
 

 

 

  

Abstract— We tackle the problem of classifying 

multichannel electrocorticogram (ECoG) related to individual 

finger movements for a brain machine interface (BMI). For 

this particular aim we applied a recently developed 

hierarchical spatial projection framework of neural activity 

for feature extraction from ECoG. The algorithm extends the 

binary common spatial patterns algorithm to multiclass 

problem by constructing a redundant set of spatial projections 

that are tuned for paired and group-wise discrimination of 

finger movements. The groupings were constructed by 

merging the data of adjacent fingers and contrasting them to 

the rest, such as the first two fingers (thumb and index) vs. the 

others (middle, ring and little). We applied this framework to 

the BCI competition IV ECoG data recorded from three 

subjects. We observed that the maximum classification 

accuracy was obtained from the gamma frequency band (65-

200Hz). For this particular frequency range the average 

classification accuracy over three subjects was 86.3%. These 

results indicate that the redundant spatial projection 

framework can be used successfully in decoding finger 

movements from ECoG for BMI. 

 

I. INTRODUCTION 

N the past few years a number of research groups focused 

on decoding individual finger movements from invasively 

recorded neural activity [1,2,3]. The motivation for such an 

effort is to build a hand prosthetics that can be controlled 

solely by brain activity in the scope of a brain machine 

interface (BMI). Achieving such a detailed decoding 

performance was possible by invasive assessment of brain 

activity as it provides higher spatial and temporal resolution 

and signal to noise ratio (SNR) compared to noninvasive 

techniques such as EEG.  

In a recent study, individual finger movements were 

decoded from single unit activity (SUA) recorded from 

monkey subjects with penetrating electrodes in the M1 hand 

area [1]. The firing rates from multiple electrodes were used 

in conjunction with an artificial neural network (ANN) to 

decode the finger movements. They reported 95.5% 

average asynchronous decoding accuracy for individuated 
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finger and wrist movements across three monkeys. In [4], 

another modality, local field potential (LFP) that is 

recorded from rhesus monkeys with four 4x4 penetrating 

electrode grids in primary motor cortex, was used to 

classify dexterous grasp movements. The subjects are 

instructed to open and close three different types of 

switches. They used frequency domain features of 10 

visually selected LFP channels with an ANN for 

classification. The average classification accuracy was 

reported as 81% for decoding three different dexterous 

grasping tasks. 

Recently, finger movement decoding problem was 

studied using human subjects where the neural activity was 

assess with electrocorticography from 64 channels [5]. 

Shenoy and his colleagues used 3 different band features for 

each channel constituting a predictor space of 192 features. 

A linear programming machine which is a sparse support 

vector classifier was used for selecting a subset of features 

and giving decisions. They showed that an average 5-class 

error of 23% is possible across 6 subjects.  

In this paper we tackle the same problem of classifying of 

the movements of five fingers using ECoG. We employ a 

recently introduced redundant spatial projection framework 

based on common spatial patterns (CSP) algorithm for 

feature extraction from ECoG data for the identification of 

individual finger movements [6]. The redundant spatial 

projection framework enables the application of binary CSP 

to the multiclass finger decoding problem we tackle. We 

utilized a support vector machine (SVM) classifier to map 

the extracted spatial features into class labels. We use the 

ECoG data recorded from three subjects to demonstrate the 

efficiency of our decoding strategy.  

The rest of our paper is organized as follows. First, we 

explain the redundant spatial feature extraction and 

classification framework. Then, we describe the ECoG data 

set and provide the details of the decoding experiments we 

executed. Finally we present our results and conclude. 

II. METHODS AND MATERIALS 

A. Multiclass CSP with Hierarchical Grouping 

The ECoG data is generally recorded with subdural 

electrode grids from epileptic patients. A majority of 

electrodes is likely overlap with cortical regions out of the 

hand area of the motor cortex. Consequently, a small 

number of recording channels carry finger movement 
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Fig. 1. The ECoG signal is bandpass filtered and a redundant set 

of contrasts were constructed to compute CSP for pair wise and 

group wise discrimination. The resulting spatial projection 

features are fed into corresponding SVM classifiers. The pair-

wise and group-wise SVM results are fused using ECOC strategy 

to get the final classification decisions. 

related information. As in any learning process the 

generalization capacity of the model decreases with 

increasing dimensionality of the input data. Therefore, a 

dimension reduction algorithm needs to be employed to 

decrease the dimensionality. Although, it is possible to 

select channels manually as in [2], such an approach is 

cumbersome and one can easily eliminate an informative 

channel. In this study, we applied the common spatial 

patterns (CSP) [7] algorithm on band pass filtered 

multichannel ECoG signals to reduce them into a few 

virtual channels for dimension reduction and improve the 

SNR of spatially correlated ECoG data. The CSP is a 

subspace technique which is widely used among BMI 

community in binary decision problems for feature 

extraction. The spatial filters are a weighted linear 

combination of recording channels which are tuned to 

produce spatial projections maximizing the variance of one 

class and minimizing the other. We computed the spatial 

projection using 

[ ] [ ]nn XWX T

CSP =           (1) 

 

where the columns of W are the eigenvectors representing 

each spatial projection and X[n] is the multichannel ECoG 

data. The eigenvectors of the CSP algorithm are estimated 

via generalized eigenvalue decomposition by contrasting 

the covariance matrices of the first class (i.e. thumb finger) 

and the second class (e.g. one of the finger data that is not 

the first class, here thumb finger) of a two class training 

data set. 

Since we are tackling a multiclass problem, here we used 

the strategy of [6], to apply the CSP to the five-class finger 

movement data. In more detail, we constructed several 

spatial filters tuned to contrast pairs of finger movements 

such as 1 vs. 2; 1 vs. 3; 2 vs. 4 etc. Moreover, the spatial 

projections were extended to the group-wise contrasts of 

fingers such as {1, 2} vs. {3, 4 and 5} within the same spirit 

of [6]. Here, we expect that the adjacent fingers will have 

similar neural representations which can be used in 

improving the SNR of the spatial covariance matrices while 

computing the projections. A schematic diagram of 

decoding algorithm is presented in Fig. 1.   

 

B. SVM 

For each of the spatial projection, we constructed an 

SVM classifier with a radial basis function (RBF) kernel 

and probabilistic output. To construct the classifier, we used 

libsvm [8] which is a publicly available toolbox.  The SVM 

parameters g (kernel parameter) and C (cost or 

regularization parameter) were set to 0.25 and 100.  

 We constructed 10 pair-wise classifiers which contrasts 

one finger movement to another. In addition we used 

adjacent fingers as a hierarchy rule and contrasted two 

fingers vs. the others with the expectation that consecutive 

fingers are correlated in their neural representation. For this 

particular setup five spatial projections and five 

corresponding classifiers were constructed. In total there are 

15 spatial projections (10 paired, 5 group-wise) and related 

SVM classifiers. Each classifier provides a probability 

output p for a feature set being one class and (1-p) of being 

in the other. We employed an error correcting output code 

(ECOC) step to post process the outputs of redundant 

classifiers and provide a final decision [9, 10]. This last step 

was accomplished by multiplying the vector representing 

the log scaled classifiers output with the ECOC decoding 

matrix M of KxL with entries mi,j ∈ {0, 1} where L (=30) is 

two times the number of binary classifiers and K is the 

number of classes (i.e., 5 finger movements). The index 

corresponding to the maximum value of the ECOC output 

was selected as the predicted finger of the test data.  

 

C. ECoG Data 

We used multichannel ECoG data of BCI competition IV 

which is recorded from three subjects during finger flexions 

and extensions [11]. The electrode grid was placed on the 

surface of the brain. Each electrode array contained 48 

(8x6) or 64 (8x8) platinum electrodes and was embedded in 

silicon plastic and has a diameter of 4 mm. They were 

separated with 1 cm distance from each other. Synamps2 

amplifiers (Neuroscan, El Paso, TX) were used amplify the 

ECoG signal and digitize it with 1000 Hz frequency.  The 

finger index to be moved was shown with a cue on a 

computer monitor placed at the bedside. Each cue lasted 

two seconds and was followed by a two-second rest period 

during which the screen was blank.  The subjects moved 

one of their five fingers 3-5 times during the cue period. 

The experiment continued for 10 minutes for each patient.  

To reduce the data rate we low pass filtered the ECoG 

data with a 220Hz cutoff frequency and down sampled it to 
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Fig. 3. The classification accuracies in each frequency band for 

three subjects. The highest accuracies are obtained from 65-200 

Hz band features in all subjects. 
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Fig. 2. The average time frequency map computed from all

subjects using the most reactive channel set selected for each. The 

t-f surface was normalized to the energy in the first 500ms 

interval to identify modulated frequencies. Positive values 

represent energy increase and negative the decrease with respect 

to the baseline. 

500Hz. In order to identify the reactive frequency bands we 

implemented time-frequency analysis of ECoG data using 

short time Fourier transform. We aligned the ECoG data 

according to the movement onset covering a period of 

750ms before the onset and 1000ms after it. We normalized 

the t-f plane to the energy in the first 500ms period of the 

idle state. We provide a t-f map representing the group 

average of most reactive channels in each subject in Fig. 2. 

We observed a broadband energy increase in 65-200Hz 

frequency band with the onset of movement. The energy in 

7-32Hz decreased before the onset of the movement. We 

also observed energy increase in 0-6Hz band with the onset 

of the movement.   

Based on these observations, the ECoG data of each 

subject was subband filtered in 0-6, 7-13, 14-32 and 65-

200Hz frequency bands. We used one second data 

following movement onset for spatial feature extraction. 

Next, each band was transformed into four virtual channels 

with CSP algorithm by taking the first and last two 

eigenvectors. The variance of each channel was computed 

in all aligned data to get 4 dimensional feature vectors for 

each trial. Finally, the variances are log transformed and 

used as input features to SVM classifiers.  

III. RESULTS 

We used a 10 times 10 fold cross validation procedure to 

estimate the classification accuracy of our system. In Fig. 3, 

for each frequency subband we present the classification 

accuracies. In all subjects, the gamma (65-200Hz) band 

provided the highest decoding accuracy. The average 

classification accuracy over all three subjects was 86.3%. In 

two subjects the second highest classification rate was 

obtained from 0-6Hz band whereas for the first subject the 

alpha (7-13) Hz resulted to the second highest rate. 

Interestingly, the 14-32Hz band provided consistently the 

minimum classification accuracy on all subjects.  Although 

this band was modulated with the movement, it did not 

provide any information about the index of the executed 

finger movement but the cognitive state. 

 In Fig.4 we present the confusion matrix of our 

redundant classification system in gamma band and the 

correlation matrix of five-finger sensor data. The confusion 

matrices show that the misclassifications generally occurred 

between fingers 4 and 5. We note that for subject 2 and 3 

the finger sensor data was also correlated between fingers 4 

and 5 but not for subject 1. The misclassification for 

subjects 2 and 3 can be explained by the correlated 

movements of last two fingers. Interestingly, for the first 

subject despite the uncorrelated sensor data, the 

misclassification occurred once again between the last two 

fingers.  This can be justified with the assumption of 

correlated neural representation of the adjacent fingers. The 

confusion matrices of other subjects also support this 

assumption. In contrary, for subject three, although the 

sensor correlation of adjacent fingers was high the 

misclassifications between the first four fingers were very 

low. This indicates that the neural representations of the 

first four fingers were distinguishable. However, the sensor 

measurements were somehow correlated which may 

originate from a mechanical cross talk of adjacent finger 

movements due to the hand anatomy of this particular 

subject. We note that, although very small, the 

misclassification occurred generally between the adjacent 

fingers. It should be noted that the correlated neural activity 

between adjacent fingers also improved the classification 

rates in the redundant case as the groupings improved the 

SNR of the common pattern shared by the adjacent fingers. 

  In order to quantify the gain we obtained with the 

redundant decoding strategy we compared it to the case 

where only paired (non-redundant) spatial projections and 
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TABLE I 

The classification results for paired wise (non-redundant) and 

redundant decoding strategies in 65-200 Hz frequency range. 

� Paired  Redundant 

Subject1 80.7  86 

Subject2 82.8  89.4 

Subject3 78.9  83.4 

Mean 80.8  86.3 

. 

classification were executed. In Table I, we show the 

classification accuracy for 65-200Hz frequency bands for 

the redundant and paired (non-redundant) decoding 

strategies. We observed that in all subjects the redundant 

decoding strategy provided better results with respect to the 

paired one. These finding are in accordance with [10] where 

the same technique was used to decode movement direction 

from LFPs recorded in motor cortex. In average the paired 

solution provided 80.8% classification accuracy. We note 

that hierarchical structure noticeably increased the decoding 

performance of our system. 

IV. CONCLUSION 

In this paper we applied a redundant spatial projection 

framework based on CSP to classify ECoG data 

accompanying individual movements of 5-fingers. We 

studied the classification performance of different 

frequency subbands of ECoG data. We observed that the 

gamma (65-200Hz) provided the highest decoding accuracy 

with an average rate of 86.3% over three subjects. In all 

subjects we studied, the misclassifications generally 

occurred between fourth and fifth fingers. The overall trend 

of misclassifications was towards adjacent fingers. This 

indicates that neighboring fingers are likely represented by 

overlapping neural activity. The non redundant 

classification technique based on pairwise discrimination 

between finger movements provided on average 80.8% 

classification accuracy. Our results indicate that the 

redundant spatial projection framework can be successfully 

used in decoding finger movements for a BMI. 
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(b) 

Fig. 4. (a) Confusion matrices for subject 1, 2 and 3. Note that 

the majority of misclassification occurred between ring finger 

(4th) and little finger (5th). Almost perfect separation was 

obtained for the thumb (1st). (b) The correlation matrices of 

finger position sensor signals for all subjects. . The color map is 

constructed according to absolute value of the correlation. 
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