
Shifting Network Tomography Toward A Practical Goal

Denisa Ghita, Can Karakus∗, Katerina Argyraki, Patrick Thiran
EPFL, Switzerland

ABSTRACT
Boolean Inference makes it possible to observe the conges-
tion status of end-to-end paths and infer, from that, the con-
gestion status of individual network links. In principle, this
can be a powerful monitoring tool, in scenarios where we
want to monitor a network without having direct access to
its links. We consider one such real scenario: a Tier-1 ISP
operator wants to monitor the congestion status of its peers.
We show that, in this scenario, Boolean Inference cannot be
solved with enough accuracy to be useful; we do not at-
tribute this to the limitations of particular algorithms, but
to the fundamental difficulty of the Inference problem. In-
stead, we argue that the “right” problem to solve, in this
context, is compute the probability that each set of links is
congested (as opposed to try to infer which particular links
were congested when). Even though solving this problem
yields less information than provided by Boolean Inference,
we show that this information is more useful in practice, be-
cause it can be obtained accurately under weaker assump-
tions than typically required by Inference algorithms and
more challenging network conditions (link correlations, non-
stationary network dynamics, sparse topologies).

1. INTRODUCTION
Network performance tomography can be a powerful mon-

itoring tool: it makes it possible to observe the status of end-
to-end paths and infer, from that, the status of individual net-
work links. The basic idea is to express the status of each ob-
served path as a function of the status of the links that make
up the path; in this way, we can form a system of equations,
where the known entities are the path observations and the
network topology, while the statuses of the links constitute
the unknowns. The appeal of the approach is that it is ap-
plicable in scenarios where one needs to monitor a network
without having direct access to its links: a coalition of end-
∗Currently at Bilkent University,Turkey.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2011, December 6–9 2011, Tokyo, Japan.
Copyright 2011 ACM 978-1-4503-1041-3/11/0012 ...$10.00.

users could use network performance tomography to mon-
itor the behavior and performance of their Internet Service
Providers (ISPs); an ISP operator could use it to monitor the
behavior and performance of its peers.
On the other hand, there are reasons to be skeptical about

the applicability of this approach in practice. First, tomo-
graphic algorithms necessarily make assumptions that can-
not be verified in a real network (Sections 2 and 3), which
means that their results may be inaccurate and, most impor-
tantly, there is no way to tell to what extent they are inaccu-
rate. Second, tomographic algorithms are typically designed
and evaluated over generated graphs that model full router-
level or Autonomous-System-level topologies; yet there is
no evidence that these models capture well the topologies
encountered in scenarios like the ones mentioned above, where
using tomography would make sense—indeed, we will see
that the topologies encountered in these scenarios can be sig-
nificantly sparser (Section 3).
In this work, we look at whether and how network per-

formance tomography could be useful in the following real
scenario. A European Tier-1 ISP (we will call it the “source
ISP”) wants to monitor the behavior and performance of
its most “important” peers, i.e., the peers through which it
routes most traffic that it cannot deliver directly to the cor-
responding destination’s ISP. In particular, for each peer, the
source ISP wants to understand: when the peer is responsi-
ble for connectivity/performance problems encountered by
the customers of the source ISP; how frequently the peer
is congested and how its congestion level changes over the
course of day or week; how well the peer reacts to excep-
tional situations like Border Gateway Protocol (BGP) fail-
ures, flash crowds, or distributed denial-of-service attacks.
Of course, the source ISP does not have access to its peers’
networks and cannot directly monitor their links; it can only
perform end-to-end path measurements, i.e., monitor a num-
ber of one-way paths from its own network to various In-
ternet end-hosts that go through the peers in question. So,
the source ISP’s operators asked us: can we apply network
performance tomography to these end-to-end measurements
to answer some or all of the above questions regarding the
peers?
At first, this scenario sounded like a goodmatch for Boolean

Inference algorithms [12, 8, 6, 11], which monitor paths dur-
ing a particular time interval (on the order of a few minutes)
and infer which particular links on these paths were con-

gested during that interval. In principle, the source ISP could
use one of these algorithms to infer which particular links of
each peer were congested during each time interval, which
would help answer all of the above questions.
Yet Boolean Inference turned out to be too hard a prob-

lem in this scenario. State-of-the-art Inference algorithms
performed significantly worse than expected, even when ad-
justed and fine-tuned to the scenario. Our initial reaction
was to focus on the limitations of existing algorithms and
design a new one that would overcome them; we found that
each feature or twist we added to our algorithm to improve
it came at the cost of significant complexity, yet brought lit-
tle benefit—in the end, all Inference algorithms that we tried
performed very well under certain conditions (randomly con-
gested links, link independence, stationary network dynam-
ics, dense topologies) and equally badly under the opposite
conditions, which are the ones that interest us. So, in the sce-
nario considered by this work, we could not solve Boolean
Inference with sufficient accuracy to be useful.
Instead, we argue that, in this scenario, the “right” prob-

lem to solve is Congestion Probability Computation, i.e.,
compute, for each set of links in the network, the proba-
bility that the links in this set are congested. This is less
information than what would be provided by Boolean Infer-
ence: the source ISP learns only how frequently each set of
links of each peer are congested over a long period of time
(hours or so), as opposed to which particular set of links of
each peer are congested during each particular time interval
(of minutes or so). On the other hand, we will show that,
in practice, this information is more useful, because it can
be obtained accurately under weaker assumptions and more
challenging network conditions.
After reviewing existing results on Boolean performance

tomography and the assumptions that they rely on (Section 2),
we make two contributions:
(i) We experimentally show that, in the scenario where

an ISP wants to monitor the behavior and performance of
its peers, state-of-the-art Boolean-Inference algorithms (in-
cluding our own) are not accurate enough to be useful (Sec-
tion 3). We argue that this is not due to the limitations of the
particular algorithms, but that any Inference algorithm can
fail under certain conditions, and there is no practical way of
knowing whether and when these conditions occur.
(ii) We argue that, in this scenario, it is more useful to

solve an easier problem, i.e., compute the probabilities that
different sets of links are congested (Section 4). We present
a new algorithm that solves this problem and experimentally
show that it is accurate under weaker assumptions than those
required by Boolean Inference and the network conditions
imposed by our scenario—link correlations, non-stationary
network dynamics, sparse topologies (Section 5).
We present related work in Section 6 and conclude in Sec-

tion 7.

2. BACKGROUND
In this section, we summarize existing results related to

Boolean network tomography and the assumptions that they
rely on.
We use the following network model: The network is a di-

rected graph, where the vertices represent network elements
(end-hosts or routers) and the edges represent logical links
between network elements. We denote by E∗ the set of all
links in the network, and by ei the i-th link based on an ar-
bitrary ordering. A path is a sequence of links starting from
and ending at an end-host. We denote by P ∗ the set of all
paths in the network, while pi is the i-th path based on an ar-
bitrary ordering. There are no loops in the network, i.e., any
given link participates in any given path at most once, and
the set of paths P ∗ remains unchanged during each mea-
surement period.
We divide time into even intervals, such that each exper-

iment involves a finite sequence of T intervals. We model
the congestion status of link ei during an experiment as a
stationary random process. We say that link ei is good (resp.
congested) during an interval, if it drops less than or equal
to (resp. more than) a fraction f of the packets it receives
during that interval. The status of link ei during interval t is
modeled with a random variable Xei(t):

Xei(t) =

{

1, if ei is congested during interval t
0, otherwise.

For a given link ei, all random variables Xei(t), t = 1..T,
are identically distributed, andXei denotes any one of them.
Links {ei, ej , ek, . . . } are said to be independent when the
random variables {Xei , Xej , Xek , . . . } are mutually inde-
pendent; otherwise, the links are correlated. Similarly, we
model the congestion status of path pi during an experiment
as a stationary random process. We say that path pi is good
(resp. congested) during an interval, if it drops less than or
equal to (resp. more than) a fraction fd of the packets sent
along path pi during that interval, where d is the number of
links traversed by pi [8]. The status of path pi during inter-
val t is modeled with a random variable Ypi

(t):

Ypi
(t) =

{

1, if pi is congested during interval t
0, otherwise.

For a given path pi, all random variables Ypi
(t), t = 1..T,

are identically distributed, and Ypi
denotes any one of them.

All the algorithms that we will discuss rely on the follow-
ing assumptions and conditions:

ASSUMPTION 1. Separability: A path is good if and only
if all the links it traverses are good.

ASSUMPTION 2. E2E Monitoring: Based on end-to-end
measurements, we can determine whether a path is good
during a particular time interval.

CONDITION 1. Identifiability: Any two links are not tra-
versed by the same paths.

We use the term “assumption” to refer to a statement whose
correctness is impossible to test given the set of all links E∗

and the set of all paths P ∗; we use the term “condition” to
refer to a statement whose correctness can be tested given
E∗ and P ∗.
The Boolean Inference problem is the following: given

the network graph, a particular time interval t, and the set
of congested paths P c(t) during interval t, infer the set of
congested links Ec(t) during that interval [8]. This prob-
lem is ill-posed: given any network graph 1 and a partic-
ular outcome (set of congested paths) P c(t), there may be
multiple possible solutions (set of congested links) Ec(t)
that could have led to this outcome. For example, suppose
that, in Fig. 1, all three paths are congested during a time
interval; there are 8 possible sets of congested links that
could have led to this outcome: {e1, e3}, {e1, e4}, {e2, e3},
{e1, e2, e3}, {e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}, and {e1,
e2, e3, e4}.
All inference algorithms are subject to certain common

sources of inaccuracy. First, the four assumptions mentioned
above do not always hold in practice; for example, a network
operator typically detects whether a path is good during a
time interval through probing, which may incur false nega-
tives and false positives. Moreover, since Boolean Inference
is an ill-posed problem, no algorithm can solve it exactly
(identify the congested links Ec(t) without false negatives
or positives) for any P c(t). However, it is possible to com-
pute an approximation of Ec(t) that is close to the actual
solution when certain additional assumptions hold. Hence,
what distinguishes different inference algorithms from one
another is the set of additional assumptions that each of them
introduces. One popular assumption is:

ASSUMPTION 3. Homogeneity: All links are equally likely
to be congested.

A different problem, related to Boolean Inference, isCon-
gestion Probability Computation (from now on, just “Prob-
ability Computation” for brevity): given the network graph
and the set of congested paths P c(t), t = 1..T , over T con-
secutive time intervals, compute the congestion probability
of each set of links, i.e., the probability that all the links in
that set are congested [11]. Probability Computation may
be a well-posed or ill-posed problem, depending on the as-
sumptions we make.

ASSUMPTION 4. Independence: All links are indepen-
dent.

Under Assumption 4, Probability Computation is well-
posed, and there exists an algorithm that solves it [11]: it
first computes the congestion probability of each individ-
ual link ei, i.e., P(Xei = 1); since links are assumed to
be independent, it then derives the congestion probability of
1Except for the trivial case when end-hosts are directly intercon-
nected.

Symbol Definition
ei The i-th link.
E∗ The set of all links.

Ec(t) The set of congested links during interval t.
Xei Random variable associated with link ei.
pi The i-th path.
P ∗ The set of all paths.

P c(t) The set of congested paths during interval t.
Ypi

Random variable associated with path pi.
C∗ The set of all correlation sets.

Table 1: Defined symbols.

each set of links, e.g., P(Xei = 1, Xej = 1) = P(Xei =
1) P(Xej = 1).

ASSUMPTION 5. Correlation Sets: Links are grouped into
known correlation sets, such that links from the same corre-
lation set may be correlated, but they are always indepen-
dent from links in other correlation sets.

We denote by C∗ the set of all correlation sets in the network.
We define a correlation subset to be a non-empty subset of a
correlation set.

CONDITION 2. Identifiability++: Any two correlation sub-
sets are not traversed by the same paths.

For example, in Fig. 1, Case 1, this condition holds; in Case
2 it fails, because the sets of links {e1, e4} and {e2, e3} be-
long to different correlation sets, and are both traversed by
the same paths, i.e., {p1, p2, p3}.
Under Assumption 5, if Condition 2 holds, Probability

Computation is well-posed [9]; however, there exists no al-
gorithm that solves it completely. The closest result is a
heuristic that computes the congestion probability of each
individual link [9]. However, as we will see, its accuracy
can be significantly improved.
A key question is how does one separate links into corre-

lation sets, i.e., how does one know in advance which links
may be correlated with each other. In this paper, we consider
the scenario where a source ISP wants to use tomography
to monitor its peers, and there is no practical way for it to
know which links of each peer may be correlated. Hence,
we define one correlation set per Autonomous System (AS),
i.e., all links that belong to one AS are assigned to a separate
correlation set, and we use an AS-level graph. In short, since
we do not know which links of each AS are correlated, we
assume that all links that belong to the same AS may be cor-
related. To define correlation sets in this manner, we need to
map each link in the network graph to an AS, but no addi-
tional information, e.g., correlation factors between different
links.
Bayesian Inference is a way to perform Boolean Infer-

ence by using Probability Computation as a first step [11]. In
particular, this approach poses Boolean Inference as a Maxi-

e1 e4

e2 e3

p1 p2

p3

Figure 1: A toy topology.
Links E∗ = {e1, e2, e3, e4}. Paths P ∗ = {p1, p2, p3}. We
consider two cases throughout the paper. In Case 1, the cor-
relation sets are C∗ = {{e1}, {e2, e3}, {e4}}. In Case 2, the
correlation sets are C∗ = {{e1, e4}, {e2, e3}}.

mum Likelihood Estimation (MLE) problem: of all the pos-
sible solutions to the Boolean Inference problem, it looks
for the one that occurred with the highest probability. Since
Probability Computation provides the probability that any
set of links is congested, it also provides the probability that
any particular solution occurred, e.g., in Fig. 1, the proba-
bility that the set of congested links is {e1, e3} is equal to
P(Xe1 = 1, Xe2 = 0, Xe3 = 1, Xe4 = 0).
We state all defined symbols in Table 1.

3. INFERENCE LIMITATIONS
In this section, we look at three inference algorithms for

mesh networks: (i) Sparsity (originally called Tomo2) [6],
an adaptation of Duffield’s inference algorithm for trees [8]
to mesh networks; (ii) Bayesian-Independence (originally
called CLINK) [11]; and (iii) Bayesian-Correlation, a new
algorithm that we developed for this work [10]. We experi-
mentally show that neither of them performs accurate infer-
ence in the scenario that we are considering. Our point is not
that these algorithms are not good (we pick them precisely
because they represent the state of the art). Instead, we argue
that any inference algorithm is bound to be accurate in some
scenarios and inaccurate in others, and there is no evidence
that the scenarios favored by one algorithm occur more fre-
quently than those favored by the others.

3.1 Intuition
First, we qualitatively explain through toy examples the

sources of inaccuracy in each algorithm.
Sparsity. The gist behind this algorithm is that a few

congested links are responsible for many congested paths;
2We use new names for the existing algorithms, in order to better
distinguish them from each other.

P(Yp1
= 0) = P(Xe1

= 0) P(Xe2
= 0).

P(Yp2
= 0) = P(Xe1

= 0) P(Xe3
= 0).

P(Yp3
= 0) = P(Xe4

= 0) P(Xe3
= 0).

P(Yp2
= 0, Yp3

= 0) = P(Xe1
= 0) P(Xe3

= 0) P(Xe4
= 0).

P(Yp1
= 0, Yp2

= 0) = P(Xe1
= 0) P(Xe2

= 0) P(Xe3
= 0).

P(Yp1
= 0, Yp3

= 0) = P(Xe1
= 0) P(Xe2

= 0) P(Xe3
= 0)

P(Xe4
= 0).

(a) Bayesian-Independence.

P(Yp1
= 0) = P(Xe1

= 0) P(Xe2
= 0).

P(Yp3
= 0) = P(Xe3

= 0) P(Xe4
= 0).

P(Yp1
= 0, Yp2

= 0) = P(Xe1
= 0) P(Xe2

= 0, Xe3
= 0).

P(Yp2
= 0, Yp3

= 0) = P(Xe1
= 0) P(Xe3

= 0)

P(Xe4
= 0).

P(Yp1
= 0, Yp2

= 0, Yp3
= 0) = P(Xe1

= 0) P(Xe4
= 0)

P(Xe2
= 0, Xe3

= 0).

(b) Bayesian-Correlation, for Case 1.

Figure 2: Equations formed by Boolean-Inference algo-
rithms for the example of Fig. 1.

hence, the algorithmwhich assumes Homogeneity (Assump-
tion 3), “favors” links that participate in more congested
paths, i.e., the larger the number of congested paths in which
a link participates, the more likely it is to be labeled as con-
gested. For example, in the toy topology of Fig. 1, if the
congested paths are {p1, p2, p3}, Sparsity will infer that the
congested links are {e1, e3} (because each of them partici-
pates in two congested paths).
Sparsity works best in scenarios where congestion is con-

centrated in a few links; this is not the case, for instance,
when there exists a lot of congestion at the edge of the net-
work, i.e., many links adjacent to end-hosts are congested
at the same time. For example, in Fig. 1, if links e2 and e3
are both congested, that will cause the congested paths to
be {p1, p2, p3}, and Sparsity will pick solution {e1, e3}, i.e.,
it will miss one congested link and falsely blame one good
link.
Bayesian-Independence. This is a Bayesian Inference

algorithm, i.e., of all the possible solutions, it picks the one
that occurs with the highest probability. Hence, this algo-
rithm consists of two steps: (i) Probability Computation,
which monitors the network and learns the probability with
which each solution occurs. (ii) Probabilistic Inference, which
looks at the status of paths during each particular time inter-
val and determines which set of links were most likely con-
gested during that interval, based on the output of the previ-
ous step; this is an NP-complete problem [11], so, this step
uses an approximate algorithm. For example, in Fig. 1, if the
congested paths are {p1, p2, p3}, Bayesian-Independence will
consider all 8 possible solutions and pick the one that occurs
with the highest probability.
The Probability Computation step monitors the status of

paths, learns the probability that each set of paths is con-
gested and, from these, computes the probability that each
link is congested; under the Independence assumption (As-
sumption 4), it then computes the probability of each solu-
tion. We illustrate with the example of Fig. 1: First, the
method computes the probability that p1 is good, which is
equal to the probability that e1 and e2 are both good since
it assumes links are independent. It forms the first equa-
tion in Fig. 2(a). In the same way, it computes the prob-
ability that each path and each pair of paths is good and
forms the remaining equations in Fig. 2(a). The resulting
system has four unknowns (one for each link) and four lin-
early independent equations, hence, gives us the probabil-
ity that each link is good. Assuming Independence, we can
therefore easily compute the probability of each particular
solution, e.g., the probability of solution Ec = {e1, e3} is
P(Xe1 = 1) P(Xe2 = 0) P(Xe3 = 1) P(Xe4 = 0).
Bayesian-Independence needs the Independence assump-

tion, in order to form equations by combining probabili-
ties related to different links. As previous work has already
pointed out [9], this assumption does not always hold, which
causes Bayesian-Independence to compute some probabili-
ties incorrectly, leading to incorrect inference. For example,
suppose that, in Fig. 1, links e1 and e4 are always good,
while e2 and e3 are perfectly correlated (either both are con-
gested or both are good). This means that P(Xe2 = 0, Xe3 =
0) != P(Xe2 = 0) P(Xe3 = 0), and the last two equations
in Fig. 2(a) are wrong. As a result, Bayesian-Independence
incorrectly determines that {e1, e3} is the solution with the
highest probability and always picks it over the correct one,
{e2, e3}.
A more subtle source of inaccuracy in the Probabilistic

Inference step is the following: Bayesian-Independence de-
termines whether link ei was congested during a particular
time interval based on the probability that link ei is con-
gested during any time interval. More formally, Bayesian-
Independence approximates the value of random variable
Xei(t) with its expected value E[Xei(t)] = P(Xei = 1).
We illustrate with an example. Suppose that the Probability
Computation module observes the network in Fig. 1 for an
hour and computes, among others, the following probabili-
ties:

P(Xe1 = 1, Xe2 = 0, Xe3 = 0, Xe4 = 0) = 0.8.

P(Xe1 = 1, Xe2 = 1, Xe3 = 0, Xe4 = 0) = 0.1.

This means that, during the one hour of monitoring, {e1}
was the only congested link in the network for 80% of the
time, while {e1, e2} were the only congested links in the
network for 10% of the time. Now suppose that during the
last 1-minute interval within this hour, the congested paths
are {p1, p2}; the Probabilistic Inference module determines
that there are two possible solutions for this interval, {e1}
and {e1, e2}, and picks the first one (because it has a higher
probability associated with it). In essence, Probabilistic In-
ference determines that this solution is more likely to have

occurred during the last minute, because it occurred more
frequently over the last hour.
In practice, we cannot tell whether this approximation works,

unless we have “insider information” on network conditions.
For example, consider a link that is normally congested very
rarely, and Probability Computation correctly computes a
low congestion probability for it; suppose this link incurs
a technical failure or comes under a flooding attack and be-
comes severely congested for a few time intervals; unless
we already know when this failure/attack occurs and how
long it lasts, Probabilistic Inference will not pick this link
as congested (because it has a low congestion probability
associated with it). So, even if Probability Computation cor-
rectly computes for what fraction of time a link is congested,
Probabilistic Inference cannot use this information correctly,
because it operates at a different time scale.
Finally, the Probabilistic Inference step uses an approxi-

mate algorithm to pick the solution that occurred with the
highest probability, which means that it does not always pick
the right one.
To summarize, Bayesian-Independence introduces three

additional sources of inaccuracy: the Independence assump-
tion (used in both steps), the fact that it approximates the
value of random variable Xei(t) with its expected value (in
the Probabilistic Inference step), and the use of an approx-
imate algorithm to pick the solution that occurred with the
highest probability (also in the Probabilistic Inference step).
Bayesian-Correlation. In an effort to remove one source

of inaccuracy, we developed a new inference algorithm that
takes into account link correlations. It is similar to Bayesian-
Independence (it also consists of a Probability Computation
and a Probabilistic Inference step), however, in the former
step, instead of Independence, it assumes Correlation Sets
(Assumption 5). For instance, in the example of Fig. 1,
Case 1, it treats P(Xe2 = 0, Xe3 = 0) as an extra un-
known, as opposed to mistakenly breaking it into P(Xe2 =
0) P(Xe3 = 0), and forms the equations in Fig. 2(b). The
resulting system has 5 unknowns (one for each link plus one
for the pair of correlated links {e2, e3}) and 5 linearly inde-
pendent equations, hence, gives us the probability that each
set of links is good. Once we know these probabilities, we
can compute the probability of each solution [9].
However, taking link correlations into account comes at

the price of introducing extra unknowns, and we can com-
pute all of them if and only if the Identifiability++ condi-
tion (Condition 2) holds. For instance, in the example of
Fig. 1, Case 2, it is impossible to compute the probability
that {e1, e4} are both good or the probability that {e2, e3}
are both good. The intuition is the following: both these sets
of links are traversed by the same set of paths, {p1, p2, p3};
this makes it impossible to distinguish one pair from the
other based on path observations and to compute the prob-
ability that each pair is good. So, the Probability Compu-
tation step of Bayesian-Correlation cannot always compute
the probability of all solutions, because the Identifiability++

Spar. Bayesian-Indep. Bayesian-Corr.
Step 1 Step 2 Step 1 Step 2

Separability X X X X X
E2E Mon. X X X X X
Homogeneity X
Independence X X X
Correlation Sets X X
Identifiability X X X
Identif.++ X X
Other approx./ X X Xheuristic

Table 2: Sources of inaccuracy for Boolean Inference
algorithms: assumptions, conditions, and approxima-
tions/heuristics.

condition does not always hold. As a result, the Probabilistic
Inference step does not have all the information it needs to
pick the likeliest solution; in the particular example consid-
ered above, if the congested paths are {p1, p2, p3}, it picks
at random one of the solutions {e1, e4} or {e2, e3}.
To summarize, Bayesian-Correlation introduces four ad-

ditional sources of inaccuracy: the Correlation Sets assump-
tion and—like Bayesian-Independence—the fact that it ap-
proximates the values of random variables with their ex-
pected values and the use of an approximate algorithm to
pick the solution that occurred with the highest probability
(in the Probabilistic Inference step).
Conclusion. Each inference algorithm introduces its own

sources of inaccuracy (summary in Table 2), and there is no
basis for arguing that one algorithm covers more cases than
the others.

3.2 Experiments
We now look at the performance of the three Inference al-

gorithms under various scenarios (Fig. 3). We assume that
Separability, E2E Monitoring, and Correlation Sets always
hold, because this is the weakest set of assumptions under
which we can solve Boolean Inference; the rest of the as-
sumptions and conditions in Table 2 may or may not hold,
depending on the scenario.
Metrics. We consider two metrics: during a particular

time interval, the detection rate of an algorithm is the frac-
tion of congested links that the algorithm correctly identified
as congested; the false positive rate of an algorithm is the
fraction of links incorrectly identified as congested out of all
links inferred as congested by the algorithm. Each detection
rate and false-positive rate we show is an average over 1000
time intervals.
Topologies. We use two kinds of topologies: the Sparse

topologies are real topologies, given to us by the source ISP;
the Brite topologies are synthetic topologies.
Each Sparse topology was obtained in the following way.

The operator of the source ISP performed traceroutes from
a few end-hosts located inside her network toward a large
number of external end-hosts; she discarded all incomplete
traceroutes. In this way, she collected a router-level graph

(where each vertex corresponds to an IP router and each edge
corresponds to an IP-level link). Moreover, she mapped each
IP router to an Autonomous System (AS) and created an AS-
level graph, where each vertex corresponds to a border router
and each edge corresponds to an inter-domain link between
border routers of peering ASes, or an intra-domain path be-
tween two border routers of the same AS. The source ISP
wants to monitor its peers at the AS level (it is not inter-
ested in each peer’s internals), hence, we use the AS-level
graph as the network topology. The router-level graph tells
us how the links in the AS-level graph are correlated—if a
router-level link becomes congested, then all the AS-level
links that share this router-level link become congested at
the same time.
Each Brite topology also consists of a router-level and an

AS-level graph, each derived using the corresponding mod-
ule of the Brite topology generator [1].
We show results for a representative Sparse topology of

about 2000 links and a representative Brite topology of about
1000 links, each of them with 1500 paths—the results for
other topologies were similar. The Identifiability++ condi-
tion holds only for the Brite topologies.
Simulator. In the beginning of each experiment, we de-

termine the probability that each (AS-level) link is congested
and the degree of correlation between congested links (de-
pending on whether they share underlying router-level links).
In the experiments that we present here, only 10% of the
links are assigned a non-zero congestion probability, which
is chosen at random between 0 and 1. Which particular 10%
of the links have a non-zero probability of congestion differs,
depending on the scenario we are simulating.
Each experiment consists of multiple time intervals. In

the beginning of each interval, we flip a biased coin for each
link, to determine whether the link will be good or con-
gested, such that we respect the individual and joint prob-
abilities of congestion determined in the beginning of the
experiment; if we determine that a link will be good (resp.
congested) in this interval, we randomly assign to it a packet-
loss rate between 0 and 0.01 (resp. 0.01 and 1), according to
the loss model in [12] (and similar to the loss models in [13,
11]). In each interval, packets are sent along each path; for
each packet that arrives at a given link, we flip a biased coin
to determine whether it will be dropped or not, such that we
respect the packet-loss rate assigned to the link in the begin-
ning of the interval.
Random Congestion (Brite). In this scenario, the 10%

of the links that have a non-zero congestion probability are
chosen at random. As we see in Fig. 3, all Inference algo-
rithms perform equally well: on average, they identify 90%
of the congested links and miss fewer than 2% of them (ex-
cept from Bayesian-Independence that misses 10%).
The intuition is the following. The Brite topology models

a full AS-level topology, hence, it is relatively “dense,” i.e.,
paths tend to criss-cross. This is good for Inference algo-
rithms, because the denser the topology, the higher the rank

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05

Random
Congestion

Concentrated
Congestion

No Independence No Stationarity Sparse
Topology

D
et

ec
tio

n
R

at
e

Sparsity
Bayesian-Independence

Bayesian-Correlation

(a) Detection Rate.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

Random
Congestion

Concentrated
Congestion

No Independence No Stationarity Sparse
Topology

Fa
ls

e
Po

si
tiv

es
 R

at
e Sparsity

Bayesian-Independence
Bayesian-Correlation

(b) False Positive Rate.

Figure 3: Performance of inference algorithms under various realistic congestion scenarios, when 10% of the network
links have a positive probability of being congested.

of the resulting system of equations and the fewer the pos-
sible solutions to each observation—which means that the
heuristic/approximate aspect of each algorithm is exercised
less. Bayesian-Independence performs slightly worse, be-
cause it assumes that links are independent, whereas, in sev-
eral time intervals, some of the congested links happen to be
correlated (share an underlying router-level link).
Concentrated Congestion (Brite). In this scenario, the

10% of the links that have a non-zero probability of con-
gestion are chosen to be located toward the edge of the net-
work, i.e., there is no congestion at the core. As we see
in Fig. 3, Sparsity’s detection rate drops to 75%, while its
false-positive rate rises to 10%. This happens because Spar-
sity assumes Homogeneity and picks links that are traversed
by many congested paths, hence it is more likely to pick so-
lutions that involve links located close to the core of the net-
work. This result does not imply that Sparsity is worse than
the other algorithms—just that it performs worse in this par-
ticular scenario.
No Independence (Brite). In this scenario, the 10% of

the links that have a non-zero probability of congestion are
chosen such that each of them is correlated with at least one
other. As we see in Fig. 3, Bayesian-Independence’s detec-
tion rate drops below 80%, while its false-positive rate rises
to 25%; this happens because its Probability Computation
part assumes Independence, hence learns the probability of
each set of links incorrectly.
No Stationarity (Brite). This scenario is similar to the

previous one, plus the congestion probabilities of links (the

10% of them, that is) change every few time intervals. As we
see in Fig. 3, it is the turn of Bayesian-Correlation’s detec-
tion rate to drop below 80%; this happens because its Prob-
abilistic Inference step assumes stationarity, i.e., it assumes
that a solution is more likely to have occurred during the
last time interval, just because it occurred more frequently
throughout the entire experiment.
Sparse Topology. This scenario is similar to the first one

(the 10% of the links that have a non-zero congestion prob-
ability are chosen at random), but is applied to the Sparse as
opposed to the Brite topology. As we see in Fig. 3, all Infer-
ence algorithms suffer. The fact that Bayesian-Independence
has a 90% detection rate should not be mistaken for success:
it achieves this by aggressively marking links as congested,
which results in a 45% false-positive rate.
The intuition is the following. The Sparse topology was

created by running traceroutes from the source ISP to vari-
ous Internet end-hosts. However, most traceroutes returned
incomplete/inconclusive results and had to be discarded, which
resulted in a “sparse” view, where few paths intersect one
another. This is bad for Inference algorithms, because the
sparser the topology, the lower the rank of the resulting sys-
tem of equations—which means that each algorithm has to
rely more on its heuristic/approximate aspect to pick a solu-
tion. Note that we did not in any way engineer this scenario
to make the Inference algorithms fail as we did in the previ-
ous scenarios—we did not introduce extra link correlations
or non-stationarity.
We should clarify that the Sparse topology is the most

complete topology that the ISP operator was able to collect

with the resources (the monitoring points) she had at her dis-
posal. One might argue that, if the operator had done a bet-
ter job and collected a more complete (less sparse) topology,
the Inference algorithms would have performed better. This
is true, however, in our experience from working with the
operator, piecing together a topology from traceroutes is a
complex task—some routers respond to a traceroute probe
through a different interface than the one where the probe
was received, some routers do not respond to traceroute probes
at all, while load-balancing interferes with traceroute results.
Hence, we think it is fair to assume that operators are typi-
cally not able to collect complete topologies.
Conclusion. Any Inference algorithm can perform badly

under certain network conditions, and there is no evidence
that such conditions do not occur in practice. Moreover, all
Inference algorithms perform badly on Sparse topologies—
in particular, each Inference algorithm performs worse on
Sparse topologies under easy conditions (random conges-
tion) than on Brite topologies under worst-case conditions
(congestion at the edges for Sparsity, link correlations for
Bayesian-Independence, and non-stationarity for Bayesian-
Correlation).

4. SHIFTING GOALS
Until now, Probability Computation has been viewed as

a step to enable Boolean Inference; we argue that, in the
scenario considered in this work, Probability Computation is
a useful problem to solve in its own right, and that it makes
more sense to solve this problem than Boolean Inference.
If accurately solved, Boolean Inference would provide the

source ISP with the status of each link in the network during
each time interval. This information would enable the source
ISP to attribute blame to a peer for a particular connectiv-
ity/performance problem faced by the source ISP’s customers
and/or request compensation in case an SLA has been vi-
olated. However, as we saw in the last section, given the
Sparse topology, state-of-the-art Inference algorithms yield
a detection rate as low as 68% and a false-positive rate as
high as 47%; attributing blame or extracting compensation
is practically impossible based on this level of accuracy.
Probability Computation provides less information than

Boolean Inference: if accurately solved, it would provide
the source ISP with the congestion probability of each set
of links in the network, i.e., how frequently each set of links
are congested, but not which particular links were congested
when.
On the other hand, we have an algorithm (Step 1 of Bayesian-

Correlation) that solves Probability Computation with fewer
sources of inaccuracy than Boolean Inference algorithms:
! It assumes Separability, E2E Monitoring, and Correla-

tion Sets—a weaker set of assumptions than those assumed
by Sparsity and Bayesian-Independence.
! Unlike the Bayesian Inference algorithms (Bayesian-

Independence and Bayesian-Correlation), our algorithm does
not need to solve any NP complete problem.

!Unlike the Bayesian Inference algorithms, our algorithm
does not need to approximate the value of any random vari-
able with its expected value: if we compute that P(Xei =
1) = 0.8 over T time intervals, we interpret this as “ei
was congested for 80% of the T time intervals.” In contrast,
the Bayesian Inference algorithms use the same information
to infer during which particular intervals ei was congested.
When network conditions change over time, the Bayesian
Inference algorithms may make the wrong decision (§3.1);
our result, however, still holds, because it concerns the av-
erage behavior of the link over the T time intervals, and not
the diagnosis of the congested links over one time interval.
The biggest challenge in solving Probability Computa-

tion is complexity: there are as many unknowns as sets of
links that belong to the same AS; in a real network, there
may be billions of such sets, and it could take an imprac-
tical amount of time to solve the corresponding system of
equations. Hence, we design our algorithm to accurately
compute a configurable subset of the computable probabili-
ties, depending on the available resources. For instance, we
can configure our algorithm to compute only the congestion
probability of each individual link, or the congestion proba-
bility of each set of one, two, or three links. This allows us
to control the complexity of the algorithm and obtain useful
information in a timely manner, even if we do not wait to
solve Probability Computation completely (i.e., we do not
learn the congestion probability of all sets of links).
In the next section, we support these claims with experi-

mental results.

5. PROBABILITY COMPUTATION
In this section, we present an algorithm that solves the

Probability Computation problem, assuming Separability, E2E
Monitoring, and Correlation Sets (Assumptions 1, 2, and 5).
In particular, our algorithm computes the congestion prob-
ability of each correlation subset for which the following is
true: there exists no other correlation subset in the network
that is traversed by the same paths. When the Identifiabil-
ity++ condition holds, this is true for all correlation subsets,
which means that our algorithm computes the congestion
probability of each set of links in the network.
After introducing a basic building block of the algorithm

(§5.1) and our terminology and notation (§5.2), we describe
the algorithm itself (§5.3), and evaluate it experimentally
(§5.4).

5.1 A Basic Building Block
Informally, our algorithm forms a system with enough lin-

early independent equations to compute as many congestion
probabilities as possible. Each equation corresponds to a
different set of paths, in the following way: consider a set of
paths P ; by the Separability assumption, if all paths in P are
good, then all links traversed by the paths in P (denoted by

Links (P)) are good; hence, we can write:

P

⋂

p∈P

Yp = 0

 = P

⋂

e∈Links(P)

Xe = 0

=
∏

C∈C∗

P

⋂

e∈Links(P)∩C

Xe = 0

 . (1)

In Fig. 1, Case 1, if we apply Eq. 1 to path set {p1}, we
obtain:

P(Yp1
= 0) = P(Xe1 = 0, Xe2 = 0)

= P(Xe1 = 0) P(Xe2 = 0). (2)

If we apply Eq. 1 to path set {p1, p2}, we obtain:

P(Yp1
= 0,Yp2

= 0) = P(Xe1 = 0, Xe2 = 0, Xe3 = 0)

= P(Xe1 = 0) P(Xe2 = 0, Xe3 = 0). (3)

We could form as many such equations as there are sets
of paths in the network. A naı̈ve approach would be to con-
sider all 2|P∗| possible sets of paths in the network, form a
system of that many equations, reduce this to a system of
linearly independent equations3, and solve the latter. How-
ever, processing 2|P∗| equations is practically infeasible for
any topology with more than a few tens of paths (our Sparse
topology has roughly 1500 paths). We address this challenge
by using a novel technique that forms the minimum number
of equations needed, without considering all possible sets of
paths.

5.2 Definitions and Notation

! The path coverage function Paths (E) maps a set of
links E to the set of paths that traverse at least one of these
links. In Fig. 1, Paths ({e1, e2}) = {p1, p2},Paths ({e1, e3})
= {p1, p2, p3}.

! The link coverage function Links (P) maps a set of
paths P to the set of links traversed by at least one of these
paths. In Fig. 1, Links ({p1}) = {e1, e2}, Links ({p1, p2}) =
{e1, e2, e3}.

! A correlation subset E is a non-empty subset of a corre-
lation set, i.e., E ⊆ C for some correlation set C. We often re-
fer to “all the possible correlation subsets” in the network; in
Fig. 1, Case 1, these are {e1}, {e2}, {e3}, {e4}, {e2, e3}; in
Case 2, they are {e1}, {e2}, {e3}, {e4}, {e2, e3}, {e1, e4}.

!We define the complement of a correlation subset E that
belongs to a correlation set C as Ē = C \ E . In Fig. 1,
Case 1, {e1} = ∅, {e2} = {e3}, and {e3} = {e2}, {e4} =
{e2, e3} = ∅.

! A correlation subset E is potentially congested if none
of its links is traversed by a path that is always good, i.e.,
every path that traverses a link in E is congested during at
3If we consider the logarithm of Eq. 1, we obtain a linear equation.

least one time interval. In Fig. 1, Case 1, suppose path p3
is always good, whereas the other two paths are not; this
means that links e3 and e4 are always good, hence, the po-
tentially congested correlation subsets are {e1} and {e2}.
The congestion probability of any correlation subset that is
not potentially congested is 0.

! If P is a set of paths and Ê is an ordering of all the po-
tentially congested correlation subsets, we define the vector
Row(P, Ê) as follows: we apply Eq. 1 to the set of paths P
and we form a vector r, where

ri =

1, if the i-th correlation subset in Ê appears
in the equation for path set P

0, otherwise.

Row(P, Ê) is equal to r.

! If P̂ is an ordering of a set of path sets and Ê is an or-
dering of all the potentially congested correlation subsets,
we define the matrix Matrix (P̂ , Ê) as follows: the i-th row
of the matrix is equal to Row(Pi, Ê), where Pi is the i-th
path set in P̂ . For example, in Fig. 1, Case 1, suppose all
correlation subsets are potentially congested; given an or-
dering of these correlation subsets Ê = 〈{e1}, {e2}, {e3},
{e4}, {e2, e3}〉 and an ordering of path sets P̂ = 〈{p1}, {p1, p2}〉,

Matrix (P̂ , Ê) =

[

1 1 0 0 0
1 0 0 0 1

]

.

This matrix corresponds to the system of equations 2 and 3.

5.3 The Algorithm
To compute the congestion probability of each set of links,

it is sufficient to compute the congestion probability of each
potentially congested correlation subset—or, equivalently,
for each potentially congested correlation subset E , compute
the probability that all links in that subset are good [9], i.e.,

P

(

⋂

e∈E

Xe = 0

)

.

For instance, in Fig. 1, Case 1, if all the correlation subsets
are potentially congested, it is sufficient to compute P(Xe1 =
0), P(Xe2 = 0), P(Xe3 = 0), P(Xe4 = 0), and P(Xe2 =
0, Xe3 = 0).
To compute these probabilities, our algorithm (Alg. 1)

forms as many linearly independent equations as it can by
applying Eq. 1 to different path sets. The input to the algo-
rithm is an ordering Ê of all the potentially congested corre-
lation subsets that can appear in such equations.4 The output
is an ordering of path sets P̂ to which we apply Eq. 1 to form
a system of equations.
First, we form an initial list of path sets P̂ (lines 1 to

5). We ensure that each correlation subset E ∈ Ê is tra-
versed by at least one of the path sets in P̂ , namely path
4When Identifiability++ does not hold, there may exist correlation
subsets that cannot appear in any equation. We give an example in
our technical report [10].

Algorithm 1 Selection of Path Sets

Input: Ê : a list of potentially congested
correlation subsets

Variables: P̂ : a list of path sets
P : a path set
E : a correlation subset

1: P̂ ← 〈〉
2: for all E ∈ Ê do
3: P ← Paths (E) \ Paths

(

Ē
)

4: P̂ ← P̂ + P
5: end for

6: R← Matrix(P̂ , Ê)
7: N← NullSpace (R)

8: repeat
9: r← 0
10: for all E ∈ SortByHammingWeight(Ê,N) do
11: for all P ⊆ Paths (E) \ Paths

(

Ē
)

do
12: r← Row(P, Ê)
13: if ||r× N|| > 0 then
14: P̂ ← P̂ + P
15: go to line 21
16: else
17: r← 0
18: end if
19: end for
20: end for
21: N← NullSpaceUpdate (N, r)
22: until N has no columns left or r = 0

23: return P̂

Notation:
A \ B: subtract set B from setA
P̂ + P : add path set P to list of path sets P̂

set Paths (E) \ Paths
(

Ē
)

(lines 2 and 3). We illustrate
with an example. Suppose that, in Fig. 1, Case 1, all cor-
relation subsets are potentially congested and we pick order-
ing Ê = 〈{e1}, {e2}, {e3}, {e4}, {e2, e3}〉. After line 5 has
been executed, P̂ consists of the path sets in the last column
of the following table:

E Ē Paths (E) Paths
(

Ē
)

Paths (E) \
Paths

(

Ē
)

{e1} ∅ {p1, p2} ∅ {p1, p2}
{e2} {e3} {p1} {p2, p3} {p1}
{e3} {e2} {p2, p3} {p1} {p2, p3}
{e4} ∅ {p3} ∅ {p3}

{e2, e3} ∅ {p1, p2, p3} ∅ {p1, p2, p3}

If we apply Eq. 1 to each of the path sets in P̂ , we obtain
the system of equations shown in Fig. 2(b). In this particu-
lar example, the corresponding matrixMatrix (P̂ , Ê) has full
column rank, which means that we can solve our system and
compute, for each correlation subset, the probability that all
links in that subset are good, hence also the congestion prob-
ability of each set of links in the network. In general, how-
ever, the resulting system of equations is under-determined,
and we continue with the second part of the algorithm.
We augment the initial list of path sets P̂ by iteratively

Algorithm 2 NullSpaceUpdate

Input: N: a matrix of size n× p
r: a row vector of n elements

1: return
(

In − N∗1×r
r×N∗1

)

N∗2:p

Notation:
In: the identity matrix of size n
N∗1: the 1-st column of matrix N
N∗2:p: the matrix formed by taking columns

2 to p of N

adding path sets, such that we increase the rank of the associ-
ated matrixMatrix (P̂ , Ê) (lines 6 to 22). More specifically,
we first compute the matrix R associated with the initial list
of path sets P̂ (line 6), as well as a matrix N, whose columns
span the null space of R (line 7); the latter can be done us-
ing standard techniques, like singular value decomposition
or QR factorization. Next, we iteratively identify a path set
P such that adding r = Row(P, Ê) to the system matrix,
increases the latter’s rank, and we add P to P̂ (lines 12 to
15). Every time we add a new path set to P̂ , we update the
matrix N, such that its columns always span the null space
of Matrix (P̂ , Ê) (line 21). We stop the iteration when N
is left with 0 columns or there are no more path sets left to
consider, i.e., the loop in line 10 finishes (line 22).
The first point worth noting is that identifying a new set of

paths P such that Row(P, Ê) increases the rank of the sys-
tem matrix is not straightforward. If such a set of paths ex-
ists, our algorithm finds it, because it iterates over all sets of
paths (lines 10 and 11) and tests whether each of them satis-
fies the corresponding condition (lines 12 and 13). However,
to save time, the algorithm orders the sets of paths such that
it first tries those that are more likely to satisfy the condition
(this is the role of the SortByHammingWeight function).
Intuitively, if the i-th element of vector r is non-zero and
the i-th row of matrix N has many non-zero elements, then
||r × N|| > 0 is likely to be true. Thus, our algorithm picks
the row of N with the largest number of non-zero elements
(the largest Hamming weight); suppose that this row corre-
sponds to a correlation subset E (line 10). Then, it looks
for any path set P that traverses E (line 11), and picks the
first one that satisfies the condition (lines 12 to 15). The
SortByHammingWeight helps us pick the correlation sub-
set E—it outputs an ordering of the correlation subsets in Ê
such that the first element in that ordering corresponds to the
row of matrix N with the largest Hamming weight.
The second point worth noting about the algorithm is that

computing the null space of a matrix with thousands of rows
takes a significant amount of time, and doing this at every
iteration would render the algorithm practically useless. In-
stead, the NullSpaceUpdate function (Alg. 2) updates the
null space incrementally, i.e., given the null space computed
in the previous iteration, it efficiently updates the null space.
Complexity. The complexity of our algorithm is O(n3

1 +
n2
1 · 2

n2 · n3), where n1 = |Ê | is the number of potentially

 0

 0.05

 0.1

 0.15

 0.2

Random
Congestion

Concentrated
Congestion

No IndependenceM
ea

n
of

 th
e

Ab
so

lu
te

 E
rro

r
Independence

Correlation-heuristic
Correlation-complete

(a) The mean of the absolute error under various congestion sce-
narios, when computing the congestion probability of individual
links. Brite topologies.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

Random
Congestion

Concentrated
Congestion

No IndependenceM
ea

n
of

 th
e

Ab
so

lu
te

 E
rro

r

Independence
Correlation-heuristic

Correlation-complete

(b) The mean of the absolute error under various congestion sce-
narios, when computing the congestion probability of individual
links. Sparse topologies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Absolute Error

Independence
Correlation-heuristic

Correlation-complete

(c) CDF of the absolute error for the “No Independence” con-
gestion scenario, when computing the congestion probability of
individual links. Sparse topologies.

 0

 0.05

 0.1

 0.15

 0.2

Brite SparseM
ea

n
of

 th
e

Ab
so

lu
te

 E
rro

r

links
correlation subsets

(d) The mean of the absolute error of the Correlation-complete al-
gorithm in the “No Independence” scenario, when computing the
congestion probability of individual links and correlation subsets.

Figure 4: Performance of Probability Computation algorithms for Brite and Sparse topologies.

congested correlation subsets, n2 = maxE∈Ê |Paths (E) | is
the maximum number of paths that traverse the same poten-
tially congested correlation subset, n3 is the nullity of the
initial system matrixMatrix (P̂ , Ê). We express complexity
as a function of these three parameters, because any one of
them can dominate the other two, depending on the topology
and the congestion scenario. The proof can be found in our
technical report [10].

5.4 Experiments
We now look at the performance of our algorithm (we la-

bel it Correlation-complete) and compare it to the two most
related pieces of work: (i) Independence [11], which is the
Probability Computation step of the Bayesian-Independence
algorithm; (ii)Correlation-heuristic [9], an earlier heuristic
that, under the Correlation Sets assumption, computes the
probability that each individual link is congested.
We reconsider all congestion scenarios described in Sec-

tion 3.2: Brite (Fig. 4(a)) and Sparse (Fig. 4(b)) topologies,
where 10% of the links have a non-zero probability of being
congested. The links with a non-zero congestion probabil-
ity are chosen either at random (Random Congestion), or
chosen to be located toward the edge of the network (Con-
centrated Congestion), or chosen such that each of them is
correlated with at least one other link (No Independence).
In addition, in each of these scenarios, the congestion prob-

ability of each link changes every few time intervals, i.e.,
we add the “No Stationarity” scenario on top of each of the
above scenarios described in Section 3.2.
First, we evaluate how accurately each algorithm com-

putes the congestion probability of each individual link. For
each link, we determine the absolute error between the ac-
tual congestion probability (the one assigned by the simu-
lator) and the one inferred by each algorithm; we show the
mean of the absolute error for all potentially congested links,
i.e., all links which are not traversed by any good path.
For the Brite topologies (Fig. 4(a)), in the “Random Con-

gestion” and “Concentrated Congestion” scenarios, all algo-
rithms perform well, with a mean absolute error below 0.07;
for the “No Independence” scenario, the error of the Inde-
pendence algorithm doubles compared to that of the alterna-
tives (because it ignores link correlations).
For the Sparse topologies (Fig. 4(b)), the performance of

the Correlation-heuristic and Independence algorithms de-
grades, because these algorithms create a significantly larger
number of equations than ours, which introduces more noise
when solving the system. For the “No Independence” sce-
nario, the mean of the absolute error of the Independence al-
gorithm is 3 times larger than that achieved by our algorithm.
Since this scenario is the most challenging for all algorithms,
we also show the cumulative distribution function (CDF) of
the absolute error for each algorithm (Fig. 4(c)). For a per-

fect algorithm, this CDF would be a single point at x =
0, y = 100%, i.e., the algorithm would compute each con-
gestion probability with an absolute error of 0. In general,
the earlier the CDF hits the y = 100% line, the better the
performance of the corresponding algorithm. Correlation-
heuristic is able to compute accurately (with an absolute er-
ror below 0.1) the congestion probability of only 65% of the
links, while the Independence algorithm is more uniformly
inaccurate for 50% of the links. Our algorithm does better,
with an absolute error less than 0.1 for 80% of the links.
We also show how accurately our algorithm computes the

congestion probabilities of different sets of links, not just
individual links (Fig. 4(d)). Knowing these probabilities re-
veals which links within each peer are actually correlated;
this can be useful for computing “disjoint” paths to some
destination, i.e., paths that are not likely to fail at the same
time. Our algorithm performs well: even in the “No Inde-
pendence” scenario, it accurately computes the congestion
probability of all correlation subsets for Brite topologies, or
a significant number (depending on available resources) of
correlation subsets for Sparse topologies, with a mean abso-
lute error of 0.1 or less.
Conclusion. The Probability Computation problem can

be solved accurately, even on sparse topologies with link
correlations and non-stationary network conditions.

6. RELATEDWORK
Network performance tomography, which infers link char-

acteristics from end-to-end path measurements, is an ill-posed
inverse problem that has been well studied in the last decade.
The initial methods relied on temporal correlation to infer

the loss rate of network links, either by sending multicast
probe packets (which are perfectly correlated on multicast
links) [4, 3, 2], or by sending unicast probe packets back to
back (which are strongly correlated on shared links), as an
emulation of multicast packets [5, 7]. Multicast is not widely
deployed, and groups of unicast packets require substantial
development and administrative costs, hence it is not easy to
rely on temporal correlations.
The set of methods [12, 8, 11] that followed use only

unicast end-to-end flows for the simpler goal of identifying
the congested links (i.e., identifying if the link loss rate or
delay exceeds some threshold, instead of computing their
actual value). As different assignments are possible, these
“Boolean” network-tomographic methods use additional in-
formation or assumptions. In Sections 2 and 3, we discussed
these assumptions and their practical impact in detail.
We show that, in the scenario of an ISP that wants to mon-

itor the performance of its peers, it is more useful to compute
the probabilities that links are congested rather than identify
the congested links. We propose an algorithm that computes
these probabilities without assuming link independence (as
opposed to the method in [11]) and achieves significantly
higher accuracy for sparse topologies than the heuristic pro-
posed in [9].

7. CONCLUSION
We considered a real scenario where network performance

tomography could be useful: a Tier-1 ISP wants to monitor
the congestion status of its peers. In principle, this could be
achieved using Boolean Inference; in practice, in turned out
that, in this scenario, Boolean Inference cannot be solved
accurately enough to be useful. We argued that it makes
more sense to solve the Congestion Probability Computa-
tion problem—compute how frequently each peer’s links are
congested as opposed to infer which particular links are con-
gested when. We presented an algorithm that solves this
problem accurately under weaker assumptions than those
required by Boolean Inference and more challenging net-
work conditions (sparse topologies, link correlations, and
non-stationary network dynamics).

Acknowledgments
This work was supported by grant ManCom 2110 of the
Hasler Foundation, Bern, Switzerland, and by an Ambizone
grant from the Swiss National Science Foundation. We would
like to thank our shepherd Rocky K.C. Chang and the anony-
mous reviewers for their constructive feedback.

8. REFERENCES

[1] Boston University Representative Internet Topology Generator.
http://www.cs.bu.edu/brite/.

[2] A. Adams, T. Bu, T. Friedman, J. Horowitz, D. Towstey, R. Caceres,
N. Duffield, F. L. Presti, S. B. Moon, and V. Paxson. The Use of
End-to-end Multicast Measurements for Characterizing Internal
Network Behavior. IEEE Communications Magazine, May 2000.

[3] T. Bu, N. Duffield, F. L. Presti, and D. Towsley. Network
Tomography on General Topologies. In Proceedings of the ACM
SIGMETRICS Conference, 2002.

[4] R. Caceres, N. G. Duffield, J. Horowitz, and D. Towsley.
Multicast-based Inference of Network-Internal Loss Characteristics.
IEEE Transactions on Information Theory, 45:2462–2480, 1999.

[5] M. Coates and R. Nowak. Network Loss Inference Using Unicast
End-to-End Measurement. In Proceedings of the ITC Specialist
Seminar on IP Traffic Measurement, Modeling and Management,
2000.

[6] A. Dhamdhere, R. Teixeira, C. Drovolis, and C. Diot. Netdiagnoser:
Troubleshooting network unreachabilities usind end-to-end probes
and routing data. In Proceedings of ACM Conext, 2007.

[7] N. Duffield, F. L. Presti, V. Paxson, and D. Towsley. Inferring Link
Loss Using Striped Unicast Probes. In Proceedings of the IEEE
INFOCOM Conference, 2001.

[8] N. G. Duffield. Network Tomography of Binary Network
Performance Characteristics. IEEE Transactions on Information
Theory, 52(12):5373–5388, December 2006.

[9] D. Ghita, K. Argyraki, and P. Thiran. Network Tomography on
Correlated Links. In Proceedings of the ACM IMC Conference, 2010.

[10] D. Ghita, K. Argyraki, and P. Thiran. Rethinking boolean network
tomography. Technical report, EPFL, 2011.

[11] H. X. Nguyen and P. Thiran. The Boolean Solution to the Congested
IP Link Location Problem: Theory and Practice. In Proceedings of
the IEEE INFOCOM Conference, 2007.

[12] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Server-based Inference
of Internet Performance. In Proceedings of the IEEE INFOCOM
Conference, 2003.

[13] H. H. Song, L. Qiu, and Y. Zhang. NetQuest: A Flexible Framework
for Large-Scale Network Measurement. In Proceedings of the ACM
SIGMETRICS Conference, 2006.

