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Abstract. A distributed delay system with static nonlinearity has been considered in
the literature to study the cell dynamics in leukemia. In this chapter local asymptotic
stability conditions are derived for the positive equilibrium point of this nonlinear
system. The stability conditions are expressed in terms of inequalities involving pa-
rameters of the system. These inequality conditions give guidelines for development
of therapeutic actions.

1 Introduction

Starting with the early works of Mackey and his colleagues, [9, 10] there has been
a growing interest in the development of mathematical models for cell dynamics
in hematological processes. Over the last ten years, significant improvements have
been made in this direction and, in particular, models for cell dynamics in leukemia
(blood cancer) have been refined, see e.g. [1, 5, 6, 8, 11, 13, 20] and their references.
In this chapter, the model of [1] will be considered. This is a cascade connection
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of a series of systems (compartments) containing distributed delays and a static
nonlinear feedback. There are several possible equilibrium points for the system, the
origin is being one of them. Here, local asymptotic stability conditions are studied
for the “positive equilibrium” where the equilibrium states of all the compartments
(sub-systems) are positive.

In [2] a global stability condition is obtained for the case where the only equilib-
rium is the origin. Some of the works mentioned above consider the “point delay”
version of the problem; a recent one is [20], where conditions for global asymptotic
stability of the origin and instability of the positive equilibrium are obtained in terms
of the delay values.

Rest of the chapter is organized as follows. Details of the mathematical model
are given in the next section. Then, the main results are derived and concluding
remarks are made. Preliminary versions of the results of this chapter have been
already presented in various meetings, [14, 15, 16, 17].

2 Mathematical Model of Cell Dynamics in Leukemia

Since the identification of leukemic stem cells (LSCs) in humans, [4], many stud-
ies have been conducted to characterize the process of formation of leukemic cells.
It is now well understood that LSCs can self-renew and they can differentiate to
generate leukemic progenitors which can also self-renew and differentiate. There
are many stages of differentiation (compartments of progenitors between LSCs
and leukemic cells) until leukemic cells are released into the blood, [7]. At each
stage, there is a compartment (population) of cells of a certain biological prop-
erty, characterized by specific cluster definition (CD) molecules, such as CD34,
CD38, CD123, CD90, CD117, CD135 and CD33. For example, in a certain type
of acute myelogenous leukemia (AML), cells with the concentration of molecules
CD34+CD38-CD33- can be identified as LSCs, i.e. the first compartment, (respec-
tively, CD34+CD38+CD33- for progenitors and CD34+CD38+CD33+ for leukemic
cells, i.e., second and third compartments in a 3 compartment model), [12]. Re-
cently, it has been shown that for mathematical modeling purposes, 4 to 8 com-
partment models are sufficient to diagnose chronic myelogenous leukemia in
humans, [19].

At each compartment, the cells can be grouped into two: the ones in growth phase
(proliferation) and the quiescent (non-proliferating) ones. At the end of growth
phase, each cell is divided into two. Some of the new cells stay in the same com-
partment (having the same biological property as the mother cell - self renewal) and
some go to the next compartment (differentiation). The dynamical behavior of cell
populations in the quiescent and proliferating phases can be characterized as shown
in Figure 1, where δ and γ represent the death rates of the quiescent and prolifer-
ating cells respectively, β (·) is the re-introduction function, τ is the maximal time
spent in the growth phase before cell division occurs and L = 1−K ∈ (0 , 1) is the
rate of proliferating cells that divide without differentiation. Note that each of these
parameters can be different for different compartments, i.e. δi, γi, τi, Li and βi(·) are
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Fig. 1 Cell population dynamics in compartmental modeling.

the parameters of the ith compartment. The notation xi(t) and yi(t) will be used to
denote the cell population in the quiescent and proliferation phases, respectively, in
compartment i at time t.

With the above definitions, dynamical equations for xi and yi can be given as
follows, see e.g. [1],

ẋi(t) = −δixi(t)−wi(t)+ 2Li

∫ τi

0
e−γia fi(a)wi(t− a)da+ ui−1(t) (1)

ẏi(t) = −γi yi(t)+wi(t)− 2
∫ τi

0
e−γia fi(a)wi(t− a)da (2)

ui(t) = 2Ki

∫ τi

0
e−γia fi(a)wi(t− a)da (3)

wi(t) := βi(xi(t))xi(t) , (4)

fi(a) ≥ 0 for all a ∈ [0,τi] and
∫ τi

0
fi(a)da = 1 (5)

with K0 = 0. Here fi is the cell division probability and we consider the form

fi(a) =
mi

emiτi − 1
emia, a ∈ [0 , τi] mi > γi (6)

which is originally proposed in [14]. Define gi(a) := e−γia fi(a) for 0 ≤ a ≤ τi and
gi(a) = 0 otherwise. Then, the Laplace transform Gi(s) of gi(t) is

Gi(s) = qi
1− e−τi(s−ri)

(s− ri)
(7)

where qi = mi/(emiτi− 1)> 0 and ri = mi− γi > 0.
In [1], the above system is analyzed for the choice of Gi(s) = e−τi(s+γi), which is a

system with “point delay”. We feel that the choice (7) is more natural, it corresponds
to a distributed delay system, [14].
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Dynamical equations given above for the ith compartment can be combined into
a single block diagram as shown in Figure 2. Note that the sub-system Σyi is a stable
system, i.e. when its input (I− 2Gi)wi is bounded we get a bounded yi. Therefore,
we will be interested in the analysis of the system represented by the equations (1),
(3) and (4), with the distributed delay term (7) and nonlinearity βi specified as

βi(x) =
βi(0)

1+ bixNi
(8)

where βi(0) > 0, bi > 0 and Ni is an integer greater or equal to 2, see [5, 6, 9] for
biological justifications of this selection.

Fig. 2 Block diagram representation of the ith compartment cell dynamics.

3 Stability Analysis for the Positive Equilibrium

In this section local asymptotic stability conditions are obtained for the “positive
equilibrium” point x̄ = [x̄1, . . . , x̄n]

T where all x̄i are strictly positive. Existence of
such an equilibrium point depends on certain conditions derived as follows. First
define

αi := 2L
∫ τi

0
gi(t)dt− 1 = 2LiGi(0)− 1 (9)

and make the following assumption.

Assumption. We have αi > 0 for all i = 1, . . . ,n, and β1(0)> δ1/α1. �
Then, a unique positive equilibrium exists, see e.g. [1]. It can be computed from the
following equations: x̄1 is such that



Local Asymptotic Stability Conditions for Cell Dynamics in Leukemia 191

β (x̄1) = δ1/α1 ; (10)

and for i≥ 2, the equilibrium points x̄i are the unique solutions of

βi(x̄i) =
1
αi

(
δi − 1

x̄i

(
x̄i−1Ki−1(β (x̄i−1)+ δi−1)

Li−1

) )
. (11)

Since Gi(s) is strictly proper, the system is locally asymptotically stable around the
positive equilibrium if and only if all the roots of

s+ δi + μi− 2LiμiGi(s) = 0 (12)

are in C− for all i, where

μi :=
d
dx

x βi(x) |x̄i . (13)

As noted in [3] depending on the parameters of the system, μi can be positive,
negative or zero. Clearly, when μi = 0 the the equation (12) has its roots at −δi < 0.
Therefore, the most interesting case is μi 
= 0.

Since the analysis has to be done individually for each compartment, in the rest
of the paper the subscript i is dropped whenever it is clear from the context that ith
characteristic equation (12) is considered.

3.1 Local Asymptotic Stability for μ > 0

Consider the characteristic equation (12) with μ > 0. Figure 3 shows that under dif-
ferent parameter selections one may have a common equilibrium point with different
positive μ values.

When μ > 0, the system is locally asymptotically stable if and only if

μ <
δ
α

which is equivalent to 2LG(0)<
δ + μ
μ

. (14)

For the proof, see [1, 14]. Also, it has been recently shown, [18], that he condition
(14) holds true for all β in the form (8). So, whenever we have a unique positive
equilibrium with μi > 0 for all i, we have local asymptotic stability.

3.2 Local Asymptotic Stability for μ < 0

Consider the system whose characteristic equation is in the form (12) with μ < 0.
In this case (12) can be re-written as

1+ |μ | (2LG(s)− 1)
(s+ δ )

= 0 . (15)
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Fig. 3 Different parameters resulting in a same equilibrium with different positive μ .

The equation (15) can be seen as a characteristic equation of a feedback system com-
posed of stable open loop transfer functions (2LG(s)− 1) and |μ |/(s+ δ ). Hence
the small gain condition

|μ | ‖(s+ δ )−1‖∞ ‖2LG(s)− 1‖∞ < 1 (16)

implies stability.
Clearly, a sufficient condition for (16) is |μ | (2LG(0)+ 1) < δ (see also [1, 3]),

i.e.,

2LG(0)<
δ −|μ |
|μ | , (17)

which is valid only when δ > |μ |.
A weaker condition for stability, again by the small gain on (15), is

|μ |< 1/‖H‖∞ (18)

where

H(s) =
2LG(s)− 1
(s+ δ )

. (19)

Note that H(0) = α/δ . Thus (18) is equivalent to

|μ |< 1
KH

δ
α

(20)
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where

KH := ‖ 1
H(0)

H(s) ‖∞. (21)

We now investigate KH for G in the form (7).

Proposition 1. Consider the function G(s) in the form (7) and define

κ :=
(α+ 1)(τr+ 1)+ 0.28

α
√

1+ r2/δ 2
. (22)

The feedback system represented by the characteristic equation (15) is stable if one
of the following two conditions are satisfied:

(i) κ ≤ 1 and |μ |< (δ/α);
(ii) κ > 1 and |μ |< κ−1 (δ/α).

Proof. We claim that (i) when κ ≤ 1 we have KH = 1, and (ii) when κ > 1 we have
KH ≤ κ . Recall that

H(s) =

(
1

s+ δ

)(
q

(
1− e−τ(s−r)

(s− r)

)
− 1

)
; H(0) =

α
δ
.

Then, scaling the frequency by r and using simple algebra it can be shown that

KH = max
ω∈R

∣∣∣∣∣∣
1+ jω δ

rα + jω qeτrδτ
rα

(
e− jτrω−1

jτrω

)

(1+ jω)(1− jω δr )

∣∣∣∣∣∣ .

Expanding the numerator of the above expression into its real and imaginary parts,
we get

1 ≤ K2
H ≤ max

ω∈R

1+ω2 δ 2

r2α2

(
(1− qτeτr sin(τrω)

τrω )2 +(qτeτr(
1−cos(τrω)

τrω ))2
)

(1+ω2)(1+ω2 δ 2

r2 )

Since

q = 2LG(0)
r

eτr− 1
=

r (α+ 1)
eτr− 1

we have

1≤ qτeτr =
(α+ 1) τr
1− e−τr ≤ (α+ 1)(τr+ 1). (23)

Also note that for all qτeτr ≥ 1 we have

max
ω∈R

√
(1− qτeτr sin(τrω)

τrω
)2 +(qτeτr 1− cos(τrω)

τrω
)2 ≤ qτeτr + 0.28.
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Thus

1 ≤ K2
H ≤ max

ω∈R
1+ω2A2δ 2/r2

1+(1+ δ 2/r2)ω2 +(δ 2/r2)ω4 (24)

where
A := α−1 ((α+ 1)(τr+ 1)+ 0.28).

By studying the maximum condition on the right hand side of (24) we see that
KH = 1 if A2 ≤ (1+ r2

δ 2 ). Note that κ = A/
√

1+(r2/δ 2). Hence part (i) of the
proposition is proven. For the second part, when κ > 1, it can be shown that the
maximum on the right hand side of (24) gives

K2
H ≤

(
1− r2

A4δ 2 (
√

1+ϖ2− 1)2
)−1

where ϖ2 =
A4δ 2

r2

(
1− 1

κ2

)
. (25)

Now using the fact √
1+ϖ2− 1 =

ϖ2
√

1+ϖ2 + 1
≤ ϖ

a new bound can be found from (25)

K2
H ≤

(
1− r2

A4δ 2ϖ
2
)−1

= (1− (1− 1
κ2 ))

−1 = κ2.

In conclusion, if κ > 1 then KH ≤ κ . �

The inequality conditions expressed in Proposition 1 can be easily checked once the
parameters of the system are given. The first stability condition is equivalent to

2LG(0)<
δ + |μ |
|μ | (26)

when κ ≤ 1, and the second condition means

2LG(0)< κ−1 δ + |μ |
|μ | (27)

when κ > 1. In both cases there is a lower bound for 2LG(0) given by

(1− e−τr)

(τr+ 1)
< 2LG(0), (28)

which is derived from (23) by recalling that 2LG(0) = α+ 1.
Proposition 1 gives the above sufficient conditions, (26) and (27), which are valid

for δ > |μ | as well as δ < |μ |. Necessary and sufficient conditions for these two
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different cases are obtained in [15] as inequalities in the following forms. For δ >
|μ |, the system is locally asymptotically stable if and only if

2LG(0)<
δ −|μ |
|μ | kmax (29)

where kmax > 1 depends on τr, and η := τ−1(δ −|μ |)−1, as shown in Figure 4.
Similarly, for δ < |μ |, the system is locally asymptotically stable if and only if

η > (1− e−τr)−1− (τr)−1 (30)

and |μ |− δ
|μ | < 2LG(0)<

|μ |− δ
|μ | kmax,2, (31)

where kmax,2 > 1 depends on τr, and η , as shown in Figure 5.

4 Conclusions

In this chapter, local asymptotic stability conditions are studied for a distributed
delay system modeling cell dynamics in leukemia. Proposition 1 gives a simple
sufficient condition which is valid for the case μ < 0, independent of the relative
size of δ with respect to |μ |. Necessary and sufficient conditions for local asymptotic
stability are obtained in [15, 18] and they can be checked graphically (there are no
analytic expressions for the functions kmax and kmax,2). The conditions derived here
can be easily checked in terms of the parameters of the dynamical equation δ ,τ,μ
and the product 2LG(0) = (α+1) which depend on the mitosis function f , the death
rate γ as well as the gain L. Some of these parameters can be adjusted by therapeutic
actions, that may be useful in achieving stability.

For global asymptotic stability, a nonlinear small gain argument is used in [18]
and an inequality condition is obtained. However the level of conservatism in this in-
equality has not been established yet. In particular, checking whether the following
conjecture holds is an interesting open problem: if the positive equilibrium of the
system represented by the equations (1)–(4) is locally asymptotically stable, then it
is globally asymptotically stable. Recently, for the case where the origin is the only
equilibrium point for the point delay version of the system, the conjecture has been
proven to hold [20], see also for a related result [2].

References

1. Adimy, M., Crauste, F., El Abdllaoui, A.: Discrete maturity-structured model of cell
differentiation with applications to acute myelogenous leukemia. J. Biological Sys-
tems 16(3), 395–424 (2008)

2. Adimy, M., Crauste, F., El Abdllaoui, A.: Boundedness and Lyapunov function for a
nonlinear system of hematopoietic stem cell dynamics. C. R. Acad. Sci. Paris, Ser. I 348,
373–377 (2010)



Local Asymptotic Stability Conditions for Cell Dynamics in Leukemia 197

3. Adimy, M., Crauste, F., Ruan, S.: A Mathematical Study of the Hematopoiesis Process
with Applications to Chronic Myelogenous Leukemia. SIAM J. Appl. Math. 65, 1328–
1352 (2005)

4. Bonnet, D., Dick, J.E.: Human acute myeloid leukemia is organized as a hierarchy that
originates from a primitive hematopoietic cell. Nature Medicine 3, 730–737 (1997)

5. Colijn, C., Mackey, M.C.: A mathematical model of hematopoiesis: I. Periodic chronic
myelogenous leukemia. J. Theoretical Biology 237, 117–132 (2005)

6. Foley, C., Mackey, M.C.: Dynamic hematological disease: a review. J. Mathematical
Biology 58, 285–322 (2009)

7. Huntly, B.J.P., Gilliland, D.G.: Leukemia stem cells and the evolution of cancer-stem-cell
research. Nature Reviews: Cancer 5, 311–321 (2005)

8. Kold-Andersen, L., Mackey, M.C.: Resonance in periodic chemotherapy: A case study
of acute myelogenous leukemia. J. Theoretical Biology 209, 113–130 (2001)

9. Mackey, M.C.: Unified hypothesis for the origin of aplastic anaemia and periodic
hematopoiesis. Blood 51, 941–956 (1978)

10. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Sci-
ence 197(4300), 287–289 (1977)

11. Mackey, M.C., Ou, C., Pujo-Menjouet, L., Wu, J.: Periodic Oscillations of Blood Cell
Populations in Chronic Myelogenous Leukemia. SIAM J. Appl. Math. 38, 166–187
(2006)
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