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Abstract— In this paper, we present a novel method for
classification of cancer cell line images using complex wavelet-
based region covariance matrix descriptors. Microscopic images
containing irregular carcinoma cell patterns are represented by
randomly selected subwindows which possibly correspond to
foreground pixels. For each subwindow, a new region descriptor
utilizing the dual-tree complex wavelet transform coefficients
as pixel features is computed. CWT as a feature extraction
tool is preferred primarily because of its ability to characterize
singularities at multiple orientations, which often arise in carci-
noma cell lines, and approximate shift invariance property. We
propose new dissimilarity measures between covariance matrices
based on Kullback-Leibler (KL) divergence and L2-norm, which
turn out to be as successful as the classical KL divergence, but
with much less computational complexity. Experimental results
demonstrate the effectiveness of the proposed image classification
framework. The proposed algorithm outperforms the recently
published eigenvalue-based Bayesian classification method.

I. INTRODUCTION

In this article, we propose a method for classification of mi-
croscopic cancer cell line images using complex wavelet transform
(CWT) based region covariance matrix descriptors and new efficient
distance measures for comparing covariance matrices. New distance
measures which are based on calculating Kullback-Leibler (KL)
distance or L2-norm using normalized matrix entries turn out to yield
not only high classification performances but also have much less
computational complexity than commonly used KL distance in this
image classification problem.

Automatic classification of cancer cell line images is an important
problem because of its potential use in cancer research. Automated
morphological analysis of cancer cell lines reveals the characteristics
of gene expression profiles and the degree of invasiveness of tumor
cells [1]. For now, human cell line recognition is performed by using
short tandem repeat (STR) analysis as a standard tool. However, an
expert is needed for this task and conducting STR is very time-
consuming. Predicting labels of cancer cell lines in a fast and accurate
manner via a pattern classification approach will greatly enhance
biologists’ ability to identify different types of cell lines without the
need to scrutinize each and every biomedical image one by one.
Sample images from each of five classes of cell lines, which are BT-
20, Cama-1, Focus, HepG2 and huh7, used in this study are shown
in Figures 1-5.

The dual-tree complex wavelet transform (DT-CWT) has been
recently used in various signal and image processing applications
[2], [3], [4], [5]. It has desirable properties such as shift invariance,
directional selectivity and lack of aliasing. In the dual-tree CWT,
two maximally decimated discrete wavelet transforms are executed
in parallel, where the wavelet functions of two different trees form
an approximate Hilbert transform pair [6]. Low-pass analysis filters
in real and imaginary trees must be offset by half-sample in order to
have one wavelet basis as the approximate Hilbert transform of the
other wavelet basis [7]. Analyticity allows one-dimensional DT-CWT
to be approximately shift-invariant and free of aliasing artifacts often
encountered in DWT-based processing. Two-dimensional DT-CWT
is also directionally selective in six different orientations, namely,
{±15,±45,±75}.

Microscopic cancer cell line images contain significant amount of
oriented singularities. Recently, a Bayesian classification method that
uses the sparsity in a transform domain is developed to classify cancer
cell lines [1]. Attributes like orientation selectivity and shift invari-
ance render DT-CWT a good choice for the processing of microscopic
images with lots of edge- or ridge-like singularities. We incorporate
the complex wavelet transform into recently proposed region covari-
ance descriptors [8] for feature extraction from microscopic images.
In the region covariance framework each pixel is mapped to a set of
pixel properties whose variances and correlations with one another
are utilized in a covariance matrix as region descriptor. We use DT-
CWT complex coefficient magnitudes in detail subbands as pixel
features and compute covariance descriptors. Augmenting covariance
matrices with directional information through the use of 2-D DT-
CWT helps to improve the discriminative power of descriptors. Each
microscopic image is represented by covariance matrices of certain
number of subwindows sampled randomly from the whole image.
The k-nearest neighbor classifier is employed for image classification
where KL divergence and our proposed distance measures are used
for calculation of distances between covariance matrices.

This paper is organized as follows. In Section 2, feature extraction
step comprising image decomposition method by DT-CWT, random
subwindow selection and construction of covariance matrices is
described. In Section 3, KL distance and L2-norm based covariance
classification algorithms by utilizing weak k-NN classifiers are ex-
plained. Section 4 presents the experimental results and Section 5
concludes the paper.



Fig. 1. Sample image from BT-20 class

Fig. 2. Sample image from Cama-1 class

II. FEATURE EXTRACTION

A. 2-D DT-CWT of Microscopic Images
2-D DT-CWT of an image is obtained by four real separable

transforms [9]. Real-part and imaginary-part analysis filters are
applied successively to rows and columns of the image. By addition
and subtraction of corresponding detail subbands, we obtain a total of
16 subbands consisting of 6 real detail subbands, 6 imaginary detail
subbands and 4 approximation subbands. Two-dimensional dual-tree
decomposition is an oversampled transform with a redundancy factor
of 4 (2d for d-dimensional signals). In our work, we perform two-
level 2-D DT-CWT decomposition of each biomedical image of size
mxn and use only the 2nd level detail subband coefficients to better
exploit the analyticity of DT-CWT. Each subband at the 2nd level
is of size m/4xn/4. The original image is lowpass filtered with
[1/4, 1/2, 1/4] filters and downsampled by 4 in both directions to
obtain a single intensity image Ia(x, y) which represents the original
image and will be used as the image to be classified. Let WR

θ (x, y)
and W Im

θ (x, y) denote, respectively, the real and imaginary part
of the 2nd level complex wavelet coefficient at the position (x,y)
corresponding to directional detail subbands at orientation θ, where
θ ∈ {±15,±45,±75}. The magnitude of the complex wavelet
coefficent is then given by

Mθ(x, y) =
√

WR
θ (x, y)2 +W Im

θ (x, y)2 (1)

Hence, for each pixel in the average image Ia(x, y), six complex
wavelet coefficient magnitudes Mθ(x, y) representing six different
orientations of DT-CWT are extracted. These magnitudes will be
utilized as features in the covariance matrix computation for randomly
sampled regions of the image Ia(x, y).

B. Complex Wavelet-Based Region Covariance
Successfully employed in pedestrian detection [10] and flame

detection [11], covariance descriptors enable the combination of

Fig. 3. Sample image from Focus class

Fig. 4. Sample image from HepG2 class

different features over an image region of interest. Given an intensity
image I of size mxn, we define a mapping ϕ from image domain to
feature domain as

F (x, y) = ϕ(I, x, y) (2)

where each pixel (x,y) is mapped to a set of features and F is
the mxnxd dimensional feature function. For a given subwindow
R consisting of n pixels, let (fk)k=1...n be the d-dimensional feature
vectors extracted from R. Then, the covariance matrix of region R
can be computed as

C =
1

n− 1

n∑
k=1

(fk − µ)(fk − µ)T (3)

where µ is the mean of the feature vectors inside the region R.
The covariance matrix is symmetric positive-definite and of size
dxd. There exists a very efficient multiplier-less implementation of
covariance descriptors, called co-difference matrices, which have
been shown to yield comparable performances to the original ones
[12].

Since cancer cell line images contain lots of flat, background-like
regions, it is not reasonable to compute the covariance matrix over the
whole image region. Exclusion of background regions in covariance
computation helps to increase the class separability in classification.
Segmentation may be applied as a preprocessing step to distinguish
between background and foreground regions; however, it does not
lead to decent image regions because microscopic images have very
distinct characteristics as compared to real-world structured scenes.

We propose to use random subwindow selection method for cancer
cell line images as in [13]. Each image Ia(x, y) is represented
by possibly overlapping s square subwindows selected at random
locations and with random edge lengths. The edge length of the
largest possible subwindow is equal to that of the shorter edge of
Ia(x, y), while the size of the smallest possible subwindow is 10
times lower than that of the largest one. We enforce a variance



Fig. 5. Sample image from huh7 class

constraint on the selected subwindows to avoid gathering background
regions. A randomly chosen subwindow is discarded if its variance
is below an image-dependent threshold, which is determined to be
the variance of the whole image. Random window selection process
continues until the total number of windows becomes s. We compute
a covariance matrix for each subwindow and an image is represented
by s covariance matrices. Random sampling approach avoids the
need to scan the whole image to regularly take samples, which is
computationally expensive.

With
Mθ(x,y) = [Mθ1(x, y)...Mθ6(x, y)] (4)

where θ1...θ6 corresponds to the six orientations of DT-CWT detail
subbands {±15,±45,±75}, and Mθ(x, y) is as defined in Equation
(1), we employ two different feature mapping functions to compute
covariance matrices:

ϕ1(I, x, y) = [Ia(x, y)|Ix||Iy||Ixx||Iyy|]T , (5)

and

ϕ2(I, x, y) = [Ia(x, y)|Ix||Iy||Ixx||Iyy|Mθ(x,y)]
T (6)

where |Ix| and |Ixx| denote the first- and second-order derivatives
at (x, y) of the image Ia. The sizes of the covariance matrices
generated using the mapping functions in (5) and (6) are 5x5 and
11x11, respectively. Using derivative features as in (5) is prevalent
in region description-related tasks [8], [11]. Incorporating complex
wavelet coefficients into image region description in (6) allows us to
enhance the discriminative power of covariance matrices, which, in
turn, contain directional information at eight different orientations.
To the best of our knowledge, no studies exist that employ complex
wavelets for describing an image region through covariance matrices.

III. CLASSIFICATION ALGORITHM

The image signature is composed of s covariance matrices of the
same size, computed using one of the feature vectors in Equations (5)
and (6). We calculate the distance between covariance matrices using
both the Kullback-Leibler (KL) divergence and our proposed distance
measures. The KL divergence between two covariance matrices C1

and C2 is calculated as follows [14]

dKL(C1,C2) = DKL(N1||N2) (7)

=
1

2
(log(

|C2|
|C1|

) + tr(C2
−1C1)− d) (8)

where it is assumed that C1 and C2 are the covariance matrices
of multivariate Gaussian distributions N1 and N2 with zero mean

vectors, respectively, and DKL(p||q) is the KL divergence between
distributions p and q.

We propose a new distance measure between covariance matrices
C1 and C2 as follows. First, we take the exponential of all entries
of the dxd covariance matrix C = (cij) to make all entries positive.
The resultant covariance matrix Ce = (ecij ) is treated as a bivariate
probability density function where each entry denotes the density at
the corresponding 2-D histogram bin. Then, the entries of Ce are
normalized to have the sum over all entries equal to 1, leading to a
valid density. The normalized matrix is denoted as Ce. The distance
between C1 and C2 is then calculated as the KL distance between
two bivariate distributions with discrete pdfs denoted by Ce1 and Ce2 ,
respectively:

dKLe(C1,C2) = DKL(Ce1 , Ce2) =

d∑
i=1

d∑
j=1

Ce1(i, j)log(
Ce1(i, j)

Ce2(i, j)
)

(9)
L2-norm-based distance can also be used to calculate dissimilarity
between C1 and C2, or, equivalently, Ce1 and Ce2 :

d2(C1,C2) = DL2(Ce1 , Ce2) =

d∑
i=1

d∑
j=1

(Ce1(i, j)− Ce2(i, j))
2

(10)
The final distance measure we propose is to use the KL distance di-
rectly between the matrix entries by considering them to be densities
after normalization as in (9). If there is a negative entry, all entries
are increased by an amount slightly greater than the absolute value
of the smallest entry before normalization so that matrix represents a
valid pdf with no empty bins. With the normalized matrices denoted
by C1 and C2, the distance is given by

d3(C1,C2) = DKL(C1, C2) =

d∑
i=1

d∑
j=1

C1(i, j)log(
C1(i, j)

C2(i, j)
) (11)

The distance measures (9)-(11) can be calculated efficiently since
they only require logarithm and exponential operations, which can be
done using look-up tables in an efficient manner. As the covariance
matrices are symmetric, we have only d(d + 1)/2 summands for
computation of distances in (9)-(11). These measures do not require
computation of matrix inverses and determinants, which are compu-
tationally expensive operations, as in the case of Equation (8).

For each test covariance matrix C, the distances from all training
covariance matrices are calculated using one of the distance measures
in Equations (8)-(11). According to the class labels of the k nearest
ones, the posterior probability for each class i (i = 1...5) is estimated
by p(i|C) = ki

k
where ki is the number of votes collected by class

i. We mark an image subwindow as unreliable, if maxi
ki
k

≤ 1
2

,
and discard it. Thus, for each test image we have s - #(discarded
windows) weak k-NN classifiers generating posterior probabilities
for five different classes. In combining classifiers for a mixture-of-
experts model, we employ the sum rule as classifier fusion strategy
[15]. Posterior probabilities are summed over the classifiers and the
image in question is assigned the label of the class with the largest
sum.

IV. EXPERIMENTS AND RESULTS

The dataset used in this study consists of 50 microscopic human
carcinoma cell line images with each of the five classes having 10
images. The BT-20 class denotes a basal breast carcinoma cell line
whereas Cama-1 is a luminal breast carcinoma cell line. Focus is a
poorly-differentiated hepatocellular carcinoma cell line, and HepG2



and huh7 are well-differentiated hepatocellular carcinoma cell lines.
All the images in the dataset were acquired at 20x magnification. The
size of each image is 3096x4140 pixels.

To make a fair comparison with [1], we perform experiments
by duplicating the test environment of [1]. By adopting the same
validation strategy, we take one image as the test image and the
remaining ones as the training images for each class. We run ten
experiments, choosing each image as the test image only once for
each class, and obtain the average image classification accuracy. The
number of selected random subwindows is taken to be s = 100. In
each experiment, there are 45*s = 4500 training covariance matrices
and 5*s = 500 test covariance matrices. The training set does not
contain any samples from the images used in the testing set. We repeat
the above procedure for two different feature mapping functions in
Equations (5) and (6) and for three different k values. The results
using the distance measures (8)-(11) are shown in Table I.

Distance Feature
k = 1 k = 5 k = 10

Eigenvalue

measure mapping -based
function method [1]

(8) ϕ1(I, x, y) 96 96 96

90

ϕ2(I, x, y) 100 100 98

(9) ϕ1(I, x, y) 92 94 94
ϕ2(I, x, y) 96 98 98

(10) ϕ1(I, x, y) 92 94 94
ϕ2(I, x, y) 98 96 98

(11) ϕ1(I, x, y) 96 92 92
ϕ2(I, x, y) 98 94 92

TABLE I
AVERAGE CLASSIFICATION ACCURACIES (IN %) OF CARCINOMA CELL

LINE IMAGES OVER 10 RUNS

It can be seen from Table I that complex wavelet coefficient magni-
tudes based covariance classification method using ϕ2(I, x, y) outper-
forms the classical covariance method ϕ1(I, x, y) using only intensity
and derivative features. Exploitation of directional information at six
different orientations through the use of DT-CWT boosts the image
recognition accuracy. Approximate shift invariance property of DT-
CWT also adds a certain level of robustness to feature extraction
step since it is capable of accurately localizing singularities without
causing undesirable positive and negative oscillations around them.
With both DT-CWT based and derivative features based mapping
functions, our algorithm outperforms the eigenvalue-based Bayesian
classification approach proposed in [1], which yielded 90% image
classification accuracy.

We demonstrate also that the new dissimilarity measures (9)-
(11) compare favorably with the commonly used KL distance (8).
Classification accuracies obtained through (9)-(11) are very close to
those obtained by using (8). Hence, it transpires that our distance
measures can achieve almost the same performance with a much
lower computational cost. In addition, as observed from Table I,
the distance measures (9)-(11) that we propose are superior to the
eigenvalue-based method [1] in that they avoid the computation
of eigenvalues of covariance matrices and perform more efficient
distance calculation while yielding higher microscopic image clas-
sification accuracies.

V. CONCLUSION

In this paper, we demonstrate that automatic classification of mi-
croscopic carcinoma cell line images can be reliably performed using

complex wavelet-based covariance descriptors. Perfect classification
results (100%) are obtained for DT-CWT-based feature vectors,
which reveals that the discriminative power of covariance descriptors
can be enhanced significantly by incorporating directionally selective
DT-CWT features. We also propose new distance measures based
on KL distance and L2-norm, which are proven to be as successful
as the commonly used KL distance with a much less computational
burden. Experiments establish the superiority of our novel covariance
descriptor based on complex wavelets and new distance measures
over the existing eigenvalue-based method [1]. For future work, we
will try to find a representative training covariance matrix on a
Riemannian manifold for each class in order to avoid computing
distances to all matrices. We are also planning to devise a single-tree
transform that mimics the behavior of DT-CWT.
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