
 

 

Ultra-low-cost near-infrared photodetectors on silicon 
 

M. Amin Nazirzadeha,b, Fatih B. Atara,b, B. Berkan Turguta,b, Ali K. Okyay*a,b,c 

aDepartment of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara, Turkey; 
bNational Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, Ankara, Turkey; 

cInstitute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara, Turkey 

ABSTRACT   

We demonstrate Silicon-only near-infrared (NIR) photodetectors (sensitive up to 2000 nm) that meet large-scale ultra-
low-cost fabrication requirements. For the detection of infrared photons, we use metal nanoislands that form Schottky 
contact with Silicon. NIR photons excite plasmon resonances at metal nanoislands and plasmons decay into highly 
energetic charge carriers (hot electrons). These hot electrons get injected into Silicon (internal photoemission), resulting 
in photocurrent. Several groups have studied plasmonic nanoantennas using high resolution lithography techniques. In 
this work, we make use of randomly formed nanoislands for broad-band photoresponse at NIR wavelengths. We observe 
photoresponse up to 2000 nm wavelength with low dark current density about 50 pA/µm2. The devices exhibit 
photoresponsivity values as high as 2 mA/W and 600 µA/W at 1.3 µm and 1.55 µm wavelengths, respectively. Thin 
metal layer was deposited on low-doped n-type Silicon wafer. Rapid thermal annealing results in surface reconstruction 
of the metal layer into nanoislands. Annealing conditions control the average size of the nanoislands and photoresponse 
of the devices. An Al-doped Zinc Oxide (AZO) layer was deposited on the nanoislands using thermal atomic layer 
deposition (ALD) technique to acts as a transparent conductive oxide (TCO) and patterned using photolithography. AZO 
film creates electrical connection between the nanoislands and also makes a heterojunction to Silicon. Simple and 
scalable fabrication on Si substrates without the need for any sub-micron lithography or high temperature epitaxy process 
make these devices good candidates for ultra-low-cost broad-band NIR imaging and spectroscopy applications. 
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1. INTRODUCTION  
Sub-bandgap photodetection via the internal photoemission mechanism is an attractive candidate for near-infrared (NIR) 
photodetection on Si. A metal in contact with Si creates a Schottky junction and a potential energy barrier forms between 
the metal and Si. This junction operates as a diode (Schottky diode) and can be used as a sub-bandgap photodetector. The 
sub-bandgap photons incident on the metal layer excites the electrons of the metal to higher energy levels, enabling them 
to traverse the Schottky barrier and be collected as photocurrent1. The interest in this approach has received a significant 
boost with the recent studies on the use of metallic nanoantennas to capture the incident light by exciting surface 
plasmons2-4. 

Metals are normally highly reflective at NIR wavelengths and can poorly absorb the incident light. This had been the 
main drawback of using Si Schottky barrier diodes for NIR photodetection. However, when made into nanostructures, 
some metals, such as Au, can resonantly interact with the incident light and confine the electromagnetic field in very 
small volumes in the form of surface plasmons. The surface plasmons decay due to the optical losses of the metal and as 
they decay their energy is transferred to the electrons of the metal, exciting the electrons to higher energy levels, which 
are now called “hot electrons”. These hot electrons can be emitted over the Schottky barrier and generate photocurrent2. 
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Figure 1. Energy band diagram of a Schottky junction. Photodetection of a sub-bandgap photon via the 
internal photoemission is shown on the energy band diagram1. 

Several studies have investigated the plasmon assisted hot electron generation process and its utilization for NIR 
photodetectors by using high resolution lithography techniques to fabricate metallic nanoantennas2, 3. Very strong, 
tunable, narrow-band plasmonic resonances have been demonstrated and photoresponsivity values as high as 0.6 mA/W 
have been reported 3. In this study, we first investigate the fabrication process of metallic nanoantennas and propose a 
method to form randomly sized and randomly distributed nanoantennas on Si surface. We then demonstrate the use of 
these random nanoantennas in a Schottky contact photodetector for broad-band plasmon enhanced NIR photodetection. 

2. FABRICATION 
We used 4-inch n-Si (100) wafers with resistivity of 2-5 Ω-cm throughout this study and diced the wafers into 15 mm × 
15 mm pieces prior to fabrication. Cleaning of the wafers was done in two consecutive steps. In the first step, the wafers 
are kept in piranha solution ((4:1) H2SO4:H2O2) at 80°C for 5 minutes to remove possible organic and metallic 
contaminants. Piranha solution also oxidizes the wafer surface and forms a thin SiO2 layer, making the surface 
hydrophilic. The wafers are rinsed with deionized water after the piranha cleaning. In the second step of the cleaning 
process, the wafers are dipped in buffered hydrofluoric acid (BHF) solution for about 10 seconds until the surface oxide 
was completely etched and the sample surface became hydrophobic again. The wafers are then rinsed with DI water and 
dried with N2 gun. 

We have followed several approaches to form plasmonic nanoantennas on Si surface. Electron beam lithography and 
nanoimprint lithography were used to fabricate nanoantennas with desired dimensions. A third method, involving 
annealing of a metal layer to form randomly shaped nanoislands, was also investigated. 

Nanoimprint lithography is a low-cost, fast, and high resolution lithography method. The desired pattern is first 
fabricated on a master stamp using a high resolution lithography technique. The pattern on the master stamp is then 
transferred to a mold which is Polydimethylsiloxane (PDMS) for our case. PDMS consists of a base Silicone elastomer 
and its corresponding curing agent. The base and the curing agent are mixed carefully in 10:1 volume ratio for about 10 
minutes to achieve uniform distribution in the mixture. The mixture is then kept in a desiccator for an hour to remove the 
air bubbles that may form during the mixing process. The PDMS mixture is poured on the master stamp and cured at 
150°C. The PDMS mold takes the shape of the master stamp and must be peeled off carefully after the curing process. 
The pattern on the PDMS mold is transferred to the sample by coating a photoresist layer on the sample and pressing the 
PDMS mold on the photoresist. The pressure is applied conformally and at a temperature higher than the glass transition 
temperature of the photoresist. The photoresist takes the shape of the stamp and hardens with this process. A final dry 
etching step is applied to remove the residual photoresist. The flow diagram of the nanoimprint lithography process is 
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respectively. FDTD simulations and theoretical calculations were used to fit to the experimental results and successfully 
predict the quantum efficiency spectrum. 
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