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ABSTRACT 
 
The influence of the Rashba spin-orbit coupling on the two-dimensional (2D) electrons and holes in a strong 
perpendicular magnetic field leads to different results of the Landau quantization in different spin projections. In Landau 
gauge the unidimensional wave vector describing the free motion in one in-plane direction is the same for both spin 
projections, whereas the numbers of the Landau quantization levels are different. For electron in s-type conduction band 
they differ by one, as was established earlier by Rashba1, whereas for heavy holes in p-type valence band influenced by 
the 2D symmetry of the layer they differ by three. There are two lowest spin-splitted Landau levels for electrons as well 
as two lowest for holes. They give rise to four lowest energy levels of the 2D magnetoexcitons. It is shown that two of 
them are dipole-active in band-to-band quantum transitions, one is quadrupole-active and the fourth is forbidden. The 
optical orientation under the influence of the circularly polarized light leads to optical alignment of the magnetoexcitons 
with different orbital momentum projections on the direction of the external magnetic field. 
 
Keywords: magnetoexcitons, Rashba spin-orbit splitting, Landau quantization. 
 

1. INTRODUCTION 
 
The influence of the spin-orbit coupling (SOC) on the two-dimensional (2D) Wannier-Mott excitons in double quantum 
well (DQW) structures, as well as the possibilities of the nonconventional electron-hole (e-h) pairing in these conditions 
were discussed in Ref.2, 3. The main results are the breaking of the spin degeneracy of the electrons and holes, the 
changes of the exciton structure, and new properties of the Bose-Einstein condensed excitons. There are two types of 
SOC. One of them described by Dresselhaus4 is known to be intrinsically present in zinc-blende structure. The Rashba 
spin-orbit coupling (RSOC)1, 5 depends on the electric field strength zE  perpendicular to the layer surface. 
 
As was mentioned in Ref.6, 7 the Rashba model can be described by purely group theoretical means. For electron in s-like 
conduction band the total angular momentum with spin-orbit interaction equals to 1 2j = / . Both wave vectors k

r
 and 

electric strength E
r

 are polar vectors, whereas their cross product k E⎡ ⎤×⎣ ⎦
r r

 is an axial vector. Its point product with the 

spin axial vector σr  gives rise to the triple scalar product k E σ⎡ ⎤× ⋅⎣ ⎦
r r r . This expression is an invariant under the action of 

the group symmetry elements forming identity representation 1Γ . In the first quantization representation the wave vector 

k
r

 is substituted by i− ∇
r

. In the 6Γ -type conduction band the triple scalar product is the only term of the first order on 

∇
r

 and E
r

 compatible with the symmetry of the band. 
 
The band structure described by the Hamiltonian with RSOC 
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has the dispersion laws 
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One of them contains the loop of minima1, 5. The topmost valence band in our case is p-like with orbital quantum number 
1l =  and with the total angular momentum equal to 3 2j = / . The four-fold band states give rise to heavy and light holes 

forming in cubic crystals the irreducible representation 8Γ  in the point 0k = . 
 
For the LH the effective Rashba Hamiltonian has the lowest order in k

r
 term and is the same as for the conduction 

electrons. For the HH the effective Rashba Hamiltonian happens to be the third order in k
r

 and remains the first order in 
spin operators σr  as follows6, 7 

 3 3ˆ ˆSOC
h h zH E k kβ σ σ⎛ ⎞

⎜ ⎟+ −− +⎝ ⎠
= + ,          (3) 

where 

( )1
ˆ ˆ

2 x y x yi k k ikσ σ σ ⎛ ⎞
⎜ ⎟± ± ⎝ ⎠

= ± ; = ± ;  

 
0 1 0 1 0 1 0ˆˆ ˆ ˆ
1 0 0 0 1 0 1x y z

i
I

iσ σ σ
−

= ; = ; = ; = .
−

             (4) 

The electric field strength zE  depends on the density of charges in the system6, 7. The interaction constants were 
evaluated in2, 3 for different values of zE , arriving to the conclusion that at 100 200 kV

z cmE = ÷  the RSOC is a dominant 
mechanism for the energy band spin splitting. 
 

2. THE LANDAU QUANTIZATION OF 2D ELECTRONS AND HOLES IN THE 
PRESENCE OF RSOC 

 
Following the papers1–7 the full Hamiltonians describing the Landau quantization of the 2D electrons and holes in a 
strong perpendicular magnetic field taking into account the RSOC consist from two parts. First of them are the zero order 
Hamiltonians for electrons and holes in a strong perpendicular magnetic field 

 
2 22 2
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where ˆ eP  and ˆ hP  are 2D momenta equal to eih− ∇
r  and hih− ∇

r  correspondingly and the vector potential ( )A r
r r  is written 

in Landau gauge, i.e. ( ) ( 0 0)x y zA r A Hy A A= = − ; = ; =
r r . The second parts of the full Hamiltonians are the RSOC 

Hamiltonians (1) and (3), in which instead of usual momenta must be introduced the kinematic momenta 

 ˆ ˆ( ) and ( )e he h
e eA Ar rP Pc c
| | | |

+ − ,
r rr r              (6) 

what is equivalent to write instead of e
xk , e

yk , h
xk  and h

yk  the new expressions 

2
e ee
x y

e e

y
K i K i

x yl
⎛ ⎞∂ ∂

= − − ; = − ;⎜ ⎟∂ ∂⎝ ⎠
 

 2
2

h hh
x y

h h

y cK i K i l
x y e Hl

⎛ ⎞∂ ∂
= − + ; = − ; =⎜ ⎟∂ ∂ | |⎝ ⎠

h         (7) 

correspondingly. l  is the magnetic length. The new operators xK  and yK  do not commute 

 2 2
e e h h
x y x y

i iK K K K
l l

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, = − ; , = .           (8) 
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The RSOC Hamiltonians for 2D electrons and holes in a strong perpendicular magnetic field have the forms 
ˆ ˆSOC e e SOC
x ye e z y x h h zH E K K H Eα βσ σ⎡ ⎤
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The full Hamiltonians are 
 0 0SOC SOC

e e e h h hH H H H H H= + ; = + .            (10) 
The solutions of the Landau quantization task for electrons and holes are chosen in the forms1, 5 
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The actions of the operators e
xK  on the function eipxe  and of the operator h

xK  on the function hiqxe  are 

 2 2exp( ) exp( )e hipx iqxe he h
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Instead of variables ey  and hy  we will introduce the dimensionless variables 

 e h
e h

y y
pl ql

l l
η η= − ; = + .      (13) 

The Schrödinger equations on the base of the full Hamiltonians (10) with the solutions in the forms (11) depend on two 
variables x  and y . But taking into account the translational symmetry in direction x  and the relations (12) these 
equations can be transformed in Schrödinger equations depending only on one variable. The cyclotron energies for 
electron and hole are 

i

e H
ci m cω | |= ;hh  i e h= , . The Schrödinger equation describing the Landau quantization for electron 

looks as 
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Introducing the dimensionless energy and SOC constant α  
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e

ce ce

E
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               (15) 

we can transcribe the two-component equation (14) as follows 
2

2
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Acting in the same way we will obtain the one variable hole Hamiltonian 
2

2
2

1 ˆ( )
2h h ch h
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permits to simplify essentially the two component Schrödinger equation 
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Rashba1 proposed the solution of equations (16) using the series expansions for the functions 1Φ  and 2Φ . We will use 
the same representations as follows 

1 2
0 0
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n n
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where ( )nϕ η  are the eigenfunctions of the Landau quantization in Landau gauge with the orthogonality and 
normalization conditions 
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They obey to the differential equations 
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As one can see the expressions ( )1
2 ηη ∂

∂−  and ( )1
2 ηη ∂

∂+  play the role of increasing and decreasing differential 

operators. The equalities (22) transform the Schrödinger equations (16) and (19) into the linear relations between the 
Landau quantization functions. They are 

1
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for 2D conduction electron, and 
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for 2D heavy holes. 
 
Multiplying these equations by ( )sϕ η∗ , where 0 1 2s …= , , , , after the integration on the variable η  in accordance with the 
condition (21), we will obtain the linear algebraic equations. 
 
In the case of the 2D heavy holes the algebraic linear equations are 
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and so on. As in the case of conduction electron the solution 1
2hε =  is accompanied by the coefficients 0 1c =  and by all 

another coefficients nc  and nd  equal to zero. The second spin splitted lowest Landau level for a heavy hole has a value 
1
2hε ≠ , what leads to the solutions 0 1 2 0c c c= = = . The fourth and the fifth equations lead to the dispersion equation 
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All coefficients except 0d  and 3c  are equal to zero, what leads to the equalities 
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In the limiting case 2 1
64β <  the second solution is 
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1 16 1616 1
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Two spin splitted LLLs for hole are 
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In difference on the electron SOC parameter e z

ce

E
l
α
ωα =
h

, which decreases with increasing magnetic field strength H , the 

hole SOC parameter 3
h z

ch

E
l
β

ω
β =

h
 has an inverse dependence, i.e. it increases with the increasing H . Only at small values 

of zE  and at not so high values of H  the parameter β  can be considered to be small, i.e. 2 1
64β < . 

 
There are four combinations of the electron and hole energies in the frame of these levels. They are represented in the 
Fig. 1 and are enumerated below: 
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Fig. 1.  Energy spectrum of the LLLs for electron and hole taking into account the RSOC. Four different combinations of the electron-
hole pair states are represented. 

  
In the next section the matrix elements of the Coulomb e-h interaction will be calculated. 
 

3.  THE COULOMB ELECTRON-HOLE INTERACTION, THE ENERGY SPECTRUM OF 2D 
MAGNETOEXCITONS AND THE BAND-TO-BAND QUANTUM TRANSITIONS 

 
The exciton wave functions in the sf  compositions represented on the Fig. 1 are denoted as 
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t
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where †a  and †b  are the creation electron and hole operators. 
The average values of the electron-hole Coulomb interaction Hamiltonian e h

CoulH −  equals to 
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ex s Coul ex s ex i jk f H k f I e R h R k−〈Ψ , ⎜ Ψ , = − , ; , ; ;
r r r
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The obtained values are represented on the figure 2. 
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Fig. 2.  The ionization potentials ( ) 1 2 3 4ex i j lI e R h R k I i j, ; , ; / , = , ; = ,  taken with the sign minus for spin-splitted LLLs for electrons 

and holes at zE  = 24 kV/cm and H  = 15 T. The insets demonstrate the datailed dependences of these magnetoexciton states 

1) 1 3( );e R h R, ; ,  2) 1 4( )e R h R, ; , ;  3) 2 3( )e R h R, ; , ;  4) 2 4( ).e R h R, ; ,  

 
The probability of the quantum transition in the exciton state 1f  is different from zero only if the small corrections 
proportional to ( )x yQ iQ l+  are taken into account. It means that the transition to the exciton state 1f  is proportional to 

2 2 2 2 2
2( )x y DQ Q l lQ+ =| |
r

 and the corresponding quantum transition is quadrupole-active, being proportional to the square 

of the projection 2DQ
r

 on the layer surface of the light wave vector Q
r

 arbitrary oriented in the 3D space. In the Faraday 

geometry, when the wave vector Q
r

 is parallel to the direction of the external perpendicular magnetic field, the projection 

2 0DQ =
r

 and the quadrupole transition is forbidden. The quantum transitions in the states 2f  and 3f  are dipole active. 
 

3. CONCLUSIONS 
 
The influence of the Rashba spin-orbit coupling (RSOC) on the properties of the 2D magnetoexcitons was determined. 
The interdependence between the Landau quantization of the electron and hole orbital motions and their spin projections 
was revealed in the frame of Landau gauge. The spinor-type wave functions of the 2D conduction and valence electrons in 
the presence of the RSOC have different numbers of the Landau quantization functions for different spin projections. For 
example, they are 0 ( )yϕ  and 1( )yϕ  in one case, and 3 ( )yϕ  and 0 ( )yϕ  in another one. For conduction electron, if the 
number of Landau level is n  for the up spin projection, it is equal to 1n +  for the down spin projection. For the valence 
electron and for the heavy hole (HH) the number n  of the Landau level for the down spin projection is accompanied by 
the number 3n +  for the up spin projection. It is determined completely by the fact that the RSOC Hamiltonian for 
conduction electron is linear in the projections x yk k ik± = ±  of the in-plane wave vector k ||

r , whereas in the case of valent 
electron and heavy hole the corresponding Hamiltonian contains the third order of these projections, i.e. the expressions 

3( )k± . Two lowest Landau levels 1R  and 2R  for conduction electron and two lowest hole states 3R  and 4R  were 
considered. The wave functions were used to calculate the matrix elements of the Coulomb direct and exchange electron-
hole (e-h) interactions corresponding to the combinations 1 1 3( )f e R h R= , ; , ; 2 1 4( )f e R h R= , ; , ; 3 2 3( )f e R h R= , ; ,  and 

4 2 4( )f e R h R= , ; , . The corresponding ionization potentials were expressed through the ionization potentials of the bare 
magnetoexciton states ( ) ( )n m

exI k,  calculated earlier in10. With their help as well as with the knowledge of the coefficients 
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0d , 3c  (28) it is possible to determine the dispersion laws (32) of the four new magnetoexciton bands taking into account 
the RSOC. The new dispersion laws could lead to new collective properties of the spinor-type 2D magnetoexcitons. 
 
The optical quantum transitions from the ground state of the crystal to four magnetoexciton states were determined on 
the base of exciton wave functions (31) and electron-radiation interaction. It was shown that the quantum transitions in 
the states 2f  and 3f  corresponding to combinations 2 1 4( )f e R h R= , ; ,  and 3 2 3( )f e R h R= , ; ,  are dipole-active, the 
exciton state 1 1 3( )f e R h R= , ; ,  is quadrupole-active, whereas the fourth combination 4 2 4( )f e R h R= , ; ,  is forbidden. In 

the Faraday geometry, when the light wave vector Q
r

 is oriented along the magnetic field direction, the circular 
polarizations Qσ ±rr  coincide with the exciton circular polarization 1σ ±

r . The light circular polarization Qσ mr
r  excites the 

exciton states 1σ m
r  because ( ) ( )1 1 1Q Qσ σ σ σ∗ ±⋅ = ⋅ =mr r

m m
r r r r , whereas ( )1 0Qσ σ±∗ ⋅ =r

m
r r . Such optical orientation of the exciton 

states under the influence of the circularly polarized light is named as optical alignment13. In Qσ −rr  polarization only the 
dipole-active quantum transition 2f  is allowed, whereas the dipole-active quantum transition 3f  and the quadrupole-
active quantum transition 1f  are forbidden. In Faraday geometry and circular polarization Qσ +rr  the exciton states 1f  and 

3f  having the circular polarization 1σr  are allowed. One is dipole-active and another one is quadrupole-active. 
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