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ABSTRACT 

Power constrained on-off keying communications systems are 
investigated in the presence of stochastic signaling and de­
tector randomization. The joint optimal design of decision 
rules, stochastic signals, and detector randomization factors is 
performed. It is shown that the solution to the most generic 
optimization problem that employs both stochastic signaling 
and detector randomization can be obtained as the randomiza­
tion among no more than three Neyman-Pearson (NP) deci­
sion rules corresponding to three deterministic signal vectors. 
Numerical examples are also presented. 

Index Terms- Detection, stochastic signaling, detector 
randomization, Neyman-Pearson, on-off keying. 

1. INTRODUCTION AND MOTIVATION 

Optimal signaling and detector design have been studied 
in elaborate detail under various frameworks (e.g., Bayes, 
minimax, Neyman-Pearson) for communications systems 
corrupted by additive white Gaussian noise (AWGN) [1, 2]. 
Recently, there has been a renewed interest in this subject 
to improve the performance of communication systems op­
erating under various system constraints. In [3], convexity 
properties of error probability are studied in the optimal de­
tection of binary-valued scalar signals corrupted by additive 
noise under an average power constraint. It is shown that the 
average probability of error is a nonincreasing convex func­
tion of the signal power when the channel has a continuously 
differentiable unimodal noise probability density function 
(PDF) with finite variance. This discussion is extended from 
binary modulations to arbitrary signal constellations in [4] by 
concentrating on the maximum likelihood (ML) detection for 
AWGN channels. It is proven that an average power-limited 
transmitter cannot improve its error performance via time­
sharing between different power levels in low dimensions 
(I-D and 2-D) as opposed to the situation for some M-D 
constellations, M � 3. 

Despite its analytical tractability, the actual noise at the re­
ceiver is rarely Gaussian distributed due to effects such as non­
linear filtering, intersymbol and multiuser interference [5]. As 
a result, a comparable amount of effort has been devoted to an­
alyze performance improvements due to randomized signaling 
and detection techniques over non-Gaussian channels. More 
specifically, two methods have proven effective in reducing 
the average probability of error for power constrained com­
munications systems over additive noise channels with mul­
timodal PDFs: either the signals for transmitted symbols are 
modeled as random variables instead of deterministic quan­
tities [6, 7] (so called stochastic signaling), or different de­
tectors are employed at the receiver with certain probabilities 
corresponding to antipodal signals [8] (so called detector ran­
domization). Recently, the authors have studied optimal re­
ceiver design for a vector-valued M-ary communications sys­
tem in which both detector randomization and stochastic sig­
naling can be performed [9]. It is proven that stochastic signal­
ing without detector randomization cannot achieve a smaller 
average probability of error than detector randomization with 
deterministic signaling for the same average power constraint 
and noise statistics. Then, it is shown that the optimal receiver 
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design results in a randomization between at most two maxi­
mum a-posteriori probability (MAP) detectors corresponding 
to two deterministic signal vectors. 

Until recently, the scope of the benefits obtained from 
stochastic signaling and detector randomization approaches 
were limited to the average probability of error criterion. 
However, in some cases the probabilities of detection and 
false alarm become the main performance metrics as in the 
Neyman-Pearson (NP) approach. In [10], a power constrained 
on-off keying communications system is considered in the 
NP framework, and the problem of designing the optimal 
stochastic signals is addressed using a single detector in order 
to maximize the probability of detection without violating the 
constraints on the probability of false alarm and the average 
signal power. Based on a theoretical analysis, it is shown that 
the optimal solution can be obtained by employing random­
ization between at most two signal vectors for the on-signal 
(symbol 1) and using the corresponding NP-type likelihood 
ratio test (LRT) at the receiver. 

In this study, we investigate power constrained on-off key­
ing communications systems in the presence of multiple de­
tectors at the receiver. Specifically, we consider the joint op­
timal design of decision rules, stochastic signals, and detector 
randomization factors. Adopting a similar analysis strategy to 
[9], it is proven that the solution to the most generic optimiza­
tion problem (Le., employing both stochastic signaling and 
detector randomization) can be obtained as the randomization 
among no more than three NP decision rules corresponding 
to three deterministic signal vectors. As a result, the opti­
mal parameters can be computed over a significantly reduced 
set instead of an infinite space of functions using global opti­
mization techniques. Numerical simulations are conducted to 
corroborate our theoretical results. 

2. DE TECTOR RANDOMIZATION AND 
STOCHASTIC SIGNALING 

We consider an average power constrained on-off keying com­
munications system operating over an additive noise channel. 
The receiver can randomize among at most K different de­
tectors (decision rules) in any manner to improve the average 
detection performance, as shown in Fig. 1. At any given time, 
only a single detector is employed at the receiver to conclude 
the presence/absence of a signal level embedded in noise. Via 
a communications protocol, the transmitter is informed of the 
detector currently active at the receiver. As pointed out in [10], 
in the absence of detector randomization, employing stochas­
tic signaling; that is, modeling the on-signal as a random vari­
able instead of assuming a constant level, can help improve the 
detection performance without violating the constraints on the 
false alarm probability and average signal power. 

Given an N-dimensional observation vector, the receiver 
has to decide between two hypotheses Ho or Hl specified as 

Ho : Y = N, H1: Y = S(i) + N, i E {I, . . .  , K} (1) 

where Y is the noisy observation vector, S(i) represents the 
transmitted signal vector for the on-signal destined for detec-
tor i, and N is the noise component that is independent of S (i) . 
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Fig. 1. On-off keying communications system model for joint 
stochastic signaling and detector randomization. 

Furthermore, SCi) is modeled as a random vector to facilitate 
stochastic signaling [10]. It should be emphasized that the 
noise component in (1) is not necessarily Gaussian distributed. 
Due to interference, such as inter-symbol and multiple-access 
interference, the effective noise in the channel can deviate sig­
nificantly from the Gaussian case [5]. 

Let Vi denote the randomization factor for detector i, 
where 2:�1 Vi = 1 and Vi ::::: ° for i = 1, ... , K. The two 
probabilities of interest in the NP framework, the average 
probability of detection Po and the average probability of 
false alarm PFA, can be calculated as Po = 2:�1 Vi Pg) 

K (i) (i) (i) and PFA = 2:i=1 Vi PFA· Po and PFA represent the de-
tection and false alarm probabilities for detector i, respec-
tively; and are specified by Pg) = JJRN ej/i) ( y) pii) ( y) d y 
and p�l = JJRN ej/i) ( y) PN( y) d y, where ej/i) is the decision 

rule for detector i, and pii) ( y) denotes the conditional PDF of 
the observation received by detector i under the alternative hy­
pothesis HI. Recalling that signal and noise are independent, 
pii) ( y) = JJRN PS(i) (S)PN( y - s) ds = E{PN(y -SCi))}, 

where the expectation is taken over the PDF of S(i). Similarly, 
under the framework of stochastic signaling and detector ran­
domization, the constraint on the average signal power can be 
expressed as [I]: 2:�1 Vi E{ IIS(i) lin :s; A, where A denotes 
the average power limit. 

For a given detector i and the corresponding signal PDFs, 
the probability of detection is maximized under the false alarm 
constraint using the NP decision rule [1, 2], which takes the 
form of an LRT 

cP��( y) = {I , 0 ,  
if pii) ( y) ::::: 17(i) PN ( y) 
if pii)( y) < 17(i) PN( y) , (2) 

where the decision threshold 17(i) ::::: ° is chosen such that the 
probability of false alarm satisfies p�l = JJRN cP��( y) pN( y)d y 

= ai for some value ai E (0, 1). Then, the NP rule is 
the optimal one among all ai-level decision rules for de-.. (i) f ",(i) ( ) (i) ( )d' 

. .  d tector Z, I.e., Po = JJRN 'l' NP Y PI Y Y IS maximize 
[1, 2]. Therefore, it is not necessary to search over all 
decision rules; only the NP decision rule should be de­
termined for each detector and the corresponding average 
detection and false alarm probabilities should be consid­
ered [9, 10]. Using the decision region for the NP detec-
tor, r��( pS(i), 17(i)) = { y E IRN : E{PN( y -Sci))} ::::: 
17( i) PN ( y) }, detection and false alarm probabilities for detec­
tori can be expressed as Pg)NP = Jr(i) E{PN( y-S(i))}d y 

J 1. NP 
(i) and PFA NP = Jr(i) PN( y) d y. 

J 1. NP 

By adapting stochastic signaling and detector randomiza­
tion into the NP framework, we aim to jointly optimize the 
randomization factors, decision thresholds and signal PDFs in 
order to maximize the average probability of detection under 
the constraints on the average probability of false alarm and 
average signal power (Joint optimization can be facilitated via 
a feedback mechanism from the receiver to the transmitter, 
such as those in cognitive radio (CR) systems). Then, by de-
noting the optimization space as S � {Vi, 17(i) , PS(i) }�l' the 
optimal design problem can be solved from 

K 
max LVi r . E{PN( y - s(i))} d y 

s i=1 JI'�� 
K 

subject to � Vi t�� PN( y) d y :s; a 
K K 

(3) 

LViE{IIS(i)II�}:S;A, L Vi=l, v�o 
i=1 i=1 

where a E (0, 1) is the average false alarm constraint, v � ° 
means that Vi ::::: ° Vi E {1, 2, ... , K} , and expectations are 
taken over the signal PDFs PS(i). Implicit constraints are also 
present in (3) due to each P�(i) representing a PDF [9, 10]. 

A direct evaluation of t3) requires an exhaustive search 
over the space of randomization factors, decision thresholds 
and signal PDFs, which is inherently a difficult procedure. Let 
pb denote the maximum average probability of detection ob­
tained from the solution of (3). In the sequel, an upper bound 
on this problem with a simpler solution is derived, and then 
the achievability of this bound is demonstrated. To that aim, 
the following observations are stated first. 

Suppose that the decision rule ¢NP (i.e., threshold ij) and 
the signal PDF Ps (.) are specified for one of the detectors em­
ployed at the receiver. The corresponding detection probabil-
ity can be written as Po = In�N ¢NP ( y) E{PN ( y -S)} d y = 
E{fJRN ¢NP( y)PN( y - S)d y}, where the linearity of the 
expectation operator is imposed over the fixed decision rule 
¢NP. Recall that the expression inside the expectation op­
erator is the probability of detection when the deterministic 
signal vector s is used for the transmission of on-symbol over 
the additive noise channel and decision rule ¢NP is employed 
at the receiver. Although the detector ¢NP is in the optimal 
form for the signal distribution E{PN ( y -S)}, it can be sub­
optimal for each component PN( y - s). By applying the NP 
criterion to each signal component PN ( y - s) that make up the 
received signal distribution for the on-symbol, the probability 
of detection can be increased even further without violating 
the false alarm constraint. More specifically, 

A {I, if pN( y - s) ::::: 17 (S)PN(Y) cPNP( y, s) = 0, if PN( y - s) < 17 ( s) PN( y) (4) 

where 17( s) ::::: ° is determined as a function of s from 
the false alarm constraint via JJRN ¢NP( y, s)PN( y)d y = 
In�. N ¢NP ( y) PN ( y) d y. As a result, the decision rule ¢NP for 
the given detector can be replaced with a set of decision rules 

¢NP indexed by parameter s such that 

IE {iN ¢NP(Y, S)PN(Y - S)dY} � iN ¢NP(y)IE {PN(Y - S)} dy 
(5) 

is always satisfied while guaranteeing the false alarm con­
straint due to the increased number of optimal NP decision 
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rules in the new formulation (in contrast with the limited num­
ber of detectors in the original problem). 

In accordance with the terminology in [9, 10], the left side 
of the inequality in (5) can be interpreted as a randomiza­
tion among NP detectors corresponding to deterministic sig­
nal vectors, while the right hand side can be understood as 
stochastic signaling using a single detector. Hence, assum­
ing the same average power and false alarm constraints, the 
average probability of detection obtained by stochastic signal­
ing with PDF Ps (.) is always smaller than or equal to that of 
deterministic signaling and detector randomization according 
to the same PDF when optimal NP detectors are employed in 
both cases under the same statistics for the additive noise. 

Notice that a new decision rule is added for each s 
in the support of PS(i) to obtain the upper bound for a 
given detector i in the previous analysis. This procedure 
can . be extended safely acros� mult�pl� detectors by as­
summg that the supports of PS(i) , Z - 1, 2, . . .  , K are 
non-overlapping. If there were overlapping supports, then 
::J 8 E IRN such that PS(i) (8) -=I- 0 and PS(j) (8) -=I- 0 for i -=I- j. 
After applying the procedure described above, there would 
be contributions in the overall average false alarm proba-

bility as ViPS(i) (8) flRN ¢�� (y, 8) PN (y) dy + VjPSUl (8) 
flRN ¢��(y, 8)PN(y) dy � aij' Similarly, the contribu­
tions from these terms to the average detection probabil-

ity would be ViPS(i) (8) flRN ¢�� (y, 8) PN (y - 8) dy + 
VjPSUl (8) flRN ¢��(y, 8) PN(y - 8) dy. Then, the contri­
butions from detectors i and j can be replaced in the re­
spective expressions with a single term corresponding to the 
NP decision rule ¢NP(Y, 8) with the false alarm probability 
aij / (ViPS(i) (8) + VjPS(j) (8)) and the corresponding weight 
coefficient would become ViPS (i) (8) + VjPSUl (8). Since the 
receiver operating characteristics (ROC) curve corresponding 
to an NP decision rule is concave for any given 8, the resulting 
system would have an even higher average detection probabil­
ity while possessing the same average false alarm probability 
and average signal power as the former case [2]. 

In the light of these observations and the inequality in (5), 
an upper bound on the problem in (3) can be obtained as 

max E {D(S, 1])} 
ps,,., 

subject to E {F(S, 1])}::::; a and E{IISlln::::; A (6) 

with D(S, 1]) � fqs,"I) PN(y - S) dy , and F(S, 1]) � 
fqs,"I) PN(y) dy, where r(s, 1]) = { y E IRN : PN(y - s) � 
1] PN (y)} and the expectations are taken with respect to the 
joint PDF PS,"I(s, 1]) by treating both Sand 1] as random vari­
ables. Let PD denote the maximum average probability of 
detection obtained as the solution to the optimization problem 
in (6). Since this is an upper bound, PD � Pb is always 
satisfied. 

Optimization problems in the form of (6) have been stud­
ied in various contexts [6, 9, 10]. Assuming that D(s, 1]) and 
F(s, 1]) are continuous functions defined on a compact subset 
of IRN +1 , then an optimal solution to (6) can be expressed by 
a convex combination among at most three components due 
to Caratheodory's theorem [11]; that is, p���(s, 1]) = A1 8( s­
Sl, 1] -1]d + A2 8( s - S2, 1] -1]2) + A3 8(s - S3, 1] -1]3)' Moti­
vated by this observation, we state the following proposition. 

Proposition 1: The solution of the optimization problem 
in (3) can be obtained as follows: 
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3 

{>'i'�'��}�=l 
� Ai k (Si'''Ii) 

PN(y - Si) dy 
3 

subject to � Ai k (Si'''Ii/
N(y) dy ::::; a 

3 3 
L Ai Iisill� ::::; A, L Ai = 1 
i=l i=l 
Ai � 0 and 1]i � 0 \:Ii E {I, 2, 3} (7) 

where r(Si, 1]i) { YEIRN:PN(Y- Si)�1]iPN(Y)} 
\:I i  E {1, 2, 3}, and a E (0, 1). 

Proof: The optimization problem in (7) is obtained by 
substituting the form of the optimal PDF p���( s, 1]) into the 
optimization problem in (6). Now, we show that the opti­
mization problems in (3) and (7) result in the same maximum 
value. Since (6) and equivalently (7), provide an upper bound 
on (3), Pb ::::; PD' Next, consider the optimization problem in 
(3) when K = 3 detectors are used and deterministic signal­
ing is employed for each detector, that is, PS(i) (s) = 8(s - Si), 
i = 1, 2, 3. In that case, (3) reduces to the optimization prob­
lem in (7). As a result, the maximum value of the objective 
function in (3) should be larger than or equal to that of (7); 
namely, Pb � PD' Therefore, Pb = PD must be satisfied . •  

A few conclusions can be drawn from Proposition 1. 
Firstly, when multiple detectors are available for randomiza­
tion (K � 3), it is sufficient to employ detector randomization 
among three deterministic signal vectors; i.e., there is no need 
to employ stochastic signaling to achieve the optimal solu­
tion. Secondly, the solution of (3) can be obtained by optimiz­
ing over a significantly reduced optimization space via (7). 
Despite the simplification, the solution still requires global 
optimization algorithms such as particle swarm optimization 
(PSO), or convex relaxation techniques can be utilized to ob­
tain an approximate solution [6]. In this paper, MATLAB's 
multistart method is employed with 500 random start points 
and sqp algorithm is used together with the local solver fmin­
con. The extrema returned by the method are cross-checked 
with the results from the patternsearch algorithm. 

3. SIMULATION RESULTS AND CONCLUSIONS 

In this section, the numerical example presented in [10] is 
revisited to compare the detection performance of the opti­
mal solution obtained in the previous section against various 
signalling techniques studied in [10]. It is assumed that the 
receiver is capable of randomizing among multiple detectors 
(K � 3). The noise N in (1) is assumed to have a symmet­
ric Gaussian mixture distribution with equal variances as fol-
lows: pN(n) = I:f=lli exp{ -(n - fli)2 /(20'2))/( v'27f 0'), 
where l = [0.1492 0.1088 0.2420 0.2420 0.1088 0.1492], and 
J.L = f-1.211 - 0.755 - 0.3 0.3 0.755 1.211]. The average 
signa power and average false alarm constraints are selected 
as A = 1 and a = 0.05, respectively. The following signaling 
schemes, which employ a single detector at the receiver, were 
already discussed in [10]: 

Conventional Solution: Lacking any information about 
the noise PDF, the transmitter employs deterministic signal-
ing at the maximum permitted power level (8 = VA). The 
receiver is fully informed of the channel statistics, and designs 
the corresponding optimal NP decision rule [10, Eq. 11]. 

Optimal-Deterministic: This scheme searches for the 
optimal deterministic signal level and the corresponding 
NP decision rule to maximize the detection probability [10, 
Eq. 12]. 
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Fig. 2. Probability of detection Po versus a for different ap­
proaches when A = 1 and a = 0.05. 

Optimal-Stochastic: The optimal stochastic signal and 
the corresponding NP detector are designed jointly from [10, 
Eg. 9]. The optimal signal for the on-symbol consists of a 
randomization between at most two different signal vectors. 

Also, a worst case scenario is considered where we as­
sume that the receiver has a limited capability in the sense 
that it can measure only the mean and variance of the channel 
noise instead of a complete statistical knowledge of the noise. 

Gaussian Solution: The transmitter employs signaling 
at the maximum power level (S = VA), and the receiver 
uses the corresponding NP detector assuming that the noise 
present in the channel is Gaussian distributed. Specifically, 
the a-level NP test at the receiver is given by ¢NP(Y) = 1 
if Y � 8-Q-l (a) and ¢NP (y) = 0 otherwise, where 8-2 

= 

a2 + 2:f=1 Ii /17 is the average power of the zero-mean chan­

nel noise, and Q( x) = Uxoo e-t2/2 dt) / v"27r is the tail prob­
ability of the standard normal distribution. 

Finally, the following scheme is considered as the overall 
optimal solution when detector randomization is allowed at 
the receiver as well: 

Optimal Detector Randomization with Deterministic 
Signaling: This case refers to the solution of the most generic 
optimization problem in (3), which can be obtained from (7) 
as studied in the previous section. 

In Fig. 2, the detection probabilities of the schemes de­
scribed above are plotted versus a E {0.01 : 0.005 : 0.30}. 
From the figure, it is observed that the Gaussian solution has 
the worst performance as expected since neither the signaling 
scheme nor the detector is optimized according to the multi­
modal channel noise PDF. Respectively, the conventional so­
lution presents poor performance as well since no optimiza­
tion is performed for the signaling scheme employed at the 
transmitter even though the detector is optimized by taking 
into account the actual noise PDF. Optimizing deterministic 
signal levels improves over the performance of the conven­
tional solution for 0.01 :::; a :::; 0.115, as observed from 
the Optimal-Deterministic curve. Further performance im­
provements are obtained when randomization is performed 
between two signal levels instead of a deterministic signal 
(see Optimal-Stochastic for 0.04 :::; a :::; 0.20). However, 
the highest detection performance is achieved by the solu­
tion of the most generic joint optimization problem given in 
(7), which performs randomization among NP detectors cor­
responding to three or fewer deterministic signal values for 
the on-symbol (see Optimal-Detector Randomization). For 

0.609 1.267 0.021 0.391 0.237 0.328 0 N/A N/A 
0.617 1.258 2.511 0.383 0.251 1.274 0 N/A N/A 
0.665 1.211 3.380 0.335 0.265 3.014 0 N/A N/A 
0.639 1.228 2.972 0.218 0.319 3.254 0.143 0.315 2.879 
0.551 1.212 2.362 0.449 0.651 2.226 0 N/A N/A 
0.686 1.153 1.993 0.314 0.530 2.552 0 N/A N/A 
0.724 1.101 1.863 0.247 0.594 2.644 0.029 1.118 1.194 
0.979 1.007 1.917 0.021 0.636 3.482 0 N/A N/A 
0.751 1.005 2.033 0.249 0.984 2.190 0 N/A N/A 

Table 1. Optimal parameters for Detector Randomization 

example, at a = 0.1, a detection probability of 0.671 can be 
achieved by transmitting 81 = 1.211 with probability Al = 

0.665 and 82 = 0.265 with probability A2 = 0.335, and em­
ploying the corresponding NP detectors with false alarm prob­
abilities al = 0.0368 and a2 = 0.0763 (see Table 1 for more 
results). On the other hand, the optimal stochastic solution re­
sults in a randomization between 81 = 1.246 and 82 = 0.273 
with A = 0.626, achieving a detection probability of 0.645 
using a single detector [10, Table 1]. It is seen in Table 1 
that randomization between two NP decision rules achieves 
the highest detection performance for most values of a. Since 
Proposition 1 states that at most three detectors are sufficient 
to obtain the optimal solution via randomization, one can find 
examples where optimal performance can be achieved using 
fewer detectors as in this case. On the contrary, there may be 
cases where randomization among three detectors becomes a 
necessity for optimality (e.g., some multivariate noise PDFs, 
N > 1). It is also observed that all signaling schemes get 
closer for large values of a due to increasing overlap among 
mixture components which renders randomized approaches 
ineffective over the conventional ones. 
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