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a b s t r a c t

Given an undirected network with positive edge costs and a natural number p, the hop-constrained

minimum spanning tree problem (HMST) is the problem of finding a spanning tree with minimum total

cost such that each path starting from a specified root node has no more than p hops (edges). In this

paper, the new models based on the Miller–Tucker–Zemlin (MTZ) subtour elimination constraints are

developed and computational results together with comparisons against MTZ-based, flow-based, and

hop-indexed formulations are reported. The first model is obtained by adapting the MTZ-based

Asymmetric Traveling Salesman Problem formulation of Sherali and Driscoll [18] and the other two

models are obtained by combining topology-enforcing and MTZ-related constraints offered by Akgün

and Tansel (submitted for publication) [20] for HMST with the first model appropriately. Computational

studies show that the best LP bounds of the MTZ-based models in the literature are improved by the

proposed models. The best solution times of the MTZ-based models are not improved for optimally

solved instances. However, the results for the harder, large-size instances imply that the proposed

models are likely to produce better solution times. The proposed models do not dominate the flow-

based and hop-indexed formulations with respect to LP bounds. However, good feasible solutions can

be obtained in a reasonable amount of time for problems for which even the LP relaxations of the flow-

based and hop-indexed formulations can be solved in about 2 days.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Minimum spanning tree problems arise quite naturally in
transportation and communication network design when it is
necessary to provide a minimum-cost connectivity among a
number of geographically dispersed locations or system compo-
nents. Various examples of minimum cost tree networks are given
by Ahuja et al. [1]. We consider in this paper a topology
constrained version of the minimum spanning tree problem in
which a minimum cost spanning tree is sought for while requiring
that each path from a specified root node to every other node is
required to have at most a fixed number of hops (edges).

Hop requirements may arise in the design of centralized
communication networks where a number of sites (computers/
terminals or switching sites) need to be connected to a central
unit that is linked to a backbone network. In such a network, the
central unit acts as the root node. A hop constraint is imposed to
ensure a certain level of service quality between the root node and
all other nodes. For example, a delay constraint may be thought of
as a hop constraint because the total delay is dependent on the
ll rights reserved.
number of intermediate nodes on the path from the root to
another node. A reliability constraint, i.e., the probability that the
service will not be terminated by the failure of an intermediate
node/link, may also be represented as a hop constraint because
the reliability of a network increases as the number of hops
decreases in general. Woolston and Albin [2] show that the
spanning-tree designs with hop limits perform better than the
ones without hop limits with respect to the reliability measure.
LeBlanc et al. [3], Balakrishnan and Altinkemer [4], and Gouveia
et al. [5] discuss applications of hop constraints in more general
network design problems. Dahl [6] also defines applications in
transportation, statistics, and plant location for the case with
p¼2.

To define the problem of interest, let G¼(V,E) be an undirected
connected network with node set V¼{r,1,y,n}, edge set E, and
positive edge costs ce (eAE). A spanning tree of G is a connected
sub-graph of G that has no cycles and spans all nodes. Given a
natural number p, a spanning tree is a hop-constrained spanning

tree if the unique path from a specified root node r to any other
node i has no more than p hops (edges). From now on, we refer to
hop-constrained spanning trees as feasible trees. If pZn, all
spanning trees are feasible trees and hop constraints can be
ignored. If p¼1, finding a feasible tree is trivial. The distinction
between feasible and infeasible trees becomes important for
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2rprn�1 and hence this is assumed in the rest of the paper.
We refer to the problem of finding a minimum cost spanning tree
of G as the minimum spanning tree (MST) problem and that of
finding a minimum cost feasible tree as the hop-constrained

minimum spanning tree (HMST) problem.
While MST is solvable in low order polynomial time by the

algorithms of Kruskal [7] and Prim [8], HMST is NP-Hard because
HMST is equivalent to the Uncapacitated Facility Location
Problem for p¼2, e.g., Gouveia [9] and Dahl [6]. Manyem and
Stallmann [10] show HMST is not in APX, i.e., the class of
problems for which it is possible to have polynomial time
heuristics with a guaranteed approximation bound. Dahl [6]
studies HMST with p¼2 and compares the polyhedra of directed
and undirected models. Alfandari and Paschos [11] show that this
version of the problem cannot be approximated by polynomial
time approximation schemes unless P¼NP.

There are a number of exact and heuristic methods developed
for HMST in the literature. In this study, the focus is on the
formulation of HMST based on Miller–Tucker–Zemlin (MTZ)
subtour elimination constraints [12].

Among different subtour elimination constraints, e.g., packing,
cut-sets, and flows [13], constraints developed by Dantzig et al.
[14] are known to give the best representation of ATSP polytope
but at the expense of an exponential number of constraints. MTZ
constraints are attractive due to their compactness. However,
they are well-known for producing weak linear programming (LP)
relaxation bounds. Orman and Williams [15] compare the
strengths of eight different formulations of the asymmetric
traveling salesman problem (ATSP) including the ones with MTZ
constraints and flow constraints by their LP relaxation bounds.
They find out that the LP relaxation polytope obtained by MTZ
constraints contains some of the seven existing formulations. This
fact has led to various studies that augment the MTZ constraints
to strengthen the LP bounds, e.g., Desrochers and Laporte [16],
Gouveia and Pires [17], and Sherali and Driscoll [18]. Desrochers
and Laporte [16] lift the MTZ constraints into facets of the
underlying ATSP polytope. Gouveia and Pires [17] develop a
compact formulation based on a disaggregation of MTZ con-
straints whose LP relaxation is characterized by a set of circuit
inequalities given by Grötschel and Padberg [19]. These circuit
inequalities are then lifted into several different facet-defining
inequalities. Sherali and Driscoll [18] apply the reformulation-
linearization technique (RLT) to a nonstandard restatement of
ATSP-MTZ including nonlinear product terms and obtain a new
formulation. The resulting formulation ATSP-SD is compact and
dominates the formulation of Desrochers and Laporte [16] both
theoretically and computationally.

Although most studies about MTZ constraints focus on the TSP
or TSP-related problems, the formulations or liftings in those
studies can be adapted to other problems where subtours are not
allowed. HMST is one of those problems. Gouveia [9] discusses
HMST and presents several formulations based on MTZ con-
straints. Liftings to MTZ constraints, some of which are based on
the liftings of Desrochers and Laporte [16], and lower bounding
schemes based on the Lagrangean relaxation combined with
subgradient optimization are offered. Computational results
indicate that the lower bounds obtained by the LP relaxations of
the models and the Lagrangean relaxation schemes are weak
implying that new formulations with tighter LP bounds are
needed.

Akgün and Tansel [20] propose new MTZ-based formulations
for HMST. The formulations are based on a new set of topology-
enforcing constraints, a new set of MTZ-related constraints, and
the liftings to MTZ constraints offered by Gouveia [9]. Computa-
tional results indicate that the proposed formulations give better
LP relaxation bounds and solution times than their corresponding
ones in Gouveia [9] and that the new set of topology-enforcing
and MTZ-related constraints is competitive with liftings to MTZ
constraints in Gouveia [9], some of which are based on liftings of
Desrochers and Laporte [16].

In this research, new MTZ-based models for HMST are
presented. The new models are different from the previous ones
because they use the ATSP model of Sherali and Driscoll [18] as
the basis to formulate HMST. The first model is obtained by
adapting ATSP model of Sherali and Driscoll [18]. The other two
models are obtained by incorporating the topology-enforcing and
MTZ-related constraints offered by Akgün and Tansel [20] for
HMST into the first model appropriately. Computational studies
show that the LP bounds of the previous MTZ-based models are
improved while the best solution times are not for optimally
solved problems. However, the results imply that the proposed
models are likely to produce better solution times for the harder,
large-size instances. The proposed models do not dominate the
flow-based and hop-indexed formulations with respect to LP
bounds. On the other hand, good feasible solutions can be
obtained in seconds for problems for which even the LP
relaxations of the flow-based and hop-indexed formulations can
be solved in about 2 days.

Other than the MTZ-based studies, there is a body of literature
on flow-based and hop-indexed formulations for HMST, e.g.,
Gouveia [21,22], Gouveia and Requejo [23], Balakrishnan and
Altinkemer [4], Pirkul and Soni [24], and Gouveia et al. [5]. Even
though the LP bounds are improved significantly over MTZ-based
models in these studies, the formulations lead to very large LP
models that may require huge computer storage requirements
and excessive CPU times for high values of p and for intermediate
or larger size networks. Dahl et al. [25] offer a formulation using
only natural design variables and an exponential number of
constraints composed of the so-called jump inequalities shown to
be facet-defining. The proposed formulation uses fewer variables
but has weaker LP bounds than the ones based on flow-based
models. Lagrangean-based bounding schemes are also offered in
the aforementioned studies. Dahl et al. [26] summarize the
previous studies. Kerivin and Mahjoub [27] give a survey of
several network design problems with hop constraints and
methods to solve them. Gouveia et al. [28] propose a modeling
approach where the whole problem is viewed as defined in a
single layered graph and modeled by using an exponential
number of constraints. They show that the HMST is equivalent
to a Steiner tree problem [29,30] in an adequate layered graph.
The proposed approach gives significantly better results than the
previously known methods.

Other problems related to HMST are the Rooted Distance-
Constrained MST Problem [31] and the Diameter-Constrained
MST Problem, e.g., Gouveia et al. [28], Achuthan et al. [32],
Gouveia and Magnanti [33], Gruber and Raidl [34], and Santos
et al. [35].

The remainder of the paper is organized as follows. Section 2
gives ATSP formulation of Sherali and Driscoll [18], Section 3
develops a formulation for HMST by adapting the formulation in
Section 2, Section 4 offers two new improved models, Section 5
gives computational studies, and Section 6 concludes the paper.
2. ATSP formulation of Sherali and Driscoll [18]

The ATSP (e.g., [36–38]) is defined on a directed graph G¼(V, A)
where V¼{1,y,n} is the vertex set and A¼ fði,jÞ : i, jAV , ia jg is
the arc set. A cost of cij is associated with each arc (i,j) with cijacji

in general. The ATSP is then the problem of identifying a tour
starting and ending at a base (root) node rAV and visiting each
node once such that the total cost is minimized.
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In this section, two formulations are given for ATSP, one is
ATSP-MTZ based on basic MTZ constraints [12] and the other is
ATSP-SD based on SD constraints [18].

Model ATSP-MTZ: ATSP formulation based on basic MTZ constraints

z� ¼min
x,u

X

ði,jÞAA

cijxij ð1Þ

s:t:
X

ja i

xij ¼ 1, iAV ð2Þ

X

ia j

xij ¼ 1, jAV ð3Þ

ui�ujþðn�1Þxijrn�2 ði,jÞAA,i,jar ð4Þ

ui � 0, i¼ r ð5Þ

uiZ1, iar ð6Þ

uirn�1, iar ð7Þ

uiZ0 8i ð8Þ

xijAf0,1g ði,jÞAA ð9Þ

Two sets of decision variables are used in ATSP-MTZ: (1)
binary variables xij that take on the value of 1 if arc (i,j) is in the
design, i.e., arc (i,j) is a part of the optimal tour, and 0 otherwise
and (2) non-negative node-labeling variables ui.

Objective function (1) minimizes the total cost of the tour.
Constraints (2) and (3) are the standard assignment constraints.
Constraints (4) through (7) are MTZ constraints. They eliminate all
subtours that do not contain the root node r by assigning unique

labels ui to nodes such that the label of a node represents the
rank-order in which the node is visited in a traveling salesman
tour. That is, base node r is assigned a label of 0 while the ith node
visited after node r is assigned a label of i. Constraints (4) require
that ujZui+1 whenever xij¼1 given that jar. However, because
uirn�1 by constraints (7) and there are n nodes, uj¼ui+1.
Constraint (5) assigns a label value of zero to node r. Constraints
(6) and (7) define lower and upper bounds on the label values of
non-root nodes, respectively. Constraints (8) and (9) give the
appropriate set restrictions and non-negativity on the decision
variables.

Sherali and Driscoll [18] reformulate ATSP-MTZ by using
nonlinear product terms and then apply a specialized version of
RLT to that formulation to obtain ATSP-SD. The applied procedure
is given next following the lines of Sherali and Driscoll [18].

Model ATSP-MTZ1: Nonlinear formulation of ATSP-MTZ

In addition to (1)–(2) and (5)–(9),

ujxij ¼ ðuiþ1Þxij, i, jar, ia j ð10Þ

ujxrj ¼ xrj, jar ð11Þ

ujxjr ¼ ðn�1Þxjr , jar ð12Þ

Constraints (5)–(7) and (10)–(12) are subtour elimination
constraints. For jar, uj¼1 if xrj¼1, and uj¼n�1 if xjr¼1. For i,
jar, ia j, uj¼ui+1 if xij¼1. These conditions together with (1), (2)
and (9) eliminate any subtours that do not contain the root node
(base city).

Reformulation phase: Additional sets of constraints are con-
structed via steps R1 through R4.

R1: Using constraints (2) and (3), construct valid inequalities
ui½
P

ja ixij�1� ¼ 0 for iar and uj½
P

ia jxij�1� ¼ 0 for jar.
R2: For each jar, multiply (uj�1)Z0 by (i) xjiZ0 for iar, ia j

and by (ii) (1�xij�xji)Z0 for iar, ia j. These multiplications
yield valid inequalities of type (i) (uj�1)xjiZ0 for i, jar, ia j and
(ii) (uj�1)(1�xij�xji)Z0 for i, jar, ia j. Because {xij+xjir1,
xijZ0, xjiZ0} implies the set of constraints {0rxijr1, 0rxjir1},
the use of (1�xij�xji) generates potentially tighter relaxations
than that obtained using (1�xij) and (1�xji).

R3: Similar to (R2), using (7), construct the valid inequalities (i)
(n�1�uj)xijZ0 for i, jar, ia j and (ii) (n�1�uj)(1�xij�xji)
Z0 for i, jar, ia j.

R4: For jar, construct the base city product constraints
(uj�2)(1�xrj�xjr)Z0 and (n�2�uj)(1�xrj�xjr)Z0. When xrj¼1
or xjr¼1, these constraints are trivially valid. When xrj¼0 and
xjr¼0, 2rujr(n�2) and hence these constraints are valid.

Linearization phase: Linearize ATSP-MTZ1 and the constraints
generated R1 through R4 by using the substitution yij¼uixij and
zij¼ujxij for i, jar, ia j and as in (11) and (12), by replacing ujxrj by
xrj and ujxjr by (n�1)xjr for jar. zij can be eliminated through the
relationship zij¼yij+xij, i, jar, ia j. The resulting formulation is
ATSP-SD.
Model ATSP-SD: ATSP Formulation of Sherali and Driscoll [18]

In addition to (1)–(3) and (8)–(9)
X

ði,jÞAA,ja r

yijþðn�1Þxi,r ¼ ui, iar ð13Þ

X

ði,jÞAA, ia r

yijþ1¼ uj, jar ð14Þ

xijryij ði,jÞAA,i,jar ð15Þ

yijrðn�2Þxij ði,jÞAA,i,jar ð16Þ

ujþðn�2Þxij�ðn�1Þð1�xjiÞryijþyji ði,jÞAA,i,jar ð17Þ

yijþyjiruj�ð1�xjiÞ ði,jÞAA,i,jar ð18Þ

1þð1�xrjÞþðn�3Þxjr ruj, jar ð19Þ

ujrðn�1Þ�ðn�3Þxrj�ð1�xjrÞ, jar ð20Þ

yijZ0 ði,jÞAA ð21Þ

In ATSP-SD, in addition to the variables xij and ui, the variable
yij that represents the rank-order of the arc (i,j) in the tour is used.
The rank-order of the first arc in the tour, i.e., the arc originating
at r, is zero while the rank-order of the last arc in the tour, i.e., the
arc entering node r, is n�2. Each arc is assigned a unique value
such that yij¼ui or yij¼uj�1 given that xij¼1. So, constraints can
be interpreted accordingly by assigning appropriate values to
variables xij. In this sense, constraints (13) and (14) are valid
because there can be only one arc incoming to (outgoing from) a
node. Constraints (15) and (16) are constraints coupling variables
xij and yij and describing appropriate lower and upper bounds on
yij. For constraints (17) and (18), when xij¼1 (and hence xji¼0),
yij+yji¼(uj�1). Because yji¼0 and yij¼ui as implied by constraints
(16) and (13), respectively, ui¼uj�1. In other words, constraints
(17) and (18) require that the difference between ui and uj be
exactly 1 when edge {i,j} is in the solution. Constraints (19) and
(20) require that uj¼1 when xrj¼1 and xjr¼0 and that uj¼n�1
when xjr¼1 and xrj¼0. Constraints (21) are non-negativity
constraints for yij.
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3. Adaptation of ATSP-SD formulation to HMST

HMST is formulated on a directed network G0 ¼ ðV ,AÞ obtained
from G¼(V,E) by replacing each undirected edge {i,j}AE by two
directed arcs (i,j) and (j,i) with symmetric costs cij¼cji. A feasible
solution to HMST is an arborescence (e.g., [1]), i.e., a directed tree
such that every node other than the root node has exactly one
incoming arc while the root node has no incoming arc.

In this section, two models are developed for HMST. The first
one is the basic model HMST-MTZ. It is basic in the sense that it is
based on the original MTZ constraints [12] and that no liftings or
extensions to MTZ constraints are used. For extensions and
improvements to HMST-MTZ, the reader may refer to Gouveia [9]
and Akgün and Tansel [20]. The second model is HMST-SD
obtained by adapting SD constraints [18] to formulate HMST.

Model HMST/MTZ: HMST formulation based on basic MTZ constraints

In addition to (1), (5)–(6), and (8)–(9),
X

i

xij ¼ 1, jAðV�rÞ ð22Þ

ui�ujþnxijrn�1 ði,jÞAA, jar ð23Þ

uirp, iA ðV�rÞ ð24Þ

In the context of HMST, constraints (23) prevent subtours by
assigning labels in such a way that each directed arc included in
the arborescence is directed from a node with a lower label into a
node with a higher label. This ensures that the node labels form an
increasing sequence on any directed path so that any node
previously visited on a directed path cannot be re-visited, thereby
preventing formation of subtours. The uniqueness of node labels is
not required. This actually allows feasible solutions with different
labeling structures. Specifically, in the assignment of labels to
nodes, there are three possible cases for an edge {i,j}: either xij¼1,
or xji¼1, or both xij¼0 and xji¼0. If xij¼1, then ujZui+1. Similarly,
if xji¼1, then uiZuj+1. If both xij¼0 and xji¼0, then ui�ujrn�1
and uj�uirn�1. The upper bounds on the labels defined by
constraints (24) eliminate the paths with more than p arcs
satisfying the hop requirement. This can also be achieved by
changing the constraints (23) as ui�uj+pxijrp�1 [9], which is
based on the fact that the upper bound on the value of ui is not
n�1 but p in HMST. When this set of constraints is used instead of
(23), the resulting model is stronger than HMST-MTZ [9].

Constraints (22) require that the number of incoming arcs to
any non-root node be equal to 1. Unlike constraints (3),
constraints (22) are not defined for i¼r because no arc is allowed
to enter node r. Constraints (22) together with (23) establish that
the resulting tree is directed from the root.

Note that constraints (23) are slightly different from constraints
(4). Constraints (4) are defined for arcs (i,j) with i, jar while
constraints (23) are defined for arcs (i,j) with jar. Accordingly,
because prn�1 is assumed, bounds in constraints (23) are
changed to allow ur�ujrn�1 for jar. Constraints (23) can be
split into two, one set for arcs (r,j) with jar and one set for arcs (i,j)
with i,jar. In this case, constraints (23) and (4) can be used for the
former and latter arc sets, respectively. However, the given form is
preferred to be consistent with the previous studies.

Model HMST/SD: HMST formulation based on SD constraints

In addition to (1), (5), (6), (8), (9), (14), (15), (21), (22), and (24),
X

ði,jÞAA,ja r

yijþpZui, iAV ð25Þ
yijr ðp�1Þxij ði,jÞAA,jar ð26Þ

ujþðp�1Þxij�pð1�xjiÞryijþyji ði,jÞAA,i,jar ð27Þ

yijþyjiruj�ð1�xjiÞ ði,jÞAA,i,jar ð28Þ

2�xrjruj, jar ð29Þ

ujrp�ðp�1Þxrj, jar ð30Þ

Note that the upper bounds on the values of ui and yij are p and
p�1 in HMST, respectively. Hence, the bounds/coefficients in all
constraints are changed accordingly. In essence, the bounds/
coefficients of n�1 and n�2 are changed to p and p�1,
respectively. Other constraint-specific changes are discussed next.
Constraints (25) replace constraints (13). In a feasible solution to
HMST, there may be no arcs or more than one arc leaving a node i

and hence constraints (13) are not valid. If there is more than one
arc outgoing from a node i, then

P
ði,jÞAA,ja ryijZui holds. If there is

no outgoing arc from i, i.e., i is a leaf node, then
P

ja ryij ¼ 0 and
constraint (13) becomes infeasible because ui40. However, it can
be made feasible by adding the highest possible node label value p

to the left-hand side of the constraint. Constraints (14) are valid
because only one incoming arc to a node is allowed. During
computational studies, these constraints are used inrform
because better solution times are obtained with this form. Of
the coupling constraints (15) and (16), constraints (15) are valid
and hence used as is while constraints (16) are replaced by
constraints (26). Constraints (26) are similar to constraints (16);
however, the upper bound on the variable yij is now p�1 because
the highest possible label value of a non-root node is p.
Constraints (27) and (28) are the same as constraints (17) and
(18) but with coefficients adapted according to the bounds on yij

and ui. Constraints (19) and (20) are not valid for HMST because
an arc of the form (j,r) is not allowed. However, the information
provided for the label value of a node jar depending on whether
it is directly connected to r or not can be extracted and
incorporated as given by constraints (29) and (30). Constraints
(29) and (30) require that the value of uj be equal to 1 if xrj¼1, i.e.,
node j is incident to the root node, and to be greater than 2 if
xrj¼0, i.e., node j is not incident to the root node. These
constraints are actually liftings to constraints (6) and (24) offered
in Gouveia [9]. Note that the formulation is valid without
constraints (5), (6) and (24) as well. However, they are included
in the model to restrict the values of the variables ui. Notice that
the formulation is still valid without making the changes in the
constraints regarding the bounds on the values of ui and yij as long
as constraints (24) are in the formulation.

Computational studies show that HMST-SD is in general better
than the previous MTZ-based models with respect to LP bounds;
however, there are few cases where the LP bounds of HMST-SD
are inferior to those of some previous models. This has led to
seeking for new ways of strengthening HMST-SD. Because the set
of topological and MTZ-based constraints offered by Akgün and
Tansel [20] have contributed to increase the LP bounds of the
models significantly, it has been decided to incorporate them into
HMST-SD. The following section describes those constraints and
how the formulation is adapted to the new constraints. Computa-
tional studies show that the improved formulations give better LP
bounds than all previous MTZ-based models for HMST.
4. Improved formulations for HMST

Akgün and Tansel [20] offer two sets of constraints for HMST,
one is topological and the other is MTZ-based. The first set
consists of topology-enforcing constraints in the sense that it tries
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to define the topology of a feasible solution to HMST with some
additional features. The second is MTZ-based in the sense that it
allows to select a feasible solution with a certain labeling
structure. In the following, these sets of constraints are defined
briefly and then incorporated into HMST/SD. The reader is
referred to Akgün and Tansel [20] for details of the constraints.

4.1. Topological constraints

HMST-SD is structured around expressing the assignment of
node and arc labels as exactly as possible. However, a feasible
solution to HMST has some structural implications that can be
used to further improve HMST-SD. In a feasible solution to HMST,
a node is implicitly assigned to be either a leaf node or a central
(non-leaf) node. If the degree of a node is 1, then that node is a
leaf. Otherwise, it is a central node. If the root node is a leaf node,
it has one outgoing arc but no entering arcs. Any non-root node
that is a leaf node has one incoming arc but no outgoing arcs. If
the root node is a central node, it has 2 or more outgoing arcs but
no incoming arcs while a non-root node that is a central node has
one incoming arc and at least 1 outgoing arc. This structure allows
the number of inward and outward arcs of a node to be
determined depending on its type or vice versa. Similarly, the
connectivity between two nodes can be specified by their types,
e.g., two leaf nodes cannot be linked in a feasible solution. That
the resulting solution is a tree implies that only a single arc in one
direction is possible. The aforementioned structural/topological
properties allow the following set of constraints, ITEF, to be
developed.

Let wic and wil be a pair of binary variables associated with
node i with wic¼1 (wil¼1) if node i is a central (leaf) node and
wic¼0 (wil¼0) if not.

ITEF: Improved set of topology-enforcing constraints

In addition to constraints (24),

wicþwil ¼ 1, iAV ð31Þ

X

j

xijZ1, i¼ r ð32Þ

X

ja r

xijZ1þwic , i¼ r ð33Þ

X

ja r

xijr ðn�1Þ�ðn�2Þwil, i¼ r ð34Þ

X

j

xjiþ
X

ja r

xijZ1þwic , iAðV�rÞ ð35Þ

X

j

xjiþ
X

ja r

xijr ðn�1Þ�ðn�2Þwil, iAðV�rÞ ð36Þ

X

ja r

xijZ1�wil, iAðV�rÞ ð37Þ

xijrwic ði,jÞAA,i,jar ð38Þ

xijþwilþwjlr2 ði,jÞAA,jar ð39Þ

xij � 0 ði,jÞAA,j¼ r ð40Þ

xijþxjir1 ði,jÞAA,io j ð41Þ

X

ja i

xij ¼ n�1 ð42Þ

wic ,wilAf0,1g, iAV ð43Þ
Note that constraints (31)–(43) address topological require-
ments other than the hop requirement. Therefore, constraints
(31)–(43) are a valid topology-enforcing formulation for HMST
only when combined with a set of constraints that imposes the
hop requirement, e.g., (24) as given.

Constraints (31) require that each node be either a leaf node or
a central node. Constraints (32) through (42) express some
structural properties of a feasible solution. Constraints (32)
through (34) define lower and upper bounds on the number of
outgoing arcs from the root node. Constraint (32) establishes that
the number of outgoing arcs at the root node r is at least 1.
Constraints (33) and (34) require that the number of outgoing arcs
at the root node be equal to 1 when r is a leaf node and be at least
2 and at most n�1 when node r is a central node.

Constraints (35) through (37) set upper and lower limits on the
degree of non-root nodes. Constraints (35) state that the total
number of outward and inward arcs of each non-root node is at
least 2 when a non-root node is a central node and at least 1 when
a non-root node is a leaf node. Constraints (36) restrict the
number of inward and outward arcs of a non-root node to be at
most 1 when the node is a leaf node and at most n�1 when the
node is a central node. Constraints (36) together with constraints
(22) ensure that the number of inward (outward) arcs of a non-
root node is 1 (0) when the node is leaf node and 1 (greater than
1) when the node is a central node. Constraints (37) require that
the number of outward arcs of a non-root node is greater than 1
(0) when the node is a central (leaf) node.

Constraints (38) require that a non-root node be a central node
if there is an outgoing arc from it. Constraints (39) prevent arcs
between pairs of leaf nodes. Constraints (40) do not allow any arcs
incoming to the root node. Constraints (41) state that a pair of
arcs of opposite directions between a pair of nodes is not possible.
Constraints (42) require that the total number of arcs in the
solution be equal to n�1, which is a known fact for a tree (e.g.,
[1]). Finally, constraints (43) give the zero/one restrictions on the
decision variables wic and wil.

Akgün and Tansel [39] use a similar set of constraints as
degree-enforcing constraints in the context of the Minimum-
Degree Constrained MST, where a minimum-cost spanning tree is
sought for while requiring that each node in the tree be either a
leaf node or a central node that is adjacent to at least d nodes. The
results show that the proposed models give significantly better
solution times than the ones in the literature based on single- and
multi-commodity flow models.

4.2. MTZ-based constraints

In a feasible solution of HMST, each node is either a central node or
a leaf node. Because a non-root leaf node has one incoming arc whose
origin is necessarily a central node, then a feasible solution can be
obtained by requiring that the labels of all non-root leaf nodes be
greater than the highest possible label of central nodes. This condition
is easily fulfilled if we assign the label value p to each non-root leaf
node while permitting central nodes to take label values of at most
p�1. In this case, if all nodes other than the root node are leaf nodes,
then the root node receives the node label of 0 and all other nodes
receive node labels of p. If there is a non-root central node, then its
label will be between 1 and p�1. Thus, in finding feasible solutions
for HMST, looking only for solutions in which the label values of non-
root leaf nodes are restricted to p and the label values of central nodes
are restricted to be less than or equal to p�1 is sufficient. This can be
achieved by adding the following constraints:

uiZpwil, iAðV�rÞ ð44Þ

uirp�wic , iA ðV�rÞ ð45Þ
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Constraints (44) together with an appropriate hop constraint
require that the labels of all non-root leaf nodes be equal to p.
Constraints (45) restrict the labels of central nodes to be at most
p�1.

4.3. Improved formulations for HMST

In this section, two improved formulations for HMST are given.
The first formulation is obtained by combining directly HMST-SD
with ITEF without any changes in the constraints. The second
formulation is obtained by combining HMST-SD, ITEF, and
MTZ-based constraints with some changes in the constraints of
HMST-SD.

Model HMST-SD1: The first improvement to HMST-SD

(1), (5), (6), (8), (9), (14), (21), (22), and (24)–(43)

A feasible solution for HMST-SD can be obtained from a
feasible solution of HMST-SD1 by treating the variables wil and wic

as nonexistent and using only the values of the remaining
variables. In this regard, HMST-SD1 is different from HMST-SD
with only additional information provided about whether nodes
are leaf or central. Clearly, the same information can actually be
derived without using the values of the variables wil and wic by
the degree of the nodes. However, additional constraints to
HMST-SD improves the LP bounds such that the LP bounds of
HMST-SD1 are greater than or equal to the LP bounds of all
previous MTZ-based models. However, the next model HMST-SD2
gives better LP bounds than HMST-SD1.

Model HMST-SD2: The second improvement to HMST-SD

In addition to (1), (5)–(6), (8)–(9), (14), (21)–(22), (24)–(27),
(31)–(43), and (44)–(45)

yijruj�ð1�xjiÞ ði,jÞAA,i,jar ð46Þ

ujZ2�xijþðp�2Þwjl, i¼ r,jAðV�rÞ ð47Þ

ujrp�ðp�1Þxijþðp�1Þwjl, i¼ r,jA ðV�rÞ ð48Þ

HMST-SD2 is different from previous models in the sense that
it allows feasible solutions only with a certain node and arc
labeling structure. In this regard, a feasible solution to HMST-SD2
is not necessarily feasible to the previous models discussed in this
paper or vice versa. Specifically, in a feasible solution to HMST-
SD2, uj¼p and yij¼p�1 when xij¼1 for a leaf node j. Clearly, uj¼p

is required by constraints (44) and (24). Given that uj¼p, yij¼p�1
is required by constraints (27) because yijZuj�1 when xij¼1. In a
feasible solution to HMST-SD and HMST-SD1, the values for ui and
yij give the true distance of node i and arc (i,j) from the root,
respectively. On the other hand, for HMST-SD2, they do not
necessarily give the true distance. For example, for pZ2, the node
label of a leaf node directly connected to the root is p even though
its true distance is 1.

Constraints (46) in HMST-SD2 are used instead of constraints
(28) because when constraints (28) are used with constraints (44),
the solution obtained may not necessarily be optimal for the
original problem. Recall that constraints (17) and (18) and hence
constraints (27)–(28) require that the difference between ui

and uj be exactly 1 when edge {i,j} is in the solution (because
uj�1ryijruj�1 and ujryjiruj when xij¼1 and xji¼1, respec-
tively). Thus, when constraints (28) are used with constraints
(44), the following situation occurs. For each leaf node j and for
some i, xij¼1 and hence yij¼p�1 is required because uj¼p.
However, this requires that, for some ka i, xki¼1 and hence
yki¼p�2. This goes in a similar manner until the root node r is
reached. What happens actually when constraints (28) are used
with constraints (44) is that HMST-SD2 produces only solutions in
which there is a path from the root to each leaf node whose length
is exactly p, i.e., the distance between the root and each leaf node
is p. There may be cases where such a solution is desirable. If this
is the case, then HMST-SD2 with constraints (46) replaced by
constraints (28) can be used. On the other hand, if there is no such
a requirement, such a solution may not be optimal for the original
problem as the solutions in which leaf nodes are at different
distances from the root are disregarded. To eliminate such a
possibility, we need to get rid of the requirement that the
difference between ui and uj be exactly 1 when edge i,j is in the
solution. This can be done in several ways. We achieve this by
constraints (46). Note that these constraints only require that
yjirui�1 when xji¼1. Thus, yji does not have to be equal to uj as
required by ujryjiruj that results from constraints (27) and (28)
for xji¼1. Another option to use instead of constraints (46) is to
add p to the right-hand side of constraints (28).

Constraints (47) and (48) replace constraints (29) and (30),
respectively, to adapt to the requirement imposed by constraints
(44). Consider a solution in which the root r is a central node and
leaf node(s) i is directly connected to the root. Constraints (30)
require node i to take on a label value of 1 while constraints (44)
require node i to take on a label value of p. However, this is not
feasible and hence an optimal solution with the aforementioned
property is not possible as such solutions are excluded from the
feasible region. To correct this situation and to be consistent with
constraints (44), constraints (29) and (30) are changed as given by
constraints (47) and (48). Constraints (47) establish that the value
of uj is greater than or equal to 2 if node j is a central node and
xrj¼0 and that the value of uj is greater than or equal to p if node j

is a leaf node and xrj¼0. Constraints (48) require that the value of
uj be equal to 1 if node j is a central node and xrj¼1 and that the
value of uj be less than or equal to p if node j is a leaf node and
xrj¼1. In all other cases, constraints (47) and (48) become
redundant.

4.4. MTZ-based models in the literature used to compare the

proposed models

The proposed models HMST/SD, HMST/SD1, and HMST/SD2 are
compared with two models, I/E8I and Rel-M [20]. I/E8I is the
model that gives the best LP bounds while Rel-M is the model that
gives best solution times among the the previous MTZ-based
models. The aformentioned models are given next.

Model I/E8I

In addition to (1), (5), (6), (8), (22), (31)–(43), (45), (47), and
(48)

ðp�2Þxjiþui�ujþpxijrp�1 ði,jÞAA,jar ð49Þ

X

k ¼ 1,ka i

xkjþðp�3Þxjiþui�ujþpxijrp�1 ði,jÞAA,jar,pZ3 ð50Þ

Constraints (49) and (50) are the liftings to constraints (23)
offered by Gouveia [9]. Constraints (49) require the values of
variables ui and uj to differ exactly by 1 if edge {i,j} is in the
solution, i.e., whenever xij¼1 or xji¼1. Note that xij¼0 whenP

ka i,rxkj ¼ 1 due to constraints (22) and hence node j cannot be
adjacent to node r when this occurs. Thus, the difference between
the values of ui and uj is at most p�2. This result and the fact that
xij+xjir1 can be combined to obtain liftings (50) valid for pZ3.
Notice that because constraints (49) and (50) require ui and uj to
differ exactly by one if edge {i,j} is in the solution, using
constraints (44) with constraints (49) and (50) may cause
infeasibility. Hence, constraints (44) are not used in I/E8I.
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Model Rel-M

In addition to (1), (5), (6), (8), (22), (23), (24), (31)–(34), (36),
(38)–(43), (44), (45), and (47)

X

ja r

xijZwil�1, iAðV�rÞ ð51Þ

Rel-M does not include constraints (35) and (37). The
exclusion of constraints from Rel-M permits the variables wic

and wil to take on values of 1 and 0, respectively, when a non-
root node i is in fact a leaf node. Even though this does not
agree with the intended meaning attached to these variables,
such solutions define feasible trees. A more liberal interpreta-
tion of the auxiliary variables wic and wil in Rel-M is taken.
They are interpreted as node labels that generally distinguish
central nodes from leaf nodes but sometimes with incorrect
values.

Note that the left sides of constraints (37) and (51) are the
same and specify the total number of outgoing arcs at a non-root
node while the right sides of (37) and (51) are the negatives of
each other (1�wil and wil�1). Accordingly, constraints (51) may
be considered as a replacement for (37). However, the use of (51)
in place of (37) in the proposed models is not recommended as its
use in these models generally worsens the solution times while its
use in Rel-M improves the solution times.
Table 1
LP relaxation bounds for the models.

Pr. Id. Pr. type p HMST/MTZ I/E8I HMST/SD HMST/SD1 HMST/SD2

1 TC 20 3 294.67 307.00 319.69 319.69 320.95

2 4 290.00 303.71 304.89 304.89 306.00

3 5 289.20 302.75 303.00 303.00 303.00

4 TE 20 3 258.67 303.67 328.77 336.87 339.93

5 4 248.00 301.80 302.45 314.88 314.93

6 5 246.00 301.00 295.05 310.57 310.57

7 TR 20 3 128.67 140.70 148.00 148.00 151.83

8 4 124.50 138.33 139.67 139.67 139.67

9 5 122.40 137.00 137.00 137.00 137.00

10 TC 40 3 446.00 472.67 518.07 518.07 525.29

11 4 437.00 472.00 483.32 483.32 484.76

12 5 435.20 472.00 476.28 476.28 476.99

13 TE 40 3 458.67 489.86 519.35 520.48 528.89

14 4 456.00 487.83 490.48 494.28 494.55

15 5 455.60 487.02 484.43 490.10 490.10

16 TR 40 3 117.33 129.80 142.53 142.53 144.49

17 4 114.50 127.16 131.14 131.14 131.25

18 5 113.40 126.50 128.29 128.29 128.42

19 TC 60 3 641.33 664.73 713.17 713.17 725.93

20 4 635.00 659.33 671.16 671.16 673.50

21 5 632.80 658.92 663.17 663.17 663.45

22 TE 60 3 896.67 968.80 1036.47 1036.47 1047.41

23 4 873.00 953.92 973.56 973.56 974.21

24 5 866.00 951.04 960.78 960.78 961.47

25 TR 60 3 162.00 181.08 198.19 198.19 201.16

26 4 158.75 173.39 176.94 176.94 177.22

27 5 157.80 172.08 172.79 172.79 172.88
5. Computational tests

Computational studies are performed by using specially
structured test problems from the literature (e.g., [26]). Test
problems consist of three 20-node, three 40-node, three 60-node,
and one 80-node complete networks with 210, 820, 1830, and
3240 edges, respectively. For the first three network sizes, two
Euclidean instances, TC and TE, and one random instance, TR, are
considered. For 80-node network, only TE instances are consid-
ered. Euclidean instances differ from each other based on the
location of the root node. In TC instances, the root is located in
the center of the grid while in TE instances the root is located
on a corner of a grid. For each instance, hop parameter values are
set to 3–5.

The size of each instance is reduced by applying an arc-
elimination test used in the literature (e.g., [21,26]). The test is
based on the fact that if cij4crj, then any optimal solution
does not use arc (i,j) and if cij¼crj (iar), then there is an
optimal solution without arc (i,j). Thus, arc (i,j) can be
eliminated whenever cijZcrj. The number of arcs remaining
after the elimination test in 20-node, 40-node, and 60-node
networks for TC, TE, and TR instances are 38%, 82%, and 52%, 33%,
75%, and 51%, and 31%, 74%, and 58% of the original numbers,
respectively.

Computational tests are performed on a PC with a 3.0 GHz
Intel Core 2 Duo processor and 3 GB of RAM by using ILOG CPLEX
9.0. The models are run until optimality is attained or for 10 h
(36,000 CPU seconds) at maximum and by using default
settings of CPLEX (e.g., moving the best bound strategy for
branching is used, cuts are allowed) except that file storage is set
to 3, which allows tree file to be stored on the hard disk when it
reaches the default limit in order not to run out of memory (ILOG
CPLEX [40]).

In the tables presenting computational studies, LP relaxation
bounds, run times, optimal objective function values, and relative
optimality gaps are given. The relative optimality gap is defined as
jBP�BFj=ð1�10

þjBPjÞ, where BP is the objective function value of
the best integer solution and BF is the best remaining objective
function value of any unexplored node [40].
5.1. LP relaxation bounds

Table 1 gives LP relaxation bounds for HMST/MTZ, I/E8I,
HMST-SD, HMST/SD1, and HMST/SD2. I/E8I gives better LP bounds
than the basic model HMST/MTZ for all 27 instances. The
improvements over the basic model change from 3.6% (Pr.Id. 1)
to 22.4% (Pr.Id. 6) with an average of 9.4%. On the average, the
largest and the smallest improvements are 20.5% and 3.9% for TE
20 and TC 60 instances, respectively. The average improvements
for TC, TE, and TR instances are 5.3%, 12.1%, and 10.6%,
respectively.

The LP bounds of HMST/SD are greater than or equal to the LP
bounds of I/E8I for 25 instances out of 27 except for Pr. Id. 6 and
Pr. Id. 15, both of which are TE instances. For one instance (Pr. Id.
9), the LP bounds of the models are the same. The increases in the
LP bounds for the remaining 24 instances change from 0.08% to
9.8% with an average of 3.53%. For Pr.Id. 6 and 15, the LP bounds of
HMST/SD are 2% and 0.5% less than those of I/E8I, respectively. On
the average, the LP bounds of HMST/SD are 3% better than those of
I/E8I. The highest improvements are obtained for instances with
p¼3. As the value of p decreases, the increase in the LP bounds
decreases. Note that for both Pr. Id. 6 and Pr.Id. 15, p¼5. The
average improvements are 3%, 2.5%, and 3.6% for TC, TE, and TR
instances, respectively.

The LP bounds of HMST/SD1 are greater than or equal to the LP
bounds of both HMST/SD and I/E8I. HMST/SD1 and HMST/SD have
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the same LP bounds for 21 instances out of 27. In the remaining
six instances, all of which are TE instances, the improvements in
the LP bounds change from 0.2% to 5.3% with an average of 2.3%.
On the average, the improvement over all instances is 0.52%. This
result is expected because HMST/SD1 is composed of improved
topology enforcing (ITEF) constraints defined in Akgun and Tansel
[20] and SD constraints while HMST/SD is composed of only SD
constraints. Thus, adding ITEF constraints to HMST/SD strength-
ens the formulation.

HMST/SD1 gives better LP bounds than I/E8I for all instances
except Pr. Id. 9 for which both models have the same LP bounds.
The increases in the LP bounds for 26 instances change from 0.08%
to 10.93% with an average of 3.7%. On the average, the
improvement over all instances is 3.57%. On the average, the
lowest and highest improvements are 1.5% and 6.15% for TC 20
and TE 20 instances, respectively. Average improvements are 3%,
4.08%, and 3.6% for TC, TE, and TR instances, respectively. This
result is also expected because I/E8I is composed of ITEF
constraints and some liftings to MTZ constraints based on
Desrochers and Laporte [16] that are dominated by SD constraints
while HMST/SD1 is composed of ITEF and SD constraints. Note
that even though HMST/SD is not stronger than I/E8I, it is stronger
than models offered by Gouveia [9] which do not include ITEF but
the aforementioned liftings to MTZ constraints.

HMST/SD2 gives the best LP bounds among all MTZ-based
models in the literature and in this paper. HMST/SD2 and HMST/
SD1 have the same LP bounds for five instances out of 27. For the
remaining 22 instances, the improvements in the LP bounds
change from 0.01% to 2.59% with an average of 0.66%. The average
improvement over all instances is 0.53%. The average improve-
ments for TC, TE, and TR instances are 0.53%, 0.42%, and 0.65%,
respectively.

HMST/SD2 gives better LP bounds than HMST/SD for 24
instances while both models have the same LP bounds for three
instances. The increases in the LP bounds for 24 instances change
from 0.04% to 5.3% with an average of 1.19%. The average overall
improvement is 1.05% while the average improvements for TC, TE,
and TR instances are 0.53%, 2%, and 0.65%, respectively. HMST/SD2
gives better LP bounds than I/E8I for all instances except for Pr. Id. 9
for which the LP bounds are the same. For 26 instances, the
improvements in the LP bounds change from 0.08% to 11.94% with
an average of 4.3%. The average overall improvement is 4.14% while
the average improvements for TC, TE, and TR instances are 3.59%,
4.53%, and 4.3%, respectively. HMST/SD2 improves the LP bounds of
HMST/MTZ from 4.8% to 31.41% with an average of 13.91%.

The results in Table 1 indicate that using only the SD
constraints to formulate HMST does not produce a model stronger
than the previous models in the literature. When HMST/SD is
combined with ITEF, a set of constraints proposed by Akgün and
Tansel [20], the resulting model HMST/SD1 gives better LP bounds
than all previous MTZ-based models. However, HMST/SD2
composed of modified SD constraints and ITEF constraints
together with a new set of MTZ-based constraints offered by
Akgün and Tansel [20] is stronger than all models in the literature
and in this paper.
5.2. Solution times

Table 2 gives solution times, best objective function values,
and relative optimality gaps for Rel-M, HMST/SD, and HMST/SD2.
The results for HMST/SD1 are not given because the solution
times for HMST/SD1 are significantly worse than those of HMST/
SD2.

The results show that all TC 20, TE 20, TR 20, TC 40, and TR 40
instances are solved to optimality by all three models. TR 60
instances are solved optimally by Rel-M and HMST/SD2 while
one instance (Pr. Id. 25) cannot be solved by HMST/SD. No
optimal solutions are obtained for other instances in the allotted
time.

For TC 20 and TR 20 instances, the solution times are less than
1 s. For TE 20 instances, the solution times change from 68.13 s
(HMST/SD2) to 2557 s (HMST/SD). The average solution times of
117, 1434, and 490 s are obtained for Rel-M, HMST/SD, and HMST/
SD2, respectively. For TC 40 instances, the solution times change
from 196 s (Rel-M) to 22,887 s (HMST/SD). The average solution
times are 803, 11,734, and 7527 s for Rel-M, HMST/SD, and HMST/
SD2, respectively. For TR 40 instances, the average solution times
are 6.5, 25.5, and 34.4 s for Rel-M, HMST/SD, and HMST/SD2,
respectively. The best and worst solution times are 2.01 s (Rel-M)
and 68.58 s (HMST/SD2). For TR 60 instances, the solution times
change from 45.26 to 17,228 s for the problems solved to
optimality. The average solution times for Rel-M and HMST/SD2
are 1565 and 2079 s, respectively.

For TE 40 instances, the average optimality gaps for Rel-M,
HMST/SD, and HMST/SD2 are 13.11%, 13.96%, and 12.10%,
respectively. The best and worst gaps of 10.58% and 14.96% are
obtained for HMST/SD2 and HMST/SD, respectively. For TC 60
instances, the average optimality gaps for Rel-M, HMST/SD, and
HMST/SD2 are 7.62%, 7.17%, and 6.38%, respectively. The best
and worst gaps of 5.63% and 9.39% are obtained for HMST/SD2
and Rel-M, respectively. For TE 60 instances, the average
optimality gaps are 23.76%, 22.95%, and 22.94%, respectively.
The best and worst gaps of 23.25% and 26.25% are obtained for
HMST/SD2 and Rel-M, respectively. The figures imply that HMST/
SD2 is better than the other models with respect to reaching the
optimality even though the difference is not significant. The lower
bounds reached at the end of the allotted time are also compared
to better assess Rel-M and HMST/SD2. The results show that the
lower bounds of HMST/SD2 are higher than those of Rel-M
implying that HMST/SD2 is likely to have better solution times
than Rel-M for the problems not solved optimally.

The aforementioned results show that TE instances are much
more difficult to solve than the two other sets of instances and
that TC instances are harder to solve than TR instances. The
results also show that Rel-M gives significantly better solution
times than SD-based models offered in this paper with respect to
the models solved to optimality. Even though the LP bounds of
HMST/SD2 are better on the average about 4% than those of Rel-
M, this dominance is not reflected in the solution times for those
problems. On the other hand, the results for TE 40, TC 60, and TE
60 instances imply that HMST/SD2 is likely to give better solution
times than Rel-M as the network size gets larger.
5.3. Comparison of the proposed models to the flow-based and

hop-indexed formulations

HMST/SD2 is compared to the compact flow-based and hop-
indexed formulations of HMST by using the results given for the
same test instances in Dahl et al. [26]. The results show that both
flow-based and hop-indexed formulations give significantly
better LP bounds than HMST/SD2. HMST/SD2 gives the same LP
bound for only one instance (Pr. Id. 9) out of 27 instances.
Specifically, the hop-indexed formulation, which produces better
results than the flow-based formulation, is on the average 17%
better than HMST/SD2 with the highest difference being 44% (Pr.
Id. 22). The flow-based formulation, for which the results for 60-
node instances are not provided in Gouveia [26], is on the average
11% better than HMST/SD2 with the highest difference being 28%
(Pr. Id. 13). In this regard, the LP bounds of the MTZ-based
formulations still need to be improved significantly.



Table 2
Solution times and integrality gaps for the models. ‘‘[ � ]’’ indicates that the model could not be solved in 36,000 CPU seconds and that shows the best solution found and the

integrality gap at termination.

Pr. Id. Pr. type p Rel-M HMST/SD HMST/SD2

[BP-Gap%] Time [BP-Gap%] Time [BP-Gap%] Time

1 TC 20 3 340 0.15 340 0.17 340 0.34

2 4 318 0.11 318 0.08 318 0.11

3 5 312 0.04 312 0.08 312 0.08

4 TE 20 3 449 139 449 425 449 68.13

5 4 385 149 385 1319 385 990

6 5 366 62.6 366 2557 366 413

7 TR 20 3 168 0.06 168 0.02 168 0.03

8 4 146 0.05 146 0.03 146 0.05

9 5 137 0.01 137 0.02 137 0.02

10 TC 40 3 609 196 609 2172 609 2253

11 4 548 721 548 10,142 548 9537

12 5 522 1492 522 22,887 522 10,791

13 TE 40 3 [713-13.18] 36,000 [712-14.96] 36,000 [708-10.58] 36,000

14 4 [627-13.39] 36,000 [627-14.14] 36,000 [627-13.50] 36,000

15 5 [594-12.76] 36,000 [599-12.78] 36,000 [595-12.21] 36,000

16 TR 40 3 176 2.01 176 15.13 176 3.72

17 4 149 11.76 149 38.77 149 31.03

18 5 139 5.86 139 22.70 139 68.58

19 TC 60 3 [866-6.64] 36,000 [866-6.54] 36,000 [866-6.80] 36,000

20 4 [792-9.39] 36,000 [783-8.10] 36,000 [782-6.70] 36,000

21 5 [734-6.84] 36,000 [745-6.87] 36,000 [738-5.63] 36,000

22 TE 60 3 [1569-26.25] 36,000 [1557-24.17] 36,000 [1586-23.25] 36,000

23 4 [1353-23.77] 36,000 [1345-23.51] 36,000 [1347-23.33] 36,000

24 5 [1258-21.25] 36,000 [1267-21.18] 36,000 [1283-22.25] 36,000

25 TR 60 3 274 1233 [274-5.61] 36,000 274 45.26

26 4 207 2895 207 17,228 207 3685

27 5 189 567 189 4345 189 2508

28 TE 80 3 [1935-30.72] 36,000

29 4 [1742-32.55] 36,000

30 5 [1526-25.85] 36,000
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With respect to the solution times, direct comparison is not
possible because the results in Dahl et al. [26] are obtained on a
PC with a 2.4 GHz Pentium IV processor and 768 MB of RAM by
using ILOG CPLEX 7.1. On the other hand, some inferences can be
made from the results. The flow-based formulation cannot find
optimal solutions for TE 40 instances within the running time (not
specified exactly but stated to be more than one day). For the
remaining instances, the solution times of HMST/SD2 are better
on the average about 50 times implying that HMST/SD2 is likely
to produce better solution times. The hop-indexed formulation
can find optimal solutions for all instances except for two TE 60
instances (Pr. Id. 23 and 24). For the remaining problems, the hop-
indexed formulation is significantly superior implying that the
hop-indexed formulation will produce better solution times. On
the other hand, when the figures for TE 60 instances are
considered, some striking observations are made. The results
show that the LP relaxation bounds of the hop-indexed formula-
tion are obtained in 2548, 23,402, and 73,300 s for Pr.Id. 22, 23,
and 24, respectively, whereas (integer) feasible solutions for the
same problems are obtained by HMST/SD2 just in seconds. Dahl
et al. [26] state that, an upper cutoff value of 1354 has been
generated after 7 days and no new upper cutoff value has been
generated after 11 days of computation for Pr. Id. 23. However, for
the same instance, upper cutoff values of 1370, 1355, and 1347
are obtained by HMST/SD2 at 2800, 4900, and 15,500 s, respec-
tively. Further computational tests on TE 80 instances indicate
similar results. Dahl et al. [26] report that the hop-indexed
formulation can obtain LP relaxation bounds in 16,127 and
160,127 s for TE 80 instances with p¼3 and 4 (Pr. Id. 28 and 29
in Table 2). The model is not run and hence no result is reported
for p¼5 (Pr. Id. 30). For the same problems, HMST/SD2 can obtain
feasible solutions just in seconds. Moreoever, good upper cutoff
values are obtained in a reasonable amount of time. For Pr. Id. 28
whose optimal objective function value is 1806, the initial upper
cutoff value of 3430 is improved to 1981 in 600 s. For Pr. Id. 29
whose known best upper cutoff value is 1631, the initial value of
2344 is improved to 1742 at 30,000 s. Similarly, for Pr. Id. 30
whose known best upper cutoff value is 1500, initial value of 1836
is improved to 1536 in 4500 s. Note that these results are obtained
by using the default settings of CPLEX and better results may be



_I. Akgün / Computers & Operations Research 38 (2011) 277–286286
obtained by using different parameter settings that emphasize
finding better upper cutoff values or improving the lower
bounds [40].

The aforementioned results show that the LP bounds of HMST/
SD2 are significantly inferior to those of flow-based and hop-
indexed formulations. However, HMST/SD2 is attractive especially
due to its compactness compared to the flow-based and hop-
indexed formulations as well as other models and ability to find
good feasible solutions in a reasonable amount of time.
6. Conclusion

This paper develops new MTZ-based formulations for HMST.
The first model HMST/SD is obtained by adapting ATSP model of
Sherali and Driscoll [18] to formulate HMST and the other two
models HMST/SD1 and HMST/SD2 are obtained by adding
topology-enforcing and MTZ-related constraints offered by Akgün
and Tansel [20] to the first model appropriately. Computational
studies show that the HMST/SD does not dominate the MTZ-based
model with the best LP bounds in the literature for all cases while
HMST/SD1 and HMST/SD2 do on the average by 3.6% and 4.14%,
respectively. The new models do not produce solution times
better than the best ones obtained by the MTZ-based models in
the literature for the problems solved to optimality by all models.
On the other hand, the results imply that HMST/SD2 is likely to
produce better solution times for the harder, large-size instances.
Comparison of HMST/SD2 to flow-based and hop-indexed for-
mulations indicates that HMST/SD2 is inferior with respect to LP
bounds. However, it is attractive due to its compactness and
ability to find good feasible solutions in a short time within which
even the LP relaxations of flow-based and hop-indexed formula-
tions cannot be solved.
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