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Abstract. We describe a model to calculate saliency of objects due to
their motions. In a decision-theoretic fashion, perceptually significant
objects inside a scene are detected. The work is based on psychologi-
cal studies and findings on motion perception. By considering motion
cues and attributes, we define six motion states. For each object in a
scene, an individual saliency value is calculated considering its current
motion state and the inhibition of return principle. Furthermore, a global
saliency value is considered for each object by covering their relationships
with each other and equivalence of their saliency value. The position of
the object with highest attention value is predicted as a possible gaze
point for each frame in the animation. We conducted several eye-tracking
experiments to practically observe the motion-attention related princi-
ples in psychology literature. We also performed some final user studies
to evaluate our model and its effectiveness.
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1 Introduction

The impact of psychology and neuroscience disciplines to mature the techniques
developed in computer graphics has increased through newly discovered biologi-
cal facts. In psychological science, the sensitivity of human perception to motion
is still a contemporary research issue. The fact that motion attracts attention
is a former claim. New arguments focus on the attributes of motion. Recent
developments in neurobiological science have helped to discover the reaction of
brain to visual stimuli in very low detail. Recently, as opposed to the previous
beliefs, it has been experimented that motion per se does not attract attention,
but some of its attributes do [1].

We use neurobiological facts on motion and the hints provided by motion-
related psychophysical experiments to develop a metric calculating the saliency
of the objects due to their motion in computer graphics scenes. The model
estimates the relative saliencies of multiple objects with different movements.

To evaluate our model, we performed a user study in which the observers’
reactions to objects having high and low saliencies are analyzed. The results of
this experiment verify that the proposed metric correctly identifies the objects
with high motion saliency.

J.M. Allbeck and P. Faloutsos (Eds.): MIG 2011, LNCS 7060, pp. 168–179, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Decision Theoretic Approach to Motion Saliency in Computer Animations 169

This paper presents a model to determine the perceptually significant objects
in animated video and/or game scenes based on the motions of the objects.
Instant decisions provided by the model could simplify interactive target decision
and enable controlling the difficulty level of games in a perceptual manner.

The rest of the paper is organized as follows: In Section 2, a review of previous
studies in computer graphics utilizing the principles related to motion perception
and the psychological principles that affected our model are presented. Section
3 presents our model and the details of the user studies are given in Section 4
before concluding the paper in the last section.

2 Related Work

The related work for motion saliency could be divided into two parts as the
usage of motion perception in Computer Graphics and the psychological studies
related to the effect of motion on visual attention.

Computer Graphics. Saliency could be seen as the bottom-up stimulus driven
part of the visual attention mechanism in which task dependent attention does
not have a role. Recently, saliency computation has gained more interest in com-
puter graphics. One of the earliest attempts to compute saliency of 2D images
was described by Itti et al. [8]. A widely known saliency computation framework
that works on 3D mesh models was proposed by Lee et al. [11] which computes
saliency according to the surface curvature properties of the meshes. Both of
these models compute saliency based on the center-surround mechanism of hu-
man visual attention. Compared to these more general saliency computation
frameworks, there are less works on motion based saliency computation.

The saliency computation framework proposed by Bulbul et al. [4] calculates
motion saliency in a center-surround fashion and combines it with geometric and
appearance based saliencies to generate an overall saliency map. The motion
saliency computation in this work is based on the idea that the regions having a
distinct motion compared to their surroundings become more salient. Halit and
Capin [6] proposed a metric to calculate the motion saliency for motion-capture
sequences. In this work, the motion capture data is treated as a motion curve
and the most salient parts of these curves are extracted as the keyframes of the
animation.

Peters and Itti [13] observed the gaze points on interactive video games and
concluded that motion and flicker are the best predictors of the attended location
while playing video games. Their heuristic for predicting motion-based saliency
(as for other channels like color-based and orientation-based) works on 2D images
and it is also based on the center-surround machanism.

Visual sensitivity to moving objects is another aspect of motion perception
that is utilized in computer graphics. Kelly [9] and Daly [5] studied to measure
the spatio-temporal sensitivity and fit computational models according to their
observations. Yee et al. [17] built on these studies and used the spatio-temporal
sensitivity to generate error tolerance maps to accelerate rendering.
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Psychological Literature. Andersen’s research [2] elaborated low level pro-
cessing of motion cues in visual system by showing specific roles of Where sys-
tem in the brain, which is a part of visual cortex processing motion [12]. Spatial
awareness based on motion cues and its hierarchical processing have been inves-
tigated in this study by analyzing different receptor cells having varied roles in
Where system.

In spatial domain, visual system is tend to group stimuli by considering
their similarity and proximity as introduced in Gestalt principles. It is shown
that visual system searches similarities also in temporal domain and can group
stimuli by considering their parallel motions [10]. A bunch of moving dots with
the same direction and speed could be perceived as a moving surface with this
organization.

Along with color, depth, and illumination; central-surround organization is
also applied to motion processing in visual system. The neurons processing mo-
tion have a double-opponent organization for direction selectivity [2].

Visual motion may be referred as salient since it has temporal frequency.
On the other hand, recent studies in cognitive science and neuroscience have
shown that motion by itself does not attract attention. Phases of motion have
different degrees of influence on attention. Hence, each phase of motion should
be analyzed independently.

Abrams and Christ [1] experimented different states of motion to observe the
most salient one. They indicated that the onset of motion captures attention
significantly compared to other states. Immediately after motion onset, the re-
sponse to stimulus slows with the effect of inhibition of return and attentional
sensitivity to that stimulus is lost.

Singletons, having different motion than others within stimuli, capture atten-
tion in a bottom-up, stimulus driven control. If there is a target of search, only
feature singletons attract attention. If it is not the target, observers’ attention is
not taken. However, abrupt visual onsets capture attention even if they are not
the target [16].

Other than motion onset, the experiments in the work of Hillstrom and Yantis
[7] showed that the appearance of new objects captures attention significantly
compared to other motion cues.

3 Approach

By considering psychological literature given in the previous section, we describe
a model to compare attention values of objects in terms of motion. Initially, we
consider the motion attributes to discriminate different states of an object’s
motion. Following six states form the essence of a motion cycle (Fig. 1):

Static: No change of location.
Object Appearance: Appearance of an object which was not previously

present on the screen.
Motion Onset: The start of motion (static to dynamic).
Motion Offset: The end of motion (dynamic to static).
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Fig. 1. Motion cycle of an object in an animation. Perceptually distinct phases are
indicated as six states. Object appearance is the initial state for each object.

Continuous Motion: The state of keeping the motion with the same velocity.
Motion Change: Change in the direction or speed of a motion.

3.1 Pre-experiment

We performed an eye-tracker based pre-experiment to observe the relations be-
tween the defined states and the attentively attractive objects.

In the experiment, subjects were asked to watch the animations including
movements of five balls within a 3D room. Eight different animations were used
(Fig. 2). In each of them, different motion states and the observers’ reactions to
them are analyzed. We used an SMI Red Eye Tracker to observe and analyze
gaze points of subjects during the animations. Eight voluntary graduate students
who have normal or corrected to normal vision participated in the experiments.
The subjects were not told about the purpose of the experiments and each of
them watched eight different animations.

Experiment cases. The cases used in the pre-experiment are as follows:

– Case 1: Motion onset and motion offset are tested. Five initially static objects
start to move in sequence with at least 3 seconds intervals. At the end, forty
seconds later, all objects stop again in sequence with at least 3 seconds
intervals.

– Case 2: Motion onset and motion offset are tested for shorter intervals. All
objects start to move in sequence with 0.3 seconds intervals and stop the
same way.

– Case 3: Object appearance is tested. Some objects starts to move and one
object abruptly appears. There is an interval of five seconds between the
latest motion onset and the object appearance.

– Case 4: Object appearance, motion onset, and motion change are tested.
One object starts to move, one object appears, and another moving object
changes its direction at the same time.
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Fig. 2. Screenshots from the eight pre-experiment animations. a: Motion onset and
offset are tested. b: Motion onset and offset are tested for shorter intervals. c: Object
appearance is tested. d: Object appearance, motion onset, and motion change are
tested. e: Object appearance, motion onset, and motion change are tested in larger
spatial domain. f: Object appearance, motion onset, and motion change are tested in
sequential order. g: Velocity difference is tested. h: States are tested altogether.

– Case 5: Object appearance, motion onset, and motion change are tested in
larger spatial domain. Only difference from the forth case is that the objects
are placed further points on the screen.

– Case 6: Object appearance, motion onset, and motion change are tested in
sequential order. This time, three states do not occur at the same time, but
in sequential order with intervals of 3 seconds.

– Case 7: Velocity difference is tested. Each object starts to move at the same
time and the same direction with different velocities.

– Case 8: States are tested altogether.

Observations. The observations according to the pre-experiment results can
be expressed as follows:

Motion onset, motion change, and object appearance states strongly attract
attention. In the first case (Fig. 2-a), five object onsets were performed and
among eight subjects, five subjects looked at all off the motion onsets. Each of
the other three subjects missed only one motion onset and the missed objects
were different for each of them. The gaze of all subjects was captured by the
appearance of the object in the third animation (Fig. 2-c). In the cases four
and five, none of the three objects with three different state sets dominate over
the others (Fig. 2-d,e); indicating that motion onset, motion change, and object
appearance states do not suppress each other. However, motion offset, continuous
motion, and static states could be suppressed by any of the other three states.
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Continuous motion and motion offset states capture attention merely over
static state. The gazes of the subjects were rarely transferred to the objects
with a motion offset event. However, when we asked the subjects, they have
informed us that they were aware of all motion offsets but they did not move
their gazes to see them. We can conclude that, in most cases, subjects perceive
motion offsets in their peripheral view and their attention is not captured by
these events.

None of the objects in static state captures attention while others are in
different states in all of the experiments.

An important observation is that, if the time interval between two state transi-
tions (not for the same object) is smaller than 0.3 seconds, the one which is later
set was not captured by the subjects. In case two (Fig. 2-b), for instance, where
all objects start to move in sequential order with 0.3 seconds intervals, none
of motion onsets truly captured attention of the subjects. This is an expected
behavior since following the first event, human attentional mechanism remains
on this location in the first 0.3 seconds, causing new events to be discarded [15].
After this very short period, inhibition of return (IOR) mechanism slows the re-
sponse to the current focus of attention enabling previously unattended objects
to be attended. This decay time for the state is 0.9 seconds. After 0.9 seconds,
the effect of state disappears [14] (Fig. 2-b,d,e,f).

Gaze is transferred to the closest object upon multiple events attracting at-
tention. In the final case (Fig. 2-h), we observed that if more than one motion
change, object appearance, motion onset, or motion change appears at the same
moment, subjects gazes are commonly transferred to the closest object to the
current gaze point.

Lastly, if more than one object have the same state with the same speed and
the same direction of motion, they are recognized as a single object according
to the Gestalt principles introduced in the previous section. In the case eight,
subjects did not check each object separately in that moments, instead they
looked at a point in the middle of this object group having the same motion
direction and speed.

3.2 Overview

The overview of the proposed model is shown in Figure 3 and it contains two
main parts. In the first part, individual motion saliencies of the objects are
calculated. In the second part, the relations among the object are examined and
final focus of attention is decided.

3.3 Individual Motion Saliency

Based on the observations from the pre-experiments and findings from the litera-
ture in psychology, we build an individual motion saliency model. The proposed
model calculates instant saliency values for each object in an animation. Once
the motion state of an object is detected, its saliency value is calculated as a
time dependent variable.
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Fig. 3. Overview of the proposed model

We define an initial saliency value for each motion state according to the dom-
inancy among the states (Fig. 4). These initial values are the peak saliencies and
decays in time. Although these constants do not reflect an exact proportional
dominancy result of the states among each other, they are used to make a correct
decision with respect to their attentional dominancy. The initial saliency values
for three most dominant states motion onset, motion change and object appear-
ance are assigned as 10k while they are 2k for motion offset and continuous
motion. For static state, it is 1k. Usage of k as a coefficient enables converting
the calculated saliencies for each object to probabilities defining the chance of
getting the observers’ gazes.

For each visible object, calculated individual saliency values change between
1k and 10k according to the formulas shown in Table 1 where t stands for the
elapsed time after a state is initialized. Obviously, the saliency value for invisible
objects is zero.

Saliency of an object in the static state is always 1k, because we observed it
never captures attention among other states. Also, saliency value is permanently
2k for continuous motion since a moving object may get attention anytime if
nothing interesting, e.g. states of all other objects are static, happens on the
screen and subject is not performing a target search [16]. Likewise, motion offset
could get attention over static or continuous motion. However, it is under decay
with the effect of IOR until the state becomes static.

Motion onset changes to continuous motion state; therefore, its value decays to
2k with IOR. It is exactly the same for motion change state. Hence, during inhi-
bition of return ( 0.3sec< t < 0.9sec ) [5] [6], attention value decays linearly from
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Fig. 4. Attentional dominancy of motion states over each other. Object appearance,
motion onset and motion change are the most dominant states capturing attention.
Motion offset and continuous motion is slightly more dominant over just static state.

Table 1. Individual Attention Values

States t ≤ 300ms 300ms < t < 900ms 900ms ≤ t

STATIC 1k 1k 1k

ONSET 10k 10k(1.25 − 7t/6) 2k

OFFSET 2k 10k(1.25 − 5t/6) 1k

CONTINUOUS 2k 2k 2k

CHANGE 10k 10k(1.25 − 7t/6) 2k

APPEARANCE 10k 10k(1.3 − 4t/3) 1k

10k to 2k as shown on Table 1. Differently, object appearance decays to 1k
because its state may become static. Similarly, motion offset decays linearly
from its peak value 2k to 1k, since its following state is static.

Inhibition of return is not applied to any of the states if the elapsed time on
a state is smaller than 300ms. As we mentioned earlier, during this time other
state changes are not captured by subjects in the experiments.

This model provides calculating individual motion saliency values of each ob-
ject in real time. However, it is still not sufficient to decide the focus of attention
without examining the relationships of the objects among each other.

3.4 Global Attention Value

So far we have shown a model to calculate individual attention values of the
objects. On the other hand, our visual system does not interpret objects in
the scene individually. It tries to represent any stimulus in the simplest way. As
Gestalt psychologists concluded that all similar objects in our vision are grouped
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and perceived as a simple object [3], we included a Gestalt organization into
our model. Each object has a Gestalt ID. The objects having identical motion
direction and speed are labeled with the same Gestalt ID. The pseudocode for
this procedure is as follows.

SetGestaltIDs(objects[]){

curGestalt = 1;

for i = 1 to NUMBEROFOBJECTS

gestaltSet = false;

for j = 1 to i-1

if objects[j].velocity equals to objects[i].velocity

objects[i].gestaltID = objects[j].gestaltID;

gestaltSet = true;

break;

if gestaltSet is false

objects[i].gestaltID = curGestalt;

curGestalt++;

}

All objects with the same Gestalt ID obtain the highest individual saliency
among this group. In the pre-experiments, we clearly observed that subjects’
gaze circulates around not one object if the objects have the same speed and
direction with some other objects.

Another problem that is not solved by the individual saliency model is the case
of equivalence. If more than one object with different Gestald IDs have the same
highest individual attention value, which object will be chosen as the possible
gaze point is not addressed. An observation we made during pre-experiments
suggest a solution to this problem. If more than one states were set at the same
time, subjects commonly looked at the closest object to the previous gaze point.
Therefore, we included an attribute to our model to consider Eulerian distance of
each object from previous decision of gaze point. It is calculated as the pixelwise
Eulerian distance from the previously decided focus of attention in the screen.

Finally, if there are multiple Gestalt groups with the highest calculated
saliency, the closest one to the previously decided focus of attention is selected
as the current focus of attention.

4 Experiment

Experiment Design. We have performed a formal user study to validate our
model. In the experiment, subjects have looked at a 22” LCD display where
twenty spheres animate for two minutes in a 3D room (Fig. 5). For each half-
second of animation, a random object changes its motion state to another ran-
dom state. The subjects’ task is pressing a button when the color of a sphere
becomes the target color which is shown to the subjects during the experiment.
Interval time for two color change is at least three seconds. In order to avoid
color or shape related bias, all spheres have the same size and randomly selected
colors having close luminances. The reason for selecting different colors for each
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sphere is to decrease the pop-out effect for the spheres that change color. During
an animation, we have three cases of color changes. The first case is the color
change of highly salient spheres, which are chosen with strong decisions of our
model. In second case, among spheres having the lowest saliencies, the most dis-
tant spheres to the previously calculated gaze points are chosen. In third case,
we choose the sphere in a fully random fashion. All cases are shown to the users
in a mixed manner multiple times.

Fig. 5. Sample screenshot from the experiment

16 voluntary graduate or undergraduate level students (4 females, 12 males)
whose average age is 23.75 attended to our experiment. All subjects have normal
or corrected to normal vision and they are not informed about the purpose of
the experiment. The experiment is introduced to the subjects as a game. In the
game, to get a higher score, they should press the button as soon as possible when
an object changes its color to the target color. Before starting the experiment,
each subject performed a trial case to learn how to play the game.

Experiment Results. The results of the experiment can be seen in Fig. 6. We
expect the response times to color changes of salient spheres to be shorter since
they are expected to occur on the focus of attention. As expected, observers
responded to color changes of salient spheres in a shorter time compared to
those appeared on lowly salient spheres and randomly selected spheres. The
differences for both cases are statistically significant (p < 0.05) according to the
applied paired t-test.

5 Conclusion and Future Work

For motion saliency in computer animations we analyzed psychological find-
ings on the subject by conducting an eye-tracking experiment and developed a
decision theoretic approach to momentarily determine perceptually significant
objects. Our observations from the experiment show that each phase of the mo-
tion has a different impact on perception. To that end, we defined six motion
states and assigned attention values to them by considering their dominance.
Individual attention values are determined for each object by considering their
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Fig. 6. The results of the experiment. Error bars show the 95% confidence intervals.

current state and elapsed time after a state initialization to include the impact
of IOR. We elaborated our model by including the relationships of the objects
on the scene with each other using Gestalt principles. Overall model makes de-
cisions for the most salient object and its position is predicted as the gaze point.
We carried-out a final experiment to evaluate the effectiveness of decisions our
model make.

One of the limitations of our approach is the consideration of only bottom-up
and stimulus-driven attention like most of other saliency works. Our final ex-
periment had promising results although it included a simple task for users to
search. On the other hand, more complex tasks could remove the effect of mo-
tion saliency. The model should be evaluated with further experiments and im-
proved by the impact of new task-dependent cases. Furthermore, motion saliency
and other object based saliency methods considering object material and shape
should be compared. In our model we only consider saliency caused by motion.
Dominancy of other saliency parameters on motion saliency is not evaluated in
this paper.
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