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Abstract:
In this paper we propose a refined model for the dynamical cell behavior in Acute Myeloid
Leukemia (AML) compared to (Özbay et al, 2012) and (Adimy et al, 2008). We separate the cell
growth phase into a sequence of several sub-compartments. Then, with the help of the method
of characteristics, we show that the overall dynamical system of equations can be reduced to
two coupled nonlinear equations with four internal sub-systems involving distributed delays.

Keywords: Modelling, PDE, Delay, Medical applications, nonlinear models.

1. INTRODUCTION

In this paper, we propose a new model of cell dynamics
in Acute Myeloid Leukemia (AML), a disease for which
clinical progress has been quite slow in the last forty
years, Rowe (2008). Our aim is to design continuous
mathematical models in order to better understand its
dynamical behavior and ultimately improve its treatment.

The formation and maturation of blood cells is called
hematopoiesis. Blood cells mature in the bone marrow
from hematopoietic stem cells (HSCs) until normally fully
differentiated cells of different lineages are released in
the general blood circulation. Various dynamical models
have been proposed and studied in the literature for the
hematopoietic processes, see e.g. recent works of Adimy
et al. (2008), Dingli and Pacheco (2010), Foley and
Mackey (2009) Niculescu et al. (2010) and their refer-
ences. In normal hematopoiesis, HSCs proliferate, either
self-renewing or differentiating. The proliferation process
in cell populations relies on the cell division cycle con-
sisting of four phases (phase G1, phase S, phase G2 and
phase M) at the end of which cell division occurs. Each

⋆ This work was supported by the DIGITEO Project ALMA partly
funded by the Région Île-de-France, France

dividing (mother) cell gives birth to two daughter cells, of
possibly different types: either cells that have the same
biological properties - in particular stuck at the same
differentiation stage - as the mother cell (self-renewal)
or other cells, more advanced in the maturation process
(the production of progenitors at cell division being called
differentiation). From HSCs through this differentiation
process are produced progenitors, that are the precursors
of three blood lineages (red blood cells, white blood cells
or platelets). We are interested here only in the myeloid
lineage among white blood cells, which we will consider
at the cell population level, structured in age with respect
to cell cycle phases. Physiologically, it is only when they
have reached full maturity that hematopoietic cells are
released in the general blood circulation. It may occur
that one genetic alteration appears in a hematopoietic
stem cell, escapes the various physiological controls and
is transmitted by subsequent divisions to daughter cells to
eventually yield a leukemia. AML combines at least two
molecular events: a blockade of the differentiation and an
advantage of the proliferation (in particular progenitors
may self-renew). This blockade of differentiation in AML
results in an overflow of immature and inefficient cells
firstly in the bone marrow, and eventually in blood.
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One of the first mathematical models on hematopoiesis
was proposed by Mackey (1978) at the end of the 1970’s.
This model consists of a system of differential equations
describing HSC’s dynamics, considering a resting (or qui-
escent) phase and a proliferative phase. A few years ago,
in order to take the differentiation process into account,
a PDE based model including several compartments con-
nected in series was proposed by Adimy et al. (2008).
From the system theory point of view this model is a
distributed delay system with static nonlinearity. For the
analysis of this model (equilibrium analysis and stability
of the linearized as well as nonlinear system) see the recent
papers Adimy et al. (2010), Ozbay et al (2010), Ozbay
et al. (2012) and their references.

The aim of this paper is to modify and enrich the model
of Adimy et al. (2008) in the following sense:

• the self-renewal phenomenon is written in two parts
where fast and slow dynamics are separated (this
gives us two static nonlinearities in the system), and

• the dynamical behavior of the proliferating cells is
separated into four phases (namely the phases G1, S,
G2 and M).

Ultimately, this refined model will help us better evaluate
a new therapy strategy which acts on phase S.

The paper is organized as follows. In Section 2, we present
the PDE based model of cell dynamics. In Section 3, we
reduce the model into two coupled nonlinear differential
equations involving four distributed delay terms. The
equilibrium and stability analysis of this new system can
be performed by using techniques similar to the ones
employed in Ozbay et al. (2012); in the final version of
the paper we will include preliminary results along this
direction, as well as numerical simulations.

2. MATHEMATICAL MODEL OF AML

Let us consider two cell sub populations of immature
cells, proliferating (divided in G1, S, G2 and M phases)
and quiescent (in phase G0) cells, at each stage of the
compartmental model discussed in Section 1. We denote
by pi (t, a), li (t, a), ni (t, a), mi (t, a) and ri (t, a) the
cell populations of the G1, S, G2, M and G0 phases,
respectively, of the i-th generation of immature cells,
with age a ≥ 0 at time t ≥ 0. We have assumed that
the dynamics of the cell population are governed by the
following system of partial differential equations

∂pi

∂t
+
∂pi

∂a
= −

(
γ1

i + gp
i (a)

)
pi, 0 < a < τ1

i , t > 0,

∂li
∂t

+
∂li
∂a

= −
(
γ2

i + gl
i (a)

)
si, 0 < a < τ2

1 , t > 0,

∂ni

∂t
+
∂ni

∂a
= −

(
γ3

i + gn
i (a)

)
ni, 0 < a < τ3

i , t > 0,

∂mi

∂t
+
∂mi

∂a
= −

(
γ4

i + gm
i (a)

)
mi, 0 < a < τ4

i , t > 0,

∂ri
∂t

+
∂ri
∂a

= − (δi + βi) ri, a > 0, t > 0,

(1)

where the death rate in the resting phase is δi ∈ R+, the re-
introduction function from the resting subpopulation into
the proliferative subpopulation is βi, the death rates in the
G1, S, G2 andM phases are γ1

i , γ2
i , γ3

i and γ4
i respectively;

the time elapsed in the G1, S, G2 and M phases are τ1
i ,

τ2
i , τ3

i and τ4
i , respectively; and, the division rates of the

phases G1, S, G2 and M phases are gp
i (a), gl

i (a), gn
i (a)

and gm
i (a) respectively.

Here only the death rate is included and the birth rate
is not involved in the equation because, when individuals
are born at a = 0, they are introduced into the pop-
ulation through the boundary (renewal) condition. The
introduction rate βi is supposed to depend upon the total
population of resting cells, denoted by xi (t), where

xi (t) :=
∫ +∞

0

ri (t, a) da. (2)

We also consider a new phase called G̃0 between the exit
of the M phase and the beginning of the G1 phase. The
number of cells of this new phase is r̃i (t, a) and satisfies
its own transport equation

∂r̃i
∂t

+
∂r̃i
∂a

= −β̃i (x̃i (t)) r̃i a > 0, t > 0, (3)

where the long term dynamics of the fast self-renewal
is x̃i (t) :=

∫ +∞

0 r̃i (t, a) da. The necessity to model the
dynamics of the G̃0 phase is because the behavior of AML
has a fast self renewal term at the end of the M phase.

A schematic representation of the compartmental model
considered is shown in Figure 1.

Fig. 1. A refined model of AML cell dynamics

Boundary conditions associated with (1) and (3) are given
by
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

pi (t, a = 0) = βi (xi (t))xi (t) + β̃i (x̃i (t)) x̃i (t) ,

li (t, a = 0) =
∫ τ1

i

0

gp
i (a) pi (t, a) da,

ni (t, a = 0) =
∫ τ2

i

0

gl
i (a) li (t, a) da,

mi (t, a = 0) =
∫ τ3

i

0

gn
i (a)ni (t, a) da,

ri (t, a = 0) = Li

∫ τ4
i

0

gm
i (a)mi (t, a) da

+2Ki−1

∫ τ4
i−1

0

gm
i−1 (a)mi−1 (t, a) da

r̃i (t, a = 0) = L̃i

∫ τ4

0

gm
i (a)mi (t, a) da.

where Li := 2σi (1 −Ki), L̃i := 2 (1 − σi) (1 −Ki).
The initial age-distribution of the populations of (1)
and (3) are nonnegative functions of age a; the func-
tions are assumed to be known: pi (t = 0, a) = p0

i (a) ,
li (t = 0, a) = l0i (a) , ni (t = 0, a) = n0

i (a) ,mi (t = 0, a) =
m0

i (a) , ri (t = 0, a) = r0i (a) and r̃i (t = 0, a) = r̃0i (a).

The division rates gp
i (a), gl

i (a), gn
i (a) and gm

i (a) are as-

sumed to be continuous functions such that
∫ τ1

i

0 gp
i (a) da =

+∞,
∫ τ2

i

0 gl
i (a) da = +∞,

∫ τ3
i

0 gn
i (a) da = +∞ and∫ τ4

i

0 gm
i (a) da = +∞.

We also assume that
lim

a→+∞
ri (t, a) = 0

and
lim

a→+∞
r̃i (t, a) = 0.

3. MODEL TRANSFORMATION

Using the method of characteristics (see e.g Perthame
(2007)), one easily obtains an explicit formulation for
pi (t, a), li (t, a), ni (t, a) and mi (t, a) given by

pi (t, a) =

p0
i (a− t) e

−
∫

a

a−t
(γ1

i +g
p

i
(w))dw

, if t ≤ a,

pi (t− a, 0) e−
∫

a

0
(γ1

i +g
p

i
(w))dw if t > a,

(4)

li (t, a) =

l0i (a− t) e
−
∫

a

a−t
(γ2

i +gl
i(w))dw

, if t ≤ a,

li (t− a, 0) e−
∫

a

0
(γ2

i +gl
i(w))dw if t > a,

(5)

ni (t, a) =

n0
i (a− t) e

−
∫

a

a−t
(γ3

i +gn
i (w))dw

, if t ≤ a,

ni (t− a, 0) e−
∫

a

0
(γ3

1+gn
i (w))dw if t > a,

(6)

mi (t, a) =

m0
i (a− t) e

−
∫

a

a−t
(γ4

i +gm
i (w))dw

, if t ≤ a,

mi (t− a, 0) e−
∫

a

0
(γ4

i +gm
i (w))dw if t > a,

(7)
with

pi (t− a, 0) = βi (xi (t− a))xi (t− a)

+β̃i (x̃i (t− a)) x̃i (t− a) ,

li (t− a, 0) =
∫ τ1

i

0

gp
i (θ1) pi (t− a, θ1) dθ1,

ni (t− a, a) =
∫ τ2

i

0

gl
i (θ2) li (t− a, θ2) dθ2,

mi (t− a, a) =
∫ τ3

i

0

gn
i (θ3)ni (t− a, θ3) dθ3.

Only the solutions t ≥ a are considered for the density
cells pi (t, a), li (t, a), ni (t, a) and mi (t, a) because we
are mainly interested in the long time behaviour of the
populations; namely, the behaviour of these phases is
described by the second term of (4), (5), (6), (7) and the
following initial conditions

pi (t− a, 0) = βi (∆axi (t))∆axi (t)+β̃i (∆ax̃i (t)) ∆ax̃i (t)
(8)

li (t− a, 0) =
∫ τ1

i

0

(
βi

(
∆a+θ1xi (t)

)
∆a+θ1xi (t)

+β̃i

(
∆a+θ1 x̃i (t)

)
∆a+θ1 x̃i (t)

)
·fp

i (θ1) e−γi
1θ1dθ1 (9)

ni (t− a, 0) =
∫ τ2

i

0

(∫ τ1
i

0

(
βi

(
∆a+θ1+θ2xi (t)

)
·∆a+θ1+θ2xi + β̃i

(
∆a+θ1+θ2 x̃i (t)

)
·∆a+θ1+θ2 x̃i (t)

)
fp

i (θ1) e−γi
1θ1dθ1

)
·f l

i (θ2) e−γ2
i θ2dθ2 (10)

mi (t− a, 0) =
∫ τ3

i

0

[∫ τ2
i

0

(∫ τ1
i

0

(
βi

(
∆a+θ1+θ2+θ3xi (t)

)
·∆a+θ1+θ2+θ3xi (t) + β̃i

(
∆a+θ1+θ2+θ3 x̃i (t)

)
·∆a+θ1+θ2+θ3 x̃i (t)

)
·fp

i (θ1) e−γi
1θ1dθ1

)
f l

i (θ2) e−γ2
i θ2dθ2

]
·fn

i (θ3) e−γ3
i θ3dθ3 (11)

where

fp
i (t) = gp

i (t) e−
∫

t

0
g

p

i
(w)dw if 0 < t < τ1

= 0 otherwise,

f l
i (t) = gl

i (t) e−
∫

t

0
gl

i(w)dw if 0 < t < τ2

= 0 otherwise,
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fn
i (t) = gn

i (t) e−
∫

t

0
gn

i (w)dw if 0 < t < τ3

= 0 otherwise,

fm
i (t) = gm

i (t) e−
∫

t

0
gm

i (w)dw if 0 < t < τ4

= 0 otherwise

and the shift operator ∆ is defined by

∆axi (t) := xi (t− a)

The functions fp
i , f l

i , f
n
i and fm

i are density functions, i.e.∫ τ1
i

0 fp
i (t) dt = 1,

∫ τ2
i

0 f l
i (t) dt = 1,

∫ τ3
i

0 fn
i (t) dt = 1, and∫ τ4

i

0 fm
i (t) dt = 1.

Finally, integrating (3) and the last equation in (1) with
respect to the age variable a, between a = 0 and a = +∞
one obtains the behavior of immature cells is represented
by

ẋi (t) =− (δi + βi (xi (t))) xi (t) (12)

+Li

∫ τ4
i

0

gm
i (a)mi (t, a) da

+ui−1(t)

where ui−1(t) = 2Ki−1

∫ τ4
i−1

0
gm

i−1 (a)mi−1 (t, a)da

·

x̃i (t) =−β̃i (x̃i (t)) x̃i (t) (13)

+L̃i

∫ τ4

0

gm
i (θ1)mi (t, θ1) dθ1

where

mi (t, a) = mi (t− a, 0) e−
∫

a

0
(γ4

i +gi
m(w))dw.

Equations (12) and (13) depend explicitly on each other,
because of the term mi (t− a, 0), which contains the
expressions ∆xa+θ1+θ2+θ3

i (t) and ∆ya+θ1+θ2+θ3
i (t).

If we define h1
i (t) := fp

i (t) e−γ1
i t, h2

i (t) := f l
i (t) e−γ2

i t,
h3

i (t) := fn
i (t) e−γ3

i t and h4
i (t) := fm

i (t) e−γ4
i t, the

equations (12) and (13) can be rewritten as

ẋi (t) =− (δi + βi (xi (t)))xi (t)

+Li · h
4
i (t) ∗

(
h3

i (t) ∗
[
h2

i (t) ∗
{
h1

i (t) ∗ ωi (t)
}])

+ui−1(t)

˙̃xi (t) =−β̃i (x̃i (t)) x̃i (t)

+L̃i · h
4
i (t) ∗

(
h3

i (t) ∗
[
h2

i (t) ∗
{
h1

i (t) ∗ ωi (t)
}])

where ωi (t) := βi (xi (t))xi (t) + β̃i (x̃i (t)) x̃i (t)
and ∗ denotes the usual convolution operator.

4. ANALYSIS OF THE MODEL

4.1 Equilibrium points

Let us denote by xe
i and x̃e

i ,for every i, the equilibrium
points of (12) and (13), respectively; namely, the trajecto-
ries that satisfy dxe

i

dt
= 0 and dx̃e

i

dt
= 0. The ith equilibrium

point is solution of the following algebraic system:

−ūi−1 = − (1 − LiHi (0))βi (xe
i )x

e
i − δix

e
i (14)

+LiHi (0) β̃i (x̃e
i ) x̃

e
i

0 = L̃iHi (0)βi (xe
i )x

e
i (15)

−
(
1 − L̃iHi (0)

)
β̃i (x̃e

i ) x̃
e
i

where

ūi−1 =


0 if i = 1
2Ki−1hi−1

·
(
βi−1

(
xe

i−1

)
xe

i−1 + β̃i−1

(
x̃e

i−1

)
x̃e

i−1

) if i > 1

and
Hi (s) = H1

i (s) ·H2
i (s) ·H3

i (s) ·H4
i (s)

with H1
i (s) =

∫ τ1
i

0
h1

i (t) e−stdt, H2
i (s) =

∫ τ2
i

0
h2

i (t) e−stdt,

H3
i (s) =

∫ τ3
i

0
h3

i (t) e−stdt and H4
i (s) =

∫ τ4
i

0
h4

i (t) e−stdt.

We can readily note that the points xe
i = 0 and x̃e

i = 0
satisfy (14) and (15). We will refer to this equilibrium point
as the trivial equilibrium point. From (14) and (15) , a
non-trivial equilibrium point satisfy

βi (xe
i ) =


δ1
α1

if i = 1

δi
αi

−

(
ūi−1

αi

)
1
xe

i

if i > 1
(16)

β̃i (x̃e
i ) =


(
δ1x

e
i

α̃1

)
1
x̃e

1

if i = 1(
δix

e
i − ūi−1

α̃i

)
1
x̃e

i

if i > 1
(17)

where

αi :=
2 (1 −Ki)Hi (0) − 1

1 − 2(1 − σ1) (1 −Ki)Hi (0)
and

α̃i :=
2 (1 −Ki)Hi (0) − 1

2(1 − σ1) (1 −Ki)Hi (0)
recall Li := 2σi (1 −Ki), L̃i := 2 (1 − σi) (1 −Ki).

The next proposition deals with existence and uniqueness
of positive equilibrium points xe

i .

Proposition 1. If 1 < 2 (1 −Ki)Hi(0) < 1
1−σi

for all i, and
β1 (0) > δ1

α1
then we have a unique positive equilibrium

point xe
i .

Proof. First note that αi is non negative for every i if
our assumption is satisfied. For i = 1, β1 (xe

1) = δ1
α1

; the
existence and uniqueness is guaranteed if β1 (0) > δ1

α1
. For

i ≥ 2, let ψi : R+ \{0} → R be given by ψi(x̄) = δi

αi
− bi

αi

1
x̄
.

The non-negativeness of αi implies that the function ψi

is strictly increasing with respect to x̄ ( d
dx̄
ψi(x̄) > 0),

lim
x̄→+∞

ψi(x̄) = δi

αi
is positive and lim

x̄→0−
ψi(x̄) = −∞.

The functions βi and ψi are continuous over R+ \ {0}
and their difference (βi − ψi) is a strictly decreasing
function, we have that lim

x̄→0−

(βi (x̄) − ψi(x̄)) = ∞ and
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lim
x̄→+∞

(βi (x̄) − ψi(x̄)) = − δi

αi
.This implies that there is a

positive real number x∗ such that βi (x∗)− ψi(x∗) = 0. In
other words, (14) has a unique positive solution for every
i.

As β̃i (x̃e
i ) = 1

x̃e
i

2(1−σi)(1−Ki)Hi(0)
(1−2(1−σi)(1−Ki)Hi(0))

βi (xe
i )x

e
i , it is easy

to see that for a suitable function β̃i, there will be a unique
intersection point between the functions x 7→ β̃i (x̃e

i ) and
x 7→ 1

x̃e
i

2(1−σi)(1−Ki)Hi(0)
(1−2(1−σi)(1−Ki)Hi(0))

βi (xe
i )x

e
i .

In the following, we analyze the asymptotic stability of
(12) and (13) by studying the behaviour of their steady
states.

4.2 Model linearization and stability

Let us define a perturbed trajectory of the equilibrium
points of (12) and (13) by Xi (t) := xi (t) − xe

i (t) and
X̃i (t) := x̃i (t) − x̃e

i (t), for every i. The linearization of
(12) and (13) around their equilibrum points is
d

dt
Xi (t) = − (δi + µi)Xi (t)

+Liµi ·
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗Xi

)))]
(t)

+Liµ̃i ·
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗ X̃i

)))]
(t)

+2Ki−1µi−1

·
[
h4

i−1 ∗
(
h3

i−1 ∗
(
h2

i−1 ∗
(
h1

i−1 ∗Xi−1

)))]
(t)

+2Ki−1µ̃i−1

·
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗ X̃i−1

)))]
(t)

(18)
and

d

dt
X̃i (t) =−µ̃iX̃i (t) (19)

+L̃iµi ·
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗Xi

)))]
(t)

+L̃iµ̃i ·
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗ X̃i

)))]
(t)

where

µi =
d

dx
(βi (x) x)

∣∣∣∣
x=xi

µ̃i =
d

dx

(
β̃i (x) x

)∣∣∣∣
x=x̃i

Taking the Laplace transform of (18) and (19), we can see
that the characteristic equation of the system represented
by (18) and (19) is given by

n∏
i=1

Ai(s) = 0 (20)

where Ai(s) = d11
i (s) d22

i (s) − d12
i (s) d21

i (s) with

d11
i (s) = s+ δi + µi − LiµiHi (s) ,

d12
i (s) = −Liµ̃iHi (s) ,

d21
i (s) = −L̃iµiHi (s) ,

d22
i (s) = s+ µ̃i − L̃iµ̃iHi (s)

It is a simple exercise to see that each Ai(s) can be
expressed in the form

Ai(s) = (s+ µ̃i)(s+ δi + µi)

·

(
1 −

LiµiHi(s)
(s+ δi + µi)

(
1 +

L̃iµ̃i(s+ δi + µi)
Liµi(s+ µ̃i)

))
If µ̃i > 0 and δi + µi > 0 then, by the observation that
each Hi(s) is H∞-stable, the system is stable if and only
if the roots of

1 −
LiµiHi(s)

(s+ δi + µi)

(
1 +

L̃iµ̃i(s+ δi + µi)
Liµi(s+ µ̃i)

)
= 0 (21)

are in the open left half plane, for all i. Note that the
characteristic equation studied in Ozbay et al. (2012) was
in the form

1 −
LiµiHi(s)

(s+ δi + µi)
= 0 (22)

Therefore, (21) is a generalization of (22). Since the factor(
1 +

L̃iµ̃i(s+ δi + µi)
Liµi(s+ µ̃i)

)
is a finite dimensional (in fact first order) perturbation
of the unit 1, we are able to derive stability properties
depending on the parameters of this system, using the
techniques employed in Ozbay et al. (2012).

5. CONCLUSIONS

In this paper, we have proposed a new model for the dy-
namical cell behavior in AML. First, we have started with
the PDE’s representing the cell dynamics for the phases
G0, G1, S, G2 and M . Then, by analyzing the solutions of
these PDE’s, the model has been transformed into a form
of two coupled nonlinear systems involving distributed
delays. An equilibrium analysis is done and characteristic
equation for the linearized system is obtained. Thus, the
problem at hand is put into the framework of the earlier
work, Ozbay et al. (2012) whose stability results can
be extended to the more refined model considered here.
Currently, experiments conducted using biological data
are performed in order to estimate the parameters of this
model.
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