is studied in or­
der to provide approximate solutions for that optimization 
problem. We consider a scenario in which the PDF of the 
signal is modeled as 

K 
ps(x) = 2::'xjD(X- Xj) ,  (17) 

j=1 
where x/s are the known mass points of the PDFs, and ,x/s 
are the weights (probabilities) to be estimated. In other words, 
it is assumed that there are a finite number of possible signal 
values, and the aim is to determine the probabilities of those 
values. Of course, the PDF model in (17) provides an approx­
imation to the optimal solution, which can also take values 
different from x /s. However, as the number of possible val­
ues increases, the approximate solution can get closer to the 
exact solution. In addition, in practical systems, the signals 
are digital; hence, they can only take finitely many possible 
values as in (17). Therefore, the model would be exact for 
such digital systems. 

Based on the model in (17), the optimal signal design 
problem in (10) can be expressed as the following convex op­
timization problem:2 

mjngTX 
>. 

subject to BX:::-; C, IT X = 1 ,  X � 0 , 

where g £ [G(X1)'" G(XK )]T, with G(x) as in (9), 

(18) 

(19) 

and 1 and 0 denote vectors of ones and zeros, respectively. 
It is observed from (18) that the optimal weight assign­

ments can be obtained from the solution of a convex opti­
mization problem; specifically, a linearly constrained linear 
programming problem. Therefore, the problem can be effi­
ciently solved by interior-point methods, which are polyno­
mial time in the worst case, and are very fast in practice [8]. 

4. SIMULATION RESULTS 

In this section, numerical examples are presented for a binary 
communications system with equal priors; that is, 1fo = 1f1 = 

0.5. The decision rule at the receiver is specified by ro = 

(-00,0] and r 1 = [0, 00) (i.e., a sign detector). 
A communications system in the presence of interference 

is considered, and the noise in (1) is modeled as Gaussian 
2Por K -dimensional vectors x and y, x :S y means that the ith element 

of x is smaller than or equal to the ith element of y for i = 1, ... ,K. 

10' r::::::::::::::r:::::::::::::,r:::::::::::::t'=====::::::;3 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :: - Stochastic, 6=0.01 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  � Stochastic, 6=0.02 

. - . - . Stochastic, .0.=0.05 
. . . . . .. - - - Stochastic, 6=0.1 

� Conventional 

10.'OL-----:1'::- 0 ---:2'::- 0 ---:30:---�40:-------:'50 
Ala' (dB) 

Fig. 1. Average probability of error versus AI 1J2. 

mixture noise, which is specified by P N ( y) = "Ef= 1 VI '01 (Y­
Yl), where '01(Y) = exp{- y2/(2IJf)}/(V21TIJI). It should 
be noted that such Gaussian mixture noise can be encoun­
tered in practical communications systems in the presence of 
co-channel interference [4]. Then, G (x) in (9) is obtained as 
G(x) = "Ef=1 VI Q ((x + YI)/IJI). In the following, the vari­
ance parameter for each mass point of the Gaussian mixture 
is set to 1J2 (Le., IJf = 1J2 'Vl), the average power constraint A 
is set to 1, and /'\: = 1.5 is used. Note that the average power 
of the noise can be calculated as E{ N2} = 1J2 + "Ef=1 VI Yf . 

In Fig. 1, the average probabilities of error are plotted 
against AI 1J2 for the conventional and stochastic signaling 
approaches for a symmetric Gaussian mixture noise that has 
its mass points at ±[0.105 0.275 1.013] with corresponding 
weights [0.129 0.328 0.043]. In the implementation of the 
convex solution in Section 3.3, the mass points Xj in (17) 
are selected uniformly over the interval [0,2] with a step size 
of �, and the results for � = 0.01,0.02,0.05,0.1 are illus­
trated.3 It is observed from Fig. 1 that the conventional sig­
naling, which uses a constant signal value of 1, has a large 
error floor compared to the stochastic signaling at high AI 1J2 
values. In addition, the average probability of error of the con­
ventional signaling increases as AI 1J2 increases after a cer­
tain value. This seemingly counterintuitive result is observed 
since the average probability of error is related to the area 
under the two shifted noise PDFs as in (5). Since the noise 
has a multi-modal PDF, that area is a non-monotonic function 
of AI 1J2 and can increase in some cases as AI 1J2 increases. 
Moreover, Fig. 1 shows that the stochastic signaling provides 
significant performance improvements over the conventional 
signaling, especially for densely spaced possible signal val­
ues. In addition, it is observed that decreasing the value of � 
below a certain value does not result in significant reductions 
in the average probability of error. For example, � = 0.01 
does not provide much performance improvement compared 
to � = 0.02. Hence, a reasonably small � can be chosen in 
practice in order to obtain close-to-optimal performance. 

Another observation from Fig. 1 is that improvements 
over the conventional algorithm disappear as 1J2 increases (that 
is, for small AI 1J2 values), which can be explained from Propo­
sitions 1 and 2, based on the plots of G (x) at various AIIJ2 
values. As an example, Fig. 2 illustrates the plots of G (x) at 

3The signal values with zero probabilities are not marked in the figures to 
clarify the illustrations. 



, . _. _. AJ(i=OdB 
0.9 , - - - AJ(i=20dB , 
0.8 -AJ(i=40dB 

0.7 

0.6 

g 0.5 

0.4 

0.3 , 
0.2 , 
0.1 , , 

0 
-3 -2 -1 

Fig. 2. G(x) in (9) for various values of AI(J2. 

1 

0.9 

0.8 

0.7 

� 0.6 
i5 � 0.5 
e 

c.. 0.4 

0.3 

0.2 

o. 1 

o 

Stochastic, 6-0.01 ----() Stochastic, 6=0.02 
----v Stochastic, 6=0.05 ---£J Stochastic, 6=0.1 
----€l Conventional 

I� 
0.4 0.5 0.6 0.7 0.8 0.9 

Signal Value 
1.1 1.2 

Fig. 3. Signal PMFs for various schemes at AI (J2 = 20 dB. 

AI (J2 of 0, 20 and 40 dB. The function is decreasing and con­
vex for 0 dB for the positive signal values, which are practi­
cally the domain of optimization as G(x) is a decreasing func­
tion and the constraint functions x2 and x4 are even functions. 
Hence, Proposition 1 implies that the conventional algorithm 
that uses a constant signal value of 1 is optimal in this case, 
as observed in Fig. 1. On the other hand, at 20 dB and 40 
dB, the calculations show that the condition in Proposition 2 
is satisfied. Namely, G" (1) = -0.221 and a' (1) = -0.170 
at 20 dB, and G" (1) = -95.8 and a' (1) = -0.737 at 40 
dB. Therefore, the conventional algorithm cannot be optimal 
in that case, and improvements are observed in Fig. 1 at 
AI (J2 = 20 dB and AI (J2 = 40 dB. 

For the scenario in Fig. 1, the probability mass func­
tions (PMFs) of the conventional and stochastic signals are 
shown in Fig. 3 for AI(J2 = 20 dB. It is observed that the 
stochastic signaling performs randomization of signal ampli­
tudes mainly around two values (8 � 0.54 and 8 � 1.13). 
Depending on the resolution; that is, the value of �, vari­
ous numbers of mass points are obtained. As � increases, 
the convex optimization approach does not provide sufficient 
resolution for the signal values, and the resulting error prob­
ability becomes higher, especially for small (J's, as observed 
from Fig. 1. 

5. CONCLUSIONS AND EXTENSIONS 

The stochastic signaling problem has been studied for binary 
communications systems under second and fourth moment 

constraints. It has been shown that, the conventional signal­
ing approach, which employs deterministic signals at the av­
erage power limit, is optimal under certain monotonicity and 
convexity conditions. On the other hand, in certain cases, a 
smaller average probability of error can achieved by using a 
signal that is obtained by a randomization of multiple signal 
values. In addition, a convex relaxation approach has been 
proposed to perform c1ose-to-optimal signal design. 

The results in this study can be extended to a generic bi­
nary hypothesis-testing problem in the Bayesian framework 
[2], [9]. In that case, the average probability of error expres­
sion in (3) is generalized to the Bayes risk, which is defined as 
7ro[CooPo(fo) +ClOPo(fd] +7rl [COl PI (fo) + CllPI (rd]' 
where Cij 2: 0 represents the cost of deciding the ith hy­
pothesis when the jth one is true. Then, all the results are 
still valid when function G in (9) is replaced by G(x) = 

COl fro PN(Y - x)dy + Cll frl PN(Y - x)dy. Moreover, 
it can be shown that the results in this study can also be ex­
tended to M -ary communications systems for M > 2. 
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