
A Locality Preserving One-Sided Binary Tree -

Crossbar Switch Wiring Design Algorithm

Devrim Şahin

Department of Computer Science and Engineering

Bilkent University, Ankara, Turkey

devrim.sahin@bilkent.edu.tr

Abstract—One-sided crossbar switches allow for a simple
implementation of complete Kn graphs. However, designing these
circuits is a cumbersome process and can be automated. We
present an algorithm that allows designing automatic one-sided
binary tree - crossbar switches which do not exceed ⌊n

2
⌋ columns,

and achieves Kn graph without connecting any wires between
any three adjacent blocks, thus preserving locality in connections.

I. INTRODUCTION

One-sided switch is a special type of topology used in

applications in which input terminals also serve as outputs.

Instead of connecting a set of inputs X = {x1, x2, · · · , xn}
to a set of outputs Y = {y1, y2, · · · , yr}; one-sided switches

make connections from a set X onto itself. Thus, every

one of the n terminals is connected to every other (n − 1),

totalling to
n·(n−1)

2 connections. While switches in general

can be represented as bipartite graphs, one-sided switches are

equivalent to undirected Kn complete graphs. Figure 1 is an

example of a 4-input one-sided switch.

Fig. 1. 4-input binary tree - crossbar switch.

Since there are n = 4 inputs, each input xi should have

n− 1 = 3 ‘copies’, that is, separate routes through which xi

can connect to every other xj . In the implementation above,

this is simply achieved by making three copies of each input

immediately, then making pairwise connections in the wiring

part from every xi to every xj (i 6= j).

Given the circuit above, connecting two inputs is trivial.

For example, in order to establish a connection between x0

and x2, it is required and enough to close two switches (2nd

and 7th switches from above, that is, middle x0 switch and

top x2 switch). However, each of the terminals have a fanout

of n− 1, which is not a desirable property.

Fanout can be effectively limited to 2 using binary tree

switches as described in [1]. For example, if n = 9, instead

of creating 8 copies immediately, we construct a binary tree

of depth 3, where we create 2, 4, and 8 copies step by step,

having a fanout of 2 in every step. Figure 2 shows the binary

tree adaptation.

Fig. 2. Binary tree switching. Note that the circles in the switching side
depict 1x2 elementary switches.

In the previous examples, the ‘rows’ (horizontal wires) are

ordered as below:

(x0, x0, x0), (x1, x1, x1), (x2, · · ·

whereas it is generally more intuitive and efficient to order

them as:

(x0, x1, x2, x3), (x0, x1, · · ·

The advantage of implementing the switching stage in this

fashion is that there exists a wiring scheme where the total

number of columns in the wiring section does not exceed

⌊n
2 ⌋. A proof is provided in [1]. In this case, binary trees

should overlap, but they can simply be implemented on a

grid[1] as shown in Figure 3.

The method to obtain a wiring scheme with ⌊n
2 ⌋ columns

as described in [1] appeals to cyclic permutation groups. For

the example above; the cyclic permutation groups would be

as shown below:

978-1-4799-8428-2/15/$31.00 ©2015 IEEE

Fig. 3. Grid implementation of binary trees. This implementation also groups
xi into blocks.

p = (0123)
p2 = (02)(13)
p3 = (0321)

Grouping the numbers obtained by the permutations two by

two, one would have the pairs (01), (23), (02), (13), (03), (21).

Along with the binary tree implementation depicted in Figure

3, we can implement the wiring step as in Figure 4.

Fig. 4. Wiring step of the one-sided binary tree - crossbar switch.

For even n, obtaining the pairs using cyclic groups is

straightforward. However, for odd n, selection of pairs might

become tedious. For example, for n = 5, cyclic groups are as

shown below:
p = (01234) → (01)(23)(4)
p2 = (02413) → (02)(41)(3)
p3 = (03142) → (03)(1)(42)
p4 = (04321) → (04)(3)(21)

Notice that pairs (43) and (13) were not generated, but rather

should be constructed by combining the remaining numbers.

In this paper, we present another approach to the problem,

which intuitively uses adjacency matrices for representation,

and is algorithmically more straightforward. Our method also

preserves locality of connections by restricting the intercon-

nections between blocks.

II. METHOD

For simplicity and clarity, we will separately handle the

two cases for even n and odd n. The reader will easily

notice by the end that these two are the reflections of the

same approach, only separately defined for mathematical

completeness. First, we introduce a notion of equivalence

between pairs of terminals.

Let <i, j> denote the pair between terminals xi and xj .

Two pairs <a, b> and <c, d> are equivalent if and only if

(a = c)∧ (b = d), or (a = d)∧ (b = c). For example, <0, 3>
is equivalent to <0, 3> and <3, 0>. Using this, we can make

the following two statements.

Proposition 1. For any a, b and x 6= y, 0 < a, b,<
n, 0 < x, y ≤ n

2 , the pairs <a, (a+ x) mod n> and

<b, (b+ y) mod n> cannot be equivalent.

Proof. By the definition of equivalence of pairs, one of the

following two cases must be hold.

Case 1: a = b and (a+ x) mod n = (b+ y) mod n. Then

(a + x) mod n = (a + y) mod n, which is possible if and

only if x = y [1], which is a contradiction.

Case 2: a = (b+ y) mod n and b = (a+ x) mod n. Then

a− (b+ y) = k1n,

b− (a+ x) = k2n

=⇒ −x− y = (k1 + k2)n = −cn

where k1, k2, c are integers. But since 0 < x 6= y ≤ n
2 ,

0 < x+ y < n; therefore 0 < c < 1, a contradiction.

Proposition 2. Pairs <a, (a+ x) mod n> and

<b, (b+ x) mod n> cannot be equivalent for any a 6= b and

0 < x < n
2 .

Proof. By the definition of equivalence of pairs, since a 6= b,
it immediately follows that these two pairs are equivalent if

and only if a = (b+ x) mod n and b = (a+ x) mod n. Then

a− (b+ x) = k1n,

b− (a+ x) = k2n

=⇒ −2x = (k1 + k2)n = −cn

where k1, k2, c are integers. Since 0 < x < n
2 , 0 < cn < n,

therefore 0 < c < 1, again, a contradiction.

In the sequel, we will be using these propositions as

we describe our methodology. Also we will make use of

adjacency matrices to represent pairs of inputs visually1. In

our diagrams, ‘1’s will be represented by dark cells.

A. Odd n Case

Given that n is odd, all pairs can be defined in the

following fashion:

1An adjacency matrix is a binary n × n matrix in which ‘1’s represent
pairings; a 1 in row i and column j represents a pairing between inputs i and
j.

<i, (i+ k) mod n>, 0 ≤ i < n, 1 ≤ k < n
2 .

For example, for n = 5, the pairs are:

k=1: <0, 1> <1, 2> <2, 3> <3, 4> <4, 0>,

k=2: <0, 2> <1, 3> <2, 4> <3, 0> <4, 1>.

For a range of 0 ≤ x < n, (x + i) mod n is a diagonal

line on the adjacency matrix, as shown on Figure 5.

Fig. 5. Adjacency representation of pairs of inputs.

It follows from Proposition 1 that for different values of

k, we always have non-overlapping sets of pairs. In addition,

Proposition 2 shows that for a given k, all pairs with the

same k are different from each other. Note that, for a given

k; the number of <i, (i+ k) mod n> for 0 ≤ i < n pairs is

exactly n, and each i appears twice in these pairs: once on

the left-hand side, once on the right-hand side. For a given

k the number of ‘copies’ of xi required is exactly 2; thus,

blocks of x0, x1 · · ·xn−1 can be grouped two by two. Since

cases for different k values do not have interconnections, they

can be handled separately in parallel.

Another example is shown for n = 7 as in Figure 6. In

this case k is between 1 and 3 because n = 7 and 1 ≤ k ≤
1
2 (n − 1) = (7 − 1)/2 = 3. Since the adjacency matrix is

symmetric (<i, j>≡<j, i>), all pairs can be depicted in the

upper triangle as below.

Fig. 6. n = 7 case. All pairs are shown in the upper triangle.

B. Even n Case

The equation introduced for the odd case is valid for the

even case, although it is not sufficient to cover all possible

pairs:

<i, (i+ k) mod n>, 0 ≤ i < n, 1 ≤ k < n
2 .

For n = 6, the exact number of possible pairs is
1
2n(n − 1) = 1

26 · 5 = 15, whereas the definition above

generates n · (n2 − 1) = 6 · 2 = 12 pairs. The three missing

pairs belong to the case where k = n
2 = 3.

However, including k = n
2 to the boundary of the equation

above would violate the conditions defined for k in Proposition

2. To demonstrate, let n = 6 and k = 3. The pairs generated

are as follows:

<0, 3> <1, 4> <2, 5> <3, 0> <4, 1> <5, 2>

In this case, all pairs appear twice; once in order, then

in reverse, such that <a+ n
2 , ((a+ n

2) +
n
2) mod n > =

<a+ n
2 , a> ≡ <a, a+ n

2>, when k = n
2 . The problem is

solved if 0 ≤ a < n
2 instead of 0 ≤ a < n, in which case the

modulo operator disappears, and the pair definition becomes

simplified as <i, i+ n
2>.

Then the two subsets that cover the even n case are as

follows:

<i, (i+ k) mod n>, 0 ≤ i < n, 1 ≤ k <
n

2
,

<i, i+
n

2
>, 0 ≤ i <

n

2
.

Since k are different, Proposition 1 shows that these

two subsets never overlap. Set 1 has n(n2 − 1)
elements, and set 2 has n

2 elements; adding up to

(n + 1)(n2) − n = 1
2n(n + 1) − 1

22n = 1
2n(n − 1)

unique elements; covering every necessary pair.

Figure 7 shows how pairs are generated for n = 8. The

rightmost figure shows the second set (k = 8
2 = 4 case).

Fig. 7. Pair generation for even n. The rightmost figure depicts the k = n/2
set.

Note that the special definition provided for the k = n
2

case, prevents the last 4 cells to be spanned twice.

C. Wiring

The actual wiring of the generated pairs is described in the

following section.

For even n, wiring of the second set is trivial, because the

first half of inputs connect to the second half. Since there are
n
2 wires, the number of columns is exactly ⌊n

2 ⌋ =
n
2 . Only

one block is necessary and sufficient for the wiring of this set.

An example is shown in Figure 8 for n = 8.

Fig. 8. Wiring of the block handling the k = n/2 case for n = 8.

Having handled the special case for even n, the remaining

pairs are identically defined for odd and even n:

<i, (i+ k) mod n>, 0 ≤ i < n, 1 ≤ k < n
2 .

In order to get rid of the modulo operator and represent

all pairs <a, b> in the upper triangle such that a < b, the

definition above should be separated into two subsets as

shown below for each k (1 ≤ k < n
2):

< i, (i+ k) > for 0 ≤ i < n− k,

< (i+ k − n), i > for n− k ≤ i < n.

The second subset can also be written as follows:

< i, i+ n− k > for 0 ≤ i < k.

k < n
2 =⇒ k < n − k; therefore the range for i in the

second set is a strict subset of the range for i in the first set.

Since the first set uses the first copies of the terminals, the

second set should strictly be placed on to the second block

(recall that exactly two blocks are allocated for each value of

k). That is, the first k values for i in the first set are forced

to belong to the first block. Since these pairs are defined as

<i, (i+ k)>; the xk · · ·x2k−1 terminals in the first block are

used as the destination ports; therefore these connections are

made in the second block, and so forth.

The resulting distribution of connections can be formalized

in the following manner:

• The second set always belongs to the second block.

• For a pair in the first set <i, (i+k)>, if ⌊ i
k
⌋ mod 2 = 0,

put the pair in the first block, otherwise put it in the

second block.

Recall that these formulations are defined for a fixed k,

and should be repeated for every k in range. Figure 9 is

the resulting circuit for n = 8. The condition for k = 3 is

handled separately and uses only one block. The other blocks

are clustered in two, and have no interconnections.

Fig. 9. Complete wiring scheme for n=8. Each cluster of inputs correspond
to a separate value of k, and these clusters have no connection in between.

For demonstration purposes, pairs generated by the second

set are shown on the right-hand side.

A verbal guideline for the approach can be provided as

follows:

• Given a k, insert the first k pairs

(<0, k>,<1, k + 1>,· · · ,<k − 1, 2k>) into the first

block.

• Insert the next k blocks to the second; then the following

k into the first...

• Continue this process until the first set is exhausted.

• Insert every item in the second set into the second block.

• Repeat steps above for every k.

• If n is an even number, consider the k = n/2 case

separately as described above.

As long as the first-second block selection process is

respected, regardless of the order in which the pairs are

inserted, no collisions can occur. Finally, it is not difficult to

prove that the number of columns does not exceed ⌊n
2 ⌋ in

this scheme.

III. CONCLUSION

We presented an algorithm to connect all pairs of n termi-

nals in an n-terminal one-sided, binary-tree switch in ⌊n/2⌋
columns of wiring. We have implemented and tested this

algorithm in Java. The implementation provides an .svg vector

output as well as an ASCII console representation of the

wiring scheme. The code for the algorithm is available at

https://github.com/kubuzetto/crossbarWiring/.

[1] A. Yavuz Oruç. One-sided binary-tree-based crossbar

switch fabrics. Invention Disclosure. University of Maryland,

College Park. PS-2014-57. Apr. 9, 2014.

