
  

  

Abstract— A hybrid state detection algorithm is presented 

for the estimation of baseline and movement states which can be 

used to trigger a free paced neuroprostethic.  The hybrid model 

was constructed by fusing a multiclass Support Vector Machine 

(SVM) with a Hidden Markov Model (HMM), where the 

internal hidden state observation probabilities were represented 

by the discriminative output of the SVM.  The proposed method 

was applied to the multichannel Electrocorticogram (ECoG) 

recordings of BCI competition IV to identify the baseline and 

movement states while subjects were executing individual finger 

movements. The results are compared to regular Gaussian 

Mixture Model (GMM)-based HMM with the same number of 

states as SVM-based HMM structure. Our results indicate that 

the proposed hybrid state estimation method out-performs the 

standard HMM-based solution in all subjects studied with 

higher latency. The average latency of the hybrid decoder was 

approximately 290ms. 

I. INTRODUCTION 

europrosthetics (NP) aim to restore communication and 

control capabilities of people with debilitating motor 

impairments. Several neuroprostethic systems have been 

constructed to process invasively recorded neural signals 

such as single-unit neuronal activity (SUA) for the control of 

a cursor on a computer screen, or for the control of a robotic 

arm. In most of these systems, the decoding process was 

restricted to predefined time intervals in which the state of 

the subject was altered by external cues limiting the 

flexibility of the constructed system.  

In order to build a system that serves a subject’s free will, 

the state of the brain activity needs to be determined to avoid 

undesired movement and to obtain accurate results for 

controlling an external device. For this particular purpose, in 

a free-paced NP, the states that need to be estimated 

dynamically are generally, (1) baseline (idle), (2) planning 

and (3) movement execution. Several attempts have been 

made to decode the dynamic state of the subject from neural 

activity [1-4]. The estimation of baseline, movement 

planning, and movement execution states from SUA was 

initially studied in [1] while non-human primates were 

executing directional hand movements in response to an 
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externally cued paradigm. In this work by Krishna and 

colleagues, neuronal firing rate, computed in fixed-size 

windows, was used as an input to a Bayesian state estimator, 

with the firing rates associated with each direction and with 

each state modelled with a Poisson distribution. A maximum 

likelihood (ML) classifier was then stamped each time 

window and the classification outputs were streamed to a 

finite state machine (FSM) for estimating the state of the 

subject. The FSM operated on ad hoc-derived transition 

rules. This work was extended by Achtman et al. [2], who 

constructed a two-stage decoder that was also based on an 

FSM. In contrast to [1], a growing window size was used in 

[2] to estimate from the neural data both the state and the 

direction of target. These investigators reported a 350-ms 

average latency in detecting executed movement directions. 

Kemere et. al. [3] used a Hidden Markov Model (HMM) 

coupled with a state-dependent Poisson firing model instead 

of an FSM.  These investigators demonstrated that using the 

a priori likelihood of the HMM states to first detect the onset 

of movement planning and then to calculate the ML target, 

results in substantial increases in performance relative to the 

FSM. The average latency for this study was approximately 

330 ms with an 84% success rate in detecting executed 

movement directions.  

Recently, Huang and Andersen used local field potentials 

(LFPs) recorded from the parietal cortex of primates during a 

directional reaching task, for a state decoding application 

[4]. This study demonstrated the feasibility of detecting state 

transitions from the oscillatory neural activity (LFPs) 

recorded with penetrating microelectrodes. 

Recent studies indicate that HMM-based solutions provide 

better results than FSM-based solutions that are based on ad-

hoc decision rules. A common setup shared by these studies 

is the externally cued paradigms that were used to alter the 

state of the subject in a controlled manner. In this work, we 

aimed to decode the movement and resting states of 

individual fingers from multichannel ECoG recordings. This 

is different from the previous studies that have focused on 

movement of the entire hand. In our scheme, we developed a 

new hybrid decoding system based on the fusion of SVM 

and HMM structures. Our discriminative/generative 

approach accepted input features computed with common 

spatial patterns in different frequency bands and returned the 

likelihood of one of the states of interest.  To the best of our 

knowledge, this is the first study that explores the detection 

of movement execution and resting states of individual finger 
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Fig. 1.  (a) Multichannel filtered (1-4, 7-13, 16-30, and 65-200 Hz) ECoG 

data is fed into a CSP algorithm to reduce channel size. Each band is 

reduced into 4 virtual channels. Using the 16-dimensional CSP features, a

multiclass SVM classifier is trained to distinguish between resting, 

planning, movement onset, mid-movement, movement termination and 

post-movement segments given in (b). These segmentations were derived 

by aligning the data to movement onset and movement termination.  The 

SVM output probabilities were fed into two HMM models as observation 

probabilities of the hidden states. Prior and transition probabilities were

computed from the training sequence using forward-backward method, 

where the model is restricted to left-to-right transitions only. 

 

movements from ECoG recordings. Another novelty of our 

study is that it explored the success of decoding sequential 

movements in a continuous fashion rather than movements in 

a trial-based paradigm. 

We used the hybrid decoding system to identify baseline 

and movement states. Moreover, we compared it to the 

conventional HMM method that has enjoyed widespread 

application in the field. A schematic diagram describing our 

signal-processing framework is depicted in Fig. 1. Below we 

first describe the dataset and the experimental paradigm. 

Next, we explain our signal-processing framework in detail. 

Finally, we provide experimental results and discuss these. 

II. METHODS AND MATERIALS 

A. ECoG Data 

We used multichannel ECoG data from BCI Competition 

IV, recorded during finger flexion. This data set was 

acquired from three epileptic patients at Harborview 

Hospital in Seattle, WA. The electrode grid was placed on 

the cortical surface. Each electrode array contained either 48 

(8x6) or 64 (8x8) platinum electrodes, each of 4-mm 

diameter. Electrode contacts were embedded in a silicon mat, 

and were spaced 1-cm apart. Synamps2 amplifiers 

(Neuroscan, El Paso, TX) were used to digitize and amplify 

the ECoG signal.  The finger index to be moved was 

indicated with a cue on a computer monitor placed at the 

bedside. Each cue lasted two seconds and was followed by a 

two-second rest period, during which the screen was blank.  

Subjects moved one of five fingers 3-5 times during a cue 

period, for a total of 10 minutes for each subject [5]. The 

movements were continuous not trial based. Only the 

position of the fingers was available to us, and was used to 

distinguish between baseline (resting) and movement states. 

Consequently, this posed a great challenge in detection of 

these arbitrary movement executions as no information about 

the cue and go signal was available to us for our analysis. An 

exploratory analysis established that the duration and interval 

between consecutive finger movements varied dramatically. 

We used for analysis those segments in which each 

movement lasted a minimum of 1000ms and consecutive 

movements were separated by at least 800ms.  

B. Common Spatial Patterns  

As in any learning process, the generalization capacity of 

a model decreases with the increasing dimensionality of the 

input data. Moreover, the complexity and execution time of 

decoding algorithms increases with the number of channels 

of input data. Therefore, a dimension reduction algorithm 

must be employed to decrease the dimensionality of data. 

We applied a Common Spatial Patterns (CSP) [6] algorithm 

on band-pass filtered multichannel ECoG signals in order to 

reduce these into a few virtual channels. Specifically, ECoG 

data from each subject was filtered in 1-4, 7-13, 16-30, and 

65-200Hz frequency bands. Next, each band was 

transformed into four virtual channels by the CSP algorithm, 

by taking the first and last two eigenvectors. We computed 

the spatial projection using 

[ ] [ ]nn XWX T

CSP =         (1) 

where the columns of W are the eigenvectors representing 

each spatial projection and X[n] is the multichannel ECoG 

data. The eigenvectors of the CSP algorithm were estimated 

via generalized eigenvalue decomposition by contrasting the 

covariance matrices of the resting and movement segments 

of the training data. Consequently, the CSP output 

maximized or minimized the variances of the resting and 

movement regions in the estimated virtual channels. The 

variance of each channel was computed in 250-ms windows 

moving with a 50-ms time step. Finally, the variances were 

log transformed and concatenated across all four frequency 

bands forming a 16-dimensional feature vector for each time 

shift.  

C. Hybrid HMM-SVM Structure 

In order to estimate resting and movement states from the 

recorded neural data, we built a hybrid 

discriminative/generative decoder based on the fusion of 
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HMM with SVM. HMMs are widely used in speech 

processing and have been successfully applied to dynamic 

state decoding of neural data. Detailed descriptions of this 

method and its applications have been published elsewhere 

[7]. Because it is a generative method, the HMM structure 

lacks discrimination capability: each model is trained 

independently from the other competing models. Moreover, 

observation probabilities are generally modeled by Gaussian 

Mixture models (GMM), which fail to represent the 

distribution of the features in high dimensional space in the 

presence of a low amount of training data and/or outliers. 

We therefore aimed to replace the observation probabilities 

of internal states of the HMM with the posterior probability 

output of a multiclass SVM. Specifically, rather than using a 

GMM, the extracted features were fed to a multiclass SVM 

that was tuned to separate the distribution of the internal 

states. However, such an approach requires the labels of the 

features belonging to each state so that the SVM classifier 

can be trained. In this scheme, we constructed six different 

states by aligning the neural data with respect to movement 

onset and termination. These states consisted of the 

following six periods: i) resting, ii) movement planning,  iii) 

movement onset, iv) mid-movement, v) movement 

termination stage, and vi) post-movement stage. A schematic 

diagram representing these alignments and their duration is 

given in Fig. 1.b. Because there was no exact timing 

information for the planning period, we used the 400-ms 

window preceding each movement onset as the planning 

state (P). The 400-ms segment immediately following each 

movement termination was defined as the post-movement 

state (PM). The interval between PM and P was defined as 

the resting segment.  Movement was segmented into three 

different states, with the first 400ms of each movement 

defined as movement onset (MO). The 400-ms segment 

immediately preceding cessation of movement was defined 

as the movement termination state (MT).   The interval 

between MO and MT was defined as the mid-movement 

state. We labeled the features originating from each state in 

the continuous training data and then fed them into the 

multiclass SVM for discrimination. Since the duration of the 

resting and mid-movement states was variable, the number of 

feature vectors that we extracted from these segments was 

much higher than for the other states, causing a bias in the 

decision boundary of the SVM classifier. Consequently, we 

reduced the number of samples for resting and mid-

movement states in order to compensate for the variability in 

numbers of samples for each state. Specifically, the majority 

class was down-sampled by randomly eliminating its 

samples. The SVM module provided an estimated posterior 

probability for each state by using a one against the other 

classification strategy. A radial basis function was used as 

the kernel of the SVM. The output of the SVM module was 

then used in conjunction with the Forward-Backward 

algorithm to estimate the transition probabilities of the 

HMM. We used the LibSVM toolbox to implement the 

multiclass SVM [8] and the HMM toolbox of [9] to build the 

hybrid decoder. It should be noted that this procedure differs 

from the traditional HMM training, in which the observation 

and transition probabilities are altered in each iteration of the 

standard Expectation-Maximization (EM) algorithm. In our 

case, the observation probabilities were the SVM outputs, 

and these were fixed during the iterative estimation of 

transition probabilities. The HMM model had three hidden 

states. In each state, the observation probabilities were 

represented with three mixtures. Only left-to-right transitions 

were allowed in both hybrid and HMM, as depicted in Fig 1. 

We tested our hybrid decoding system and the traditional 

HMM algorithm on the ECoG data derived from the three 

subjects of BCI Competition IV, described in Section II. In 

contrast to those studies that have decoded transition from 

baseline to planning/movement, our challenge involved 

decoding transitions from movement to a resting/baseline 

state, as well. In order to decode the dynamic state of a 

subject, a sequence of observations is needed. Unlike trial-

based experiments, the data we used contained no prescribed 

start and end points.  In such a situation, a fixed segment of 

the data, which is shifted along the signal, is generally used 

to execute the state decoders. The use of long data segments 

can cause large latencies and numerical overflow of the 

output. Consequently, we studied the effect of different 

sequence lengths, for example, 5, 10, 15 and 20, on the 

estimation of the resting and movement states. After 

decoding each sequence with the constructed models, the 

model with the maximum posterior probability was used to 

determine the class of the feature sequence. Moreover, we 

executed several experiments with various training-set sizes, 

in order to examine the robustness of each algorithm against 

the limited amount of training data. We trained the 

algorithms using 10 to 70 train trials by increasing the set 

size by ten.  

III. RESULTS 

The average classification accuracies of the hybrid and 

HMM methods are listed in Table 1. We observed that for all 

subjects studied, the hybrid SVM-HMM decoder provided 

better decoding accuracies than the traditional HMM 

method. On average, the detection accuracy of the hybrid 

method was 91.2%, whereas the HMM solution provided 

89.6% decoding accuracy.  

The average decoding accuracies of each method with a 

varying number of training trials is given in Fig. 2 (a). We 

observed that the hybrid decoder provided superior decoding 

accuracies with a low number of training trials, and its 

   Hybrid Decoder HMM 

Subject 1  91.5 89.2 

Subject 2  89.2  88 

Subject 3  92.7  91.6 

Table 1. The state decoding accuracies of the hybrid and traditional 

HMM based methods with 60 training trials using a decoding sequence 

length 10.  
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performance slowly increased with increasing the training set 

size. In contrast, the accuracy of HMM was quite poor when 

using a low number of training trials. In contrast to the 

hybrid decoder, the accuracy of HMM rapidly improved with 

increasing training-set size, ultimately stabilizing after 50 

training trials.  

We studied decoding accuracy as a function of decoding 

sequence length. We observed that the decoding results were 

quite poor with a sequence length of five and improved 

rapidly by increasing the sequence length to ten. The 

maximum decoding results were obtained with sequence 

lengths of 10 and 15 in both methods, which corresponded to 

time windows of approximately 700 and 950ms, 

respectively. The average latency of each method versus the 

decoding sequence length is given in Fig. 3 (b). We observed 

that the latency of HMM was superior to the hybrid decoder.  

For a sequence length of 10, the latency for the hybrid and 

HMM were 290 and 215 ms, respectively. Although slightly 

better results were obtained using a sequence length of 15 

with the hybrid decoder, we observed that the latency 

increased dramatically from 290 to 410ms.  

The temporal decoding accuracies for a representative 

subject at movement onset and termination are shown in 

Fig.3. We observed that the decoding results at movement 

onset had a sharp transition compared to movement 

termination. We also noted that the decoding errors and 

latencies were higher at movement termination, as compared 

to movement initiation. These observations indicate that 

decoding state transitions from movement to resting state 

poses new challenges. In the subjects we studied, movement 

onset was associated with a burst of gamma spectrum 

activity, which slowly decreased towards the end of the 

movement.  There was no similar pattern observed at 

movement termination. This could in part explain the lower 

accuracy and the larger latency that characterized movement 

termination. 

IV. CONCLUSION 

We report here a hybrid decoder based on the fusion of 

SVM and HMM for dynamic state detection based on data 

derived from multichannel ECoG recordings during 

consecutive movements of individual fingers. We have 

demonstrated experimentally that the latency of state 

decoding using ECoG data during finger movements is 

comparable to that obtained using SUA data during 

directional hand movements. We compared our method to 

the traditional HMM technique. The hybrid decoder out-

performed the HMM technique in all three subjects studied. 

The main advantage of using SVM within the hybrid decoder 

is that the posterior probability of each state is estimated 

simultaneously and tuned for discrimination. This advantage 

might overcome the lack of discriminative capability of 

HMMs, as each model is trained independently from the 

other competing models. Moreover, the higher generalization 

capacity of SVM due to the large margin makes the 

algorithm a good candidate for applications in which a 

limited number of training trials exists on which to base 

estimates of the model parameters. However, such an 

approach requires supervised training in order to estimate the 

state discriminators, which is automatically accomplished by 

the traditional HMM.  
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(a)                                                   (b) 

Fig.3 Average accuracy vs. time for subject 3 aligned to the movement 

onset in (a),  and to the movement termination in (b). A hybrid decoder 

with a decoding sequence length of 15 was used. 
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(a)                                                 (b)        

Fig. 2 Average accuracy vs. the number of train trial with decoding 

length 10 (a).  Average latency vs. decoding sequence length (b).  
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