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Abstract—Manycore systems are becoming more and more
powerful with the integration of hundreds of cores on a single
chip. However, writing parallel programs on these manycore
systems has become a problem since the amount of available
parallel tools and applications are limited. Although exploiting
parallelism in software is possible, it requires different design
decisions, significant programmer effort and is error prone.
Different libraries and tools try to make the transition to
parallelism easier, however there is no concrete system to
make it transparent to software developer. To this end, our
proposed tool is a step forward to improve the current
state. Our approach, Autopar, specifically aims at achieving
automatic parallelization of recursive applications using static
program analysis. It first decides on the recursive functions
of a given program. Then, it performs analysis and collects
information about these recursive functions. Our analysis
module automatically collects program information without
requiring any modification in the program design or developer
involvement. Finally, it achieves automatic parallelization by
introducing necessary OpenMP pragmas in appropriate places
in the application.
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I. INTRODUCTION

As technology scales, the International Technology

Roadmap for Semiconductors projects that the number of

cores will drastically increase to satisfy performance re-

quirements [1]. However, using these manycore architectures

effectively is not an easy task as there are limitations

in software development. Since manycore systems exploit

parallel threads, we must find ways to develop parallel

applications or parallelize sequential applications to achieve

the full potential of these architectures.

Recent years have witnessed a tremendous growth in par-

allel programming tools, languages, and approaches. In con-

trast to mainstream general-purpose software development,

these approaches have limitations. An important problem in

designing parallel applications is to restructure code and/or

data to make best use of the available hardware.

Various programming languages, libraries, models and

tools have been created to overcome the barriers. How-

ever, development of a parallel application or parallelizing

an existing program is not an easy task, but a tedious

process requiring lots of programmer effort. The difficulty

of parallel programming begins from the very first step

of programming, clarification of the problem, because not

all the problems are easily parallelizable by nature. Pro-

grammers need to consider parallel processing in details

such as how current workload is distributed over parallel

threads and how communication is handled among parallel

threads. Therefore, automatic parallelization of sequential

programs have been introduced to provide programmers with

the ability to parallelize applications easily.

In this study we propose Autopar, a tool to parallelize

recursive programs automatically with little programmer

effort. It transforms given sequential program code into a

new parallelized program by inserting necessary OpenMP

pragmas.

The main contributions of this paper can be summarized

as follows:

• We propose an automatic parallelization tool for recur-

sive function calls.

• We identify and analyze recursive function calls and

obtain characteristics including the number of recursive

calls for each recursive function, the size of recursive

function in terms of statements, and the number of

statements made before recursive function calls.

• We selectively insert OpenMP pragmas to these recur-

sive calls and convert regions of recursive calls into

parallel implementations.

• We give experimental evidence showing the success of

the proposed approach.

The parallelization process starts with an analysis of

source code and determination of code sections to be par-

allelized if there is any. Autopar does not require any prior

knowledge about parallel programming concepts. However,

programmer should supply Autopar with a source code

following the rules and restrictions of the system explained

Section III.

Rest of the paper is organized as follows: Section II

provides an overview of existing work on automatic paral-

lelization. Section III explains restrictions and limitations of

the proposed system. Section IV discusses Autopar system in

detail and outlines our general approach. Section V presents

experiment results on few benchmark recursive programs.

Section VI concludes the paper.
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II. RELATED WORK

There have been a number of work done in automatic par-

allelization, and various tools, models have been proposed.

CommSet [2] is not an automatic parallelization tool, but

simplifies the job of programmer by asking a specification

for commutativity of statements in the program. Programmer

assigns statements that can be executed in an arbitrary

order to the same set, such that CommSet can determine a

parallel execution scheme. The advantage of CommSet over

OpenMP is that it does not require programmer to specify

a parallelization strategy, rather programmer annotates code

blocks that are commutative as defined by application logic

and the system handles rest of the work.

A tool, similar to CommSet, for automatic parallelization

on MPSoC platforms is offered in [3]. MPA offers optimiza-

tions for parallelization and memory management of MPSoC

programs by conducting an analysis over programmer writ-

ten program specification and platform specification.

In [4], authors generalize parallelization concepts that

are commonly offered for low-level programming languages

to high-level languages that offer a broader range of data

abstraction. The proposed system, ROSE, is a source-to-

source transformation tool that exploits parallelization of

abstract data types in C++.

Data dependence is very important for any kind of paral-

lelization. GCD test [5] is a data dependence test for loops

iterating on arrays. It states that array references in the form

of X [a× i+b] and X [c× i+d] are dependent if GCD(a, c)
divides (d − b). Omega [6] test is a more comprehensive

dependence test. By formulating loops as integer linear

programming it determines under which conditions two

references refer to same array element.

The DOALL [7] parallelization can be applied to loops

if there is no loop-carried dependency, which is the de-

pendency between loop iterations. In the presence of

loop-carried dependencies, Decoupled Software Pipelining

(DSWP) [8] offers an alternative. It partitions a loop into

several loops with dependencies. By considering these de-

pendencies, it builds a pipeline of threads each corre-

sponding to one of new loops. Parallel-Stage DSWP (PS-

DSWP) combines best of both approaches by performing

DOALL parallelization within loop partitions and carrying

dependences between them using DSWP.

Many loop parallelization strategies assume a static envi-

ronment in which loop iterates. [9] describes a method to

parallelize loops that has dynamic behavior by performing

a sensitivity analysis on loop parameters. Dynamic data

dependences are expressed in the form of a predicate set, so

that static loop parallelization can be performed on dynamic

loops.

[10] introduces parallelization of call-by-value recursive

functions on general recursive data structures. Parallel im-

plementation of recursive functions is divided into two tasks.
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Figure 1: General overview of Autopar workflow.

Sequential functions are transformed into predefined parallel

skeletons and these skeletons are implemented in parallel

programs. On the other hand, [11] proposes an integrated

approach to generate parallel loops. The approach is a

two-staged parallelization combining profiling and mapping

based on a machine-learning prediction mechanism. A se-

quential C program is initially extended with plain OpenMP

annotations for parallel loops and reductions, and then they

apply machine-learning based mapping to generate OpenMP

annotated parallel programs.

While aforementioned techniques propose automatic par-

allelization at different levels, our approach is different in

targeting recursive applications. More specifically, we insert

OpenMP pragmas in recursive applications.

Automatic parallelization studies generally attack paral-

lelization of loops. Parallelizing recursive functions can be

very useful for divide and conquer algorithms. REAPAR

[12] is an early work that automatically parallelizes recursive

functions by creating a thread at each recursive call with

pthreads library. It restricts recursive functions to be void

and not to accept pointers to avoid aliasing problems. A

more general approach with less restrictions on function

definitions is offered in [13]. Rugina and Rinard [14] present

a special compiler designed to parallelize divide and conquer

algorithms whose subproblems access disjoint regions of

dynamically allocated arrays. Although not fully supported,

they have some recursion support and dynamic pointer

optimizations. In [15], authors discuss parallelizing recursive

functions automatically. They apply a quantifier-elimination-

based derivation of operators to shrink function closures.

Using such an operator, they split the input structure and

perform computation parallelly. Our approach is different

from these studies since we target OpenMP platforms and

insert OpenMP pragmas automatically. In addition, our ap-

proach uses novel heuristics to identify recursive regions and

selectively insert OpenMP pragmas.

III. RESTRICTIONS AND LIMITATIONS

In order to avoid potential problems Autopar requires

input programs to obey following properties:
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Figure 2:

Algorithm 1: Automatic parallelization of recursive calls.

AUTOPAR(Source)

1: defs ← IDENTIFY-FUNCTION-DEFINITIONS(Source)

2: calls ← IDENTIFY-FUNCTION-CALLS(Source, defs)

3: recs ← IDENTIFY-RECURSIVE-CALLS(defs, calls)

4: anls ← ANALYZE-RECURSIVE-CALLS(recs, calls)

5: Source ← INTRODUCE-OPENMP(Source, recs, anls)

6: return Source

end

• Program has to be written in ANSI C containing all

recursive procedures and any code calling them in a

monolithic structure.

• Recursive procedures having data dependencies among

recursive calls are not parallelized. Dependencies in-

herently block parallelism if latter recursive calls need

to wait for former calls to finish.

• Recursive procedures that are going to be parallelized

should have a void return type. Similar to previous

point, when a dependence on return type exists sub-

sequent recursive calls cannot be executed in parallel.

In addition to programming requirements, there are arbi-

trary requirements on the format of the given source code.

These requirements exist to simplify the implementation of

Autopar. However, they do not impose any restrictions on

the expressiveness of the supplied program.

IV. PROPOSED METHOD

Autopar transforms ANSI C programs to ANSI C pro-

grams containing OpenMP pragmas through GCC compiler

framework and POSIX regular expressions along with some

heuristics to identify function definitions, function calls and

recursive calls. Figure 1 shows the general overview of

Autopar workflow.

Algorithm 2 defines the high-level tasks Autopar ac-

complishes. Autopar, first identifies function definitions and

function calls. Using these information, it determines which

of the identified calls are recursive. After recursive calls

are recognized, analysis takes place and gathers information

about recursive calls. Finally, OpenMP pragmas are inserted

to source code to parallelize recursive function calls.

Algorithm 3 outlines the function definition identification

procedure. For each line in source code, comment lines,

pragmas and directives are skipped. When the regular ex-

pression matches a function definition, it checks the value

of the block level. Encountered line is a function definition

if current block level is 0. Otherwise, regular expression

might have matched for another piece of code that looks

like a definition. defs is an array of function definitions.

Each function definition is expressed by its type, name,

parameters, first and last line of the definition. SAVE()

Figure 3:

Algorithm 2: Identification of function definitions.

IDENTIFY-FUNCTION-DEFINITIONS(Source)

1: defs ← ∅
2: n ← blockLevel ← 0

3: lineNo ← 1

4: for all line ∈ Source do

5: if !(line∼ (comment or pragma or directive)) then

6: if line ∼ definition then

7: if blocklevel = 0 then

8: firstLine ← lineNo

9: SAVE(defs[n], type, name, parameters,

firstLine)

10: end if

11: blocklevel ← blocklevel + 1

12: else if line ∼ ‘}’ then

13: blocklevel ← blocklevel - 1

14: if blocklevel= 0 then

15: lastLine ← lineNo

16: SAVE(defs[n++], lastLine)

17: end if

18: end if

19: end if

20: lineNo ← lineNo + 1

21: end for

22: return defs

end

function saves the given information to its first argument,

which is a function definition in defs array for this case.

Algorithm 4 describes identification of function calls

within the source code. If the line read matches the regular

expression of function calls and it is a call to a function

we have previously identified, the function call is saved into

calls. The function calls that are checked whether they are

defined in the source code or not, because otherwise there is

no way to distinguish between external or library function

calls, and calls to the defined functions in the source code.

Algorithm 5 demonstrates the steps to find recursive calls.

It takes the function definition and function call arrays as

arguments. For each function call, first it is made sure that

function call’s definition is in the definitions array.

Algorithm 6 analyzes the recursive calls identified in

previous steps. It accepts recursive function calls and func-

tion definitions, and gathers information about recursive

functions to be used during parallelization. At the end of this

step, the number of recursive calls for each recursive func-

tion, the size of recursive function in terms of statements, the

number of statements made before recursive function calls,

the number of read and write for the arguments of recur-

sive calls within its definition, and the condition indicating

whether given recursive function can be parallelizable are
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Figure 4:

Algorithm 3: Identification of function calls.

IDENTIFY-FUNCTION-CALLS(Source, defs)

1: calls ← ∅
2: n ← 0

3: lineNo ← 1

4: for all line ∈ Source do

5: if line ∼ call then

6: if call ∈ defs then

7: procedureID ← GETID(name)

8: SAVE(calls[n++], procedureID, lineNo)

9: end if

10: end if

11: lineNo ← lineNo + 1

12: end for

13: return calls

end

Figure 5:

Algorithm 4: Identification of recursive calls.

IDENTIFY-RECURSIVE-CALLS(defs, calls)

1: rCalls ← ∅
2: n ← 0
3: for all call ∈ calls do

4: funcDef ← SEARCH(defs, call)

5: if funcDef �= nil then

6: if funcDef.start < call.line < funcDef.end

then

7: procedureID ← funcDef.id

8: callID ← call.id

9: SAVE(rCalls[n++], procedureID, callID)

10: end if

11: end if

12: end for

13: return rCalls

end

saved into anls.

The parallelization of recursive calls using OpenMP prag-

mas is done via Algorithm 7. Set of recursive calls are encap-

sulated within an omp sections pragma and each recursive

call is defined as an omp section that can be executed in

parallel with other sections.

V. EXPERIMENTAL ANALYSIS

A. Setup

In this section, we examine results for four different

benchmarks. These benchmarks are bitonic, fractal, heat

and knapsack. All these benchmarks are recursive imple-

mentations of scientific functions. Bitonic benchmark is an

Figure 6:

Algorithm 5: Analysis of recursive calls.

ANALYZE-RECURSIVE-CALLS(recs, calls)

1: anls ← ∅
2: nfuns ← ncalls ← 0
3: INITIALIZE-ANALYSIS-LIST(recs, anls)

4: for all rec ∈ recs do

5: ANALYZE-CODE-SIZE(rec, anls)

6: ANALYZE-PARAMETERS(rec, anls)

7: ANALYZE-PARALLEL-CONDITION(rec, anls)

8: end for

9: return anls

end

Figure 7:

Algorithm 6: Introducing OpenMP pragmas.

INTRODUCE-OPENMP(Source, recs, anls)

1: open ← FALSE

2: recno ← 0

3: PUT(“#include <omp.h>”)

4: for all line ∈ Source do

5: if line ∼ recs.calls[recno] then

6: analysisid ← recs[recno].analysisid

7: parallel ← anls[analysisid].parallel

8: if !open then

9: open ← TRUE

10: PUT(“#pragma omp parallel sections {”)

11: end if

12: if parallel then

13: PUT(“#pragma omp section”)

14: end if

15: PUT(line)

16: if recs.calls[recno+1] = nil and parallel then

17: PUT(“}”)

18: open ← FALSE

19: end if

20: recno ← recno + 1

21: else

22: PUT(line)

23: end if

24: end for

25: return Source

end

implementation of bitonic sort, whereas fractal computes

different kinds of fractals. On the other hand, heat bench-

mark simulates heat diffusion according to thermodynamical

equations. Finally, knapsack is a recursive implementation of

0-1 knapsack problem. All the benchmarks are implemented

in ANSI C. The restrictions and limitations mentioned in

Section III are applied to the benchmarks before experi-

ments. Table I lists the properties of benchmarks collected by
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Table I: Benchmark Properties

benchmark recursive recursive statements before recursive function parameters parameters
functions calls recursive calls size read written

bitonic 2 4 9/37 15/42 4 1

fractal 1 4 19 23 4 0

heat 1 2 1 17 7 1

knapsack 1 2 9 15 4 1

our analysis module. After realization of recursive functions,

Autopar analyzes each function and gathers different kinds

of information. These results are used in making decisions

in heuristics by applying cost/benefit analysis.

Experiments are carried out on a 12 core Intel Xeon

server, where we parallelized the benchmarks using Autopar.

Results shown are averaged over ten runs using two threads

in the baseline implementation. Our initial results indicate

that we can automatically generate parallel implementations

of recursive applications with reasonably well performances.

B. Results

Figure 8 shows normalized execution times of parallel im-

plementations over the sequential recursive implementation

for various input sizes. For each benchmark, performance

of the parallel implementation is depicted according to the

normalized data size with respect to the base data size.

Based on these results, one can observe that some of

the benchmarks are more suitable for parallelizing, while

some others are not. As can be seen from Figure 8, parallel

implementation of heat using Autopar is slower than its

sequential version. While the sequential implementation

scales up nicely with the increasing input size, the execution

of parallel implementation takes longer. The analysis of heat

benchmark shows that it has only one recursive function

with two calls. These calls are the very first statements in the

application, where seven arguments are read and one of them

is written. Read and write access to the same variables is the

main reason for such degradations due to synchronization.

In fact, parallel implementation did not gain much from few

number of sections executed in parallel as well.

Similar to heat, knapsack benchmark also performs poor.

As can be seen in Figure 8, similar to heat benchmark,

increasing the input size does not result in any performance

gain compared to sequential implementation. Rather, parallel

implementation exhibits a performance loss due to the

overheads introduced by OpenMP. While this benchmark

has only two recursive calls with four parameters, they cause

accesses to shared variables which limit the parallelization.

On the other hand, considering the other two benchmarks,

bitonic and fractal perform much better. Fractal benchmark’s

parallel implementation performs close to the sequential one

when scaling is considered. For most of the input sizes,

parallel implementation takes less time compared to the

sequential baseline. Compared to both heat and kanpsack,

the main difference in fractal is the number of recursive

calls. That is, fractal has far more number of recursive calls

compared to the other two. In addition, there is no parameter

written within the recursive function calls which eliminates

the potential shared variable conflicts.

Similarly, bitonic shows performance improvements since

the parallel implementation performs well for different input

sizes. When this benchmark is considered, there are two dif-

ferent recursive functions with few number of parameters to

be read and written, thereby eliminating the synchronization

requirements and improving the performance.

Overall, the number of recursive calls affects the perfor-

mance significantly. For example, when bitonic and knap-

sack benchmarks are compared, their behavior is much

different due to the fact that the number of recursive function

calls they include widely vary. Therefore, based on our pre-

liminary results, we conclude that this parallelization scheme

may improve the performance of recursive applications with

higher number of recursive calls.

In the next set of experiments, we measure the sensitivity

to different number of threads. As mentioned before, we

use two threads in our baseline implementation. However,

the system can potentially have higher number of threads

with the emerging manycore architectures. Figure 9 shows

the normalized execution times with respect to the baseline

implementations of the same application with two threads.

As can be seen from this figure, although not optimal,

bitonic and fractal scale well with higher number of threads.

On the other hand, knapsack does not scale well, whereas

heat is even worse. These results are expected due to the

aforementioned limitations of these benchmarks.

C. Discussion

While our approach uses OpenMP sections for nested

parallelism, we are planning to extend this framework to

use more flexible OpenMP features. Specifically, we aim to

implement our approach using OpenMP 3.0 tasks as well.

This is especially important since nested parallel regions are

well known not to be easy to use.

VI. CONCLUSION

In this paper, we propose an automatic parallelization

technique for recursive function calls. We first analyze a

given source code, extract function definitions, function

calls, and identify recursive calls. We then, parallelize re-

cursive calls by introducing OpenMP pragmas. Consecutive

recursive calls are enclosed inside an OpenMP sections
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Figure 8: Execution times of parallel implementations over the sequential recursive implementation for various input sizes.
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Figure 9: Sensitivity to number of threads. Results are normalized with respect to the baseline implementations of the same

application with two threads.
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pragma, while individual calls are annotated with parallel

section pragma. Our initial experimental results show that

our approach can automatically generate parallel code for

recursive functions. However, parallel performance mostly

depends on the nature of the recursion. Specifically, perfor-

mance is dependent on the number of recursive functions

parallelized, the number of recursive calls, and memory

accesses of these recursive functions. While OpenMP in-

troduces overheads due to initialization, data copies, and

synchronization, these can be offset by parallel execution.
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