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Abstract. Many puzzling social behaviors, such as avoiding eye contact,
using innuendos, and insignificant events that trigger revolutions, seem to
relate to common knowledge and coordination, but the exact relationship
has yet to be formalized. Herein, we present such a formalization. We
state necessary and sufficient conditions for what we call state-dependent
equilibria – equilibria where players play different strategies in different
states of the world. In particular, if everybody behaves a certain way (e.g.
does not revolt) in the usual state of the world, then in order for players
to be able to behave a different way (e.g. revolt) in another state of the
world, it is both necessary and sufficient for it to be common p-believed
that it is not the usual state of the world, where common p-belief is
a relaxation of common knowledge introduced by Monderer and Samet
[16]. Our framework applies to many player r-coordination games – a
generalization of coordination games that we introduce – and common
(r, p)-beliefs – a generalization of common p-beliefs that we introduce.
We then apply these theorems to two particular signaling structures to
obtain novel results.

1 Introduction

In the popular parable “The Emperor’s New Clothes” [2], a gathering of adults
pretends to be impressed by the Emperor’s dazzling new suit despite the fact
that he is actually naked. It is not until an innocent child cries out “But he
has nothing on at all!” that the Emperor’s position of authority and respect
is questioned. This is a metaphor for a number of common political situations
in which the populace knows the current regime is inept but takes no action
against it until some seemingly insignificant event occurs, such as the child’s
cry. In fact, in Tunisia, despite years of political repression and poverty, it was
not until the previously unknown street vendor Mohamed Bouazizi set himself
on fire that citizens rose up in protest. Common knowledge – everyone knows
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that everyone knows that... – might offer such an explanation for this strange
phenomenon: while the boy’s cry and the self immolation of Mohamed Bouazizi
do not teach anyone that the government is inept, they make it commonly known
that the government is inept. Likewise, common knowledge has been proffered as
an explanation for many other puzzling social behaviors: it is common to avoid
eye-contact when caught in an inappropriate act, despite the fact that looking
away, if anything, increases the conspicuousness of a shameful deed. Nevertheless,
even Capuchin monkeys look away when they ignore a request to help an ally in
a tussle [21]. And few adults after a nice date are fooled by the inquiry “Would
you like to come upstairs for a drink?” yet all but the most audacious avoid the
explicit request [22].

Many authors have aptly noted that common knowledge plays an important
role in these puzzling social behaviors [10, 4, 6, 22]. Avoiding eye contact prevents
common knowledge that you were noticed, using innuendos enables a speaker to
request something inappropriate without making the request commonly known,
and prohibiting public displays of criticism of the government while not prevent-
ing people from realizing the flaws of their government, prevent the flaws from
being commonly known. Authors have argued that common knowledge is impor-
tant in these situations because common knowledge is needed for coordination.
But without formal arguments, many important questions still remain, such as:
what exactly needs to be “commonly known” in order to “coordinate”? What ex-
actly will happen in the absence of common knowledge? Miscoordination? When
common knowledge is lacking, but almost present, e.g. if everyone is pretty sure
that everyone is pretty sure... will this have the same effect as common knowl-
edge? Such details, which may seem pedantic, are crucial for answering practical
questions such as: if I cannot think up an innuendo, will an appropriately placed
cough midsentence do the trick? Why is it that sometimes we use innuendos and
sometimes we go out of our way to state the obvious?

We will formalize the role of common knowledge in coordination, which will
enable us to address each of these questions. The crucial step in our formalism
is based on the insight of Rubinstein [23]. Rubinstein considers coordination
games – games in which players make choices such that they would like to mimic
the choice that others make. Rubinstein supposes that players coordinate on a
particular action A in a given situation. He then supposes that the situation
changes and asks whether the players can coordinate on a different action instead.
He shows that unless it is commonly known that the situation has changed,
players still must coordinate on A. The intuition is clear: even if one player knows
that circumstances have changed, if he thinks the other player does not know this,
then he expects the other player to play as if circumstances have not changed.
Since it is a coordination game, he best responds by playing as if circumstances
have not changed. Likewise, even if both players know that circumstances have
changed, and both players know that both players know this, but one player
does not realize the second player has this second degree of knowledge, then this
player will expect the other player to play as if circumstances have not changed.
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By the above argument, he best responds by playing as if circumstances have
not changed. The same logic continues indefinitely.

Rubinstein presents a particular instance in which the above logic holds. The
contribution of our paper is to show that this logic holds quite generally, for
any two player coordination game, and in fact, for a generalization to many
players. And moreover, we show that common knowledge is not just necessary
for changing behaviors when circumstances change, but common knowledge is
also sufficient. We hope that this will lead to a deeper understanding of these
puzzling social behaviors, as well as some novel predictions.

Our results. In this paper, we introduce state-dependent equilibria, which we
define as equilibrium strategies in which players take different actions when
the circumstances change. This notion allows us to address the questions that
were left unanswered by the informal discussions of common knowledge and
coordination. In particular, we characterize the conditions under which rational
players are able to play state-dependent equilibria.

We begin by considering two-player coordination games. We show that it is
not quite common knowledge that determines the existence of state-dependent
equilibria but rather a relaxation of common knowledge. This notion corresponds
with common p-beliefs, as developed by Monderer and Samet [16]: each believes
with probability at least p that each believe with probability at least p.... In
our framework, we show that p depends on the precise payoffs of the game and
corresponds to the risk dominance of Harsanyi and Selten [14].

We then introduce a natural n-player generalization of coordination games
that we call r-coordination games in which coordination on an action is successful
if at least some fraction r of the players take that action. Accordingly, we also
develop a generalization of common p-beliefs for this setting.

In order to derive our results, we provide a unifying theoretical framework
for analyzing our games. Our framework gives tight necessary and sufficient
conditions on the players’ beliefs under which a state-dependent equilibrium
exists. These conditions depend on the payoffs of the game (in particular on
the risk dominance) and, in the case of r-coordination games, on the threshold
fraction r required for successful coordination.

Our final contribution is to apply this framework both to simple but puzzling
social behavior and to more complex distributed phenomena that arise in biology,
economics, and sociology. The first application is eye-contact. We offer a post hoc
explanation for why we avoid eye-contact when caught in an inappropriate act.
For the second and third applications, we show how our results can be applied
to situations in which the true state of the world is observed by all players with
arbitrarily small noise, as in the global games literature [18, 20, 19]. This yields
some novel predictions about social behaviors, such as which cues can be used
to instigate a revolution, and when a researcher’s reputation can be resilient to
substandard work.

Due to space constraints, the proofs of our claims will appear in the full version
of the paper.
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1.1 Related Work

The concept of common knowledge was first formalized in multi-modal logic
in 1969 by Lewis [15]. Aumann later put common knowledge in a set-theoretic
framework [3].

In 1989, Rubinstein used common knowledge to analyze a problem related to
the coordinated attack problem in computer science [23]. This problem, called
the Electronic Mail Game, was the first example that common knowledge is very
different than any finite order of knowledge. Rubinstein showed that the lack of
common knowledge prevents players from switching strategies (i.e. prevents the
existence of state-dependent equilibria) in the Electronic Mail Game. See [17]
for a retrospective on the Electronic Mail Game. Our results show that common
knowledge is not just necessary but also sufficient and holds for any coordination
game and even r-coordination games.

Carlsson and Van Damme showed that when players have noisy signals about
the payoffs in a coordination game, as the noise vanishes, the unique equilibrium
in the game becomes the risk dominant equilibrium [5]. Morris and Shin applied
this result to bank runs and currency crisis, showing that there is a unique
underlying value at which currencies collapse and bank runs occur, in contrast to
previous models, which permitted multiple equilibria and prevented comparative
static analysis [18, 20, 19]. In some of our applications, we use similar signaling
structures, but the uncertainty does not affect the payoffs. We find circumstances
under which no state-dependent equilibria exist.

Monderer and Samet developed an approximate notion of common knowledge
called common p-beliefs, which is relevant in our framework. We will draw heav-
ily on their definitions and results [16]. Others have discussed the role of common
knowledge in social puzzles, albeit less formally than in the aforementioned liter-
ature. Chwe discusses the role of common knowledge in public rituals [6]. Pinker
et al discusses the role of common knowledge in innuendos [22]. Binmore and
Friedell discuss the role of common knowledge in eye contact [9, 4]. In our paper
we formalize the role of common knowledge in many of these social puzzles.

The role of common knowledge has been studied in the fields of distributed
computing and artificial intelligence [11, 7, 12]. This line of work suggests that
knowledge is an important abstraction for distributed systems and for the de-
sign and analysis of distributed protocols, in particular for achieving consistent
simultaneous actions. Fagin and Halpern [13, 8] present an abstract model for
knowledge and probability in which they assign to each agent-state pair a prob-
ability space to be used when computing the probability that a formula is true.
A complexity-theoretic version of Aumann’s celebrated Agreement Theorem is
provided in [1].

2 Preliminaries

We will adopt the set-theoretic formulation of common knowledge introduced by
Aumann [3]. In this model, there is a set Ω of “states of the world”. Each player
i has some information regarding the true state of the world. This information is
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given by a partition Πi of Ω. In particular, for ω ∈ Ω, Πi(ω) is the set of states
indistinguishable from ω to player i – that is, when ω occurs, player i knows
that one of the states in Πi(ω) occurred but not which one. Finally, there is a
probability distribution μ over Ω, representing the (common) prior belief of the
players over the states of the world. These parameters all together constitute the
information structure.

Definition 1 (Information structure). An information structure is a tuple
I = (N, Ω, μ, {Πi}i∈N ) where N is the set of players (with n := |N |), Ω is the
set of possible states of the world, μ is a strictly positive common prior probability
distribution over Ω, and Πi is the information partition of player i. Πi(ω) gives
the set of states indistinguishable from ω to player i.

A (Bayesian) game is now defined by an information structure, a set of possible
actions for each player and a state-dependent utility for each player.

Definition 2 (Bayesian game). A Bayesian game Γ is a tuple (I, {Ai}i∈N ,
{ui}i∈N) where I = (N, Ω, μ, {Πi}i∈N ) is an information structure, Ai is the
(finite) set of possible actions that player i can take, ui : A1×. . .×An×Ω → R is
the utility for player i given the state of the world and the actions of all players.

A strategy profile prescribes the action (possibly randomized) that each player
takes at each state of the world.

Definition 3 (Strategy profile). A strategy profile is a function σ =
(σ1, . . . , σn) : Ω → A1 × . . . × An that specifies what action each player takes in
each state of the world.

Since a player cannot distinguish between states belonging to the same partition,
it is enforced that if a player i plays some strategy σ = σi(ω) at some state ω ∈ Ω,
it must be the case that i plays σ at all states ω′ ∈ Πi(ω). We can now recall
the definition of Bayesian Nash equilibrium.

Definition 4 (Bayesian Nash equilibrium). A strategy profile σ
= (σ1, . . . , σn) : Ω → A1 × . . . × An is a Bayesian Nash equilibrium (BNE)
of Γ if for all i ∈ N ,

1. σi(ω) = σi(ω′) whenever ω ∈ Πi(ω′).
2.

∫
ω∈Ω

ui(σi(ω), σ−i(ω))dμ(ω) ≥ ∫
ω∈Ω

ui(σ′
i(ω), σ−i(ω))dμ(ω) for all σ′ satis-

fying property 1.

We now introduce our key definition of state-dependent equilibria, which we
define as equilibrium strategies in which players take different actions when
the circumstances change. This notion allows us to address the questions that
were left unanswered by the informal discussions of common knowledge and
coordination.

Definition 5 (State-dependent BNE). We say that a Bayesian Nash equilib-
rium σ∗ is state-dependent if for some ω, ω′ ∈ Ω, i ∈ N , we have that σ∗

i (ω) = A
and σ∗

i (ω′) = B.
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We now define the notion of p-belief, introduced by Monderer and Samet [16],
which extends the notion of common knowledge by Aumann [3]. Let p be a
number between 0 and 1. We say that a player i p-believes the event E at state
of the world ω if the subjective probability that i assigns to E at ω is at least p.
That is, whenever ω is the true state of the world, i believes that an event in E
occurred with probability at least p. Henceforth, we will use short expressions
such as “i p-believes E at ω” to refer to this concept.

We denote by Bp
i (E) the set of all states of the world at which player i p-

believes E.

Definition 6 (p-belief [16]). For any 0 ≤ p ≤ 1, we say that player i p-believes
E at ω if μ(E | Πi(ω)) ≥ p. We will denote by Bp

i (E) the event that i p-believes
E, i.e. Bp

i (E) = {ω | μ(E | Πi(ω)) ≥ p}.
Observe that by definition of Bp

i (E), the notation ω ∈ Bp
i (E) indicates that

whenever ω occurs, player i believes with probability at least p that the event E
occurred. An event E is then defined p-evident if whenever it occurs, each player
i believes with probability at least p that it indeed occurred.

Definition 7 (evident p-belief [16]). An event E is evident p-belief if for all
i ∈ N we have E ⊆ Bp

i (E).

The following concept extends the notion of common knowledge.

Definition 8 (common p-belief [16]). An event C is common p-belief at state
ω if there exists an evident p-belief event E such that ω ∈ E, and for all i ∈ N ,
E ⊆ Bp

i (C).

Monderer and Samet provide a nice example that illustrates this concept: sup-
pose the true state is either E or F with equal probability. The true state is
announced and each of two players independently hears the announcement with
probability 1 − ε, 0 < ε < 1/2. Then if E is the true state and both hear the
announcement then E is common p-belief for all p < 1− ε even though it is not
common knowledge.

3 Two Player Framework

In this section we consider the classic 2-player, 2-strategy symmetric coordination

game. The payoffs are as follows:
A B

A a, a b, c
B c, b d, d

Assumption 1 (Coordination game). We make the following standard as-
sumption on the parameters of a symmetric coordination game: a > c and d > b.

Throughout this paper, we will use p∗ = d−b
d−b+a−c . This value is called risk-

dominance [14]. Note that if player i believes with probability exactly p∗ that
the other player will play A at ω, then player i will be indifferent between playing
A and B at ω.

For convenience, we will use the following definitions throughout this section.
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Definition 9. Given any strategy profile σ, we let Ai(σ) = {ω|σi(ω) = A} and
Bi(σ) = {ω|σi(ω) = B}, i.e. the set of states where player i plays A and B
respectively.

We now state our main result for the 2-player case. The main question we ask
is when is it possible for the two players to coordinate on different actions in
different states of the world. We answer this question in terms of the existence
of evident p-belief events (where p depends on the payoff matrix) showing that
such events are necessary and sufficient.

Theorem 1. There exists a state-dependent Bayesian Nash equilibrium σ∗ if
and only if there exists a non-empty evident p∗-belief event E and a non-empty
evident (1 − p∗)-belief event F such that E ∩ F = ∅.
While evident knowledge is both necessary and sufficient for state-dependent
equilibria, our theorem further allows us to specify how the strategies must
depend on these evident events, which we express in the following corollary:

Corollary 1. A strategy profile σ∗ is a state-dependent Bayesian Nash equi-
librium if and only if there exists a non-empty evident p∗-belief event E and
a non-empty evident (1 − p∗)-belief event F such that Bp∗

i (E) ∩ B1−p∗
i (F ) = ∅

and Bp∗
i (E) ∪ B1−p∗

i (F ) = Ω for all i, in which case Ai(σ∗) = Bp∗
i (E) and

Bi(σ∗) = B1−p∗
i (F ) for all i.

Our next corollary states the relationship between state-dependent equilibria
and common knowledge.

Corollary 2. If σ∗ is a Bayesian Nash equilibrium such that σ∗
i (ω) = A and

σ∗
i (ω′) = B, then ¬ω′ is common p∗-belief at ω and ¬ω is common (1−p∗)-belief

at ω′.

4 Application: A Rationale for Avoiding Eye-Contact

Two Charedi men, Michael and Dave, go to a bar, and each spots the other,
purposely looking away before meeting eyes. Why?

Suppose that the next day they have to decide whether to tell the Rabbi. If
one expects the other to tell, he is better off also admitting to his actions. On
the other hand, if one does not expect the other to tell, then he is better off
also not admitting to his transgression. The payoffs can be interpreted as the
coordination game from the two-player framework by interpreting A as the act
of not telling the Rabbi, B as the act of telling the Rabbi.

We make the reasonable assumption that if at least one of the men stays
home, neither tells the Rabbi that he saw the other player at the bar (since he
in fact did not). We will use our framework from section 3 to show that (a)
there is always an equilibrium in which they both tell the Rabbi if they make
eye-contact at the bar, and (b) under mild assumptions, if they do not make eye
contact, neither will tell the Rabbi.
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The Model. We now specify the information structure: we suppose that in one
state of the world, at least one of them stays home (H) while in another state of
the world, Dave enters the bar, and Michael is already sitting at the bar. When
Dave walks in, Michael is either staring at the bartender, in which case he would
not see Dave, or looking at the door, in which case he would. As soon as Dave
enters, he sees Michael, so he quickly turns around and walks out. Dave turns
around before or after noticing if Michael saw him.

The set of possible states of the world is given by
Ω = {H, (M,D), (M′,D), (M,D′), (M′,D′)}. We interpret the states of the
world as follows: H is the state where Dave does not go to the bar and stays
at (H)ome. M is the event that Michael goes to the bar and sees Dave, and
D is the event that Dave sees Michael. (M,D) is the state where Dave goes to
the bar, Michael sees him, and Dave sees that Michael saw him (i.e. they make
eye-contact). (M′,D′) is the state where Dave goes to the bar, Michael is looking
at the bartender, and Dave leaves the bar before checking if Michael saw him.

The information partitions are given as follows:

ΠM = {{H, (M′,D′), (M′,D)}, {(M,D′)}, {(M,D)}}
ΠD = {{H}, {(M′,D′), (M,D′)}, {(M′,D)}, {(M,D)}}

Observe that (M,D) is an evident p∗-belief event, that is, when eye contact
happens, it becomes common knowledge between Michael and Dave as expected.

We use the following independent probabilities to deduce the priors over the
state space: pB is the probability that Dave goes to the bar i.e., he does not stay
home; pM′ is the probability that Michael is looking at the bartender when Dave
walks in; pD′ is the probability that, conditioned on Dave going to the bar, he
leaves the bar without noticing Michael.

Our first claim is an almost trivial one which shows that there always exists
an equilibrium in which they both tell the Rabbi if they make eye-contact.

Claim. There exists a Bayesian-Nash equilibrium of Γ such that σ∗(H) = (A, A)
and σ∗((M,D)) = (B, B) for any pB, pM′ , pD′ .

Our next claim shows conditions under which if Michael and Dave do not make
eye-contact, they must continue playing A if they play A on H. That is, suppose
Michael and Dave coordinate on (A, A) when Dave stays home; under what
conditions is it the case that they can play (B, B) only at (M,D), i.e. only when
they make eye-contact.

Claim. Suppose σ∗ is a Bayesian-Nash equilibrium of Γ with σ∗(H) = (A, A). If
pM′ > p∗ and pBpM′

pBpM′+(1−pB) < 1 − p∗ then σ∗(ω) 
= (B, B) for all ω 
= (M,D).

Now that we have formalized why someone mightwant to avoid eye contact, we can
discuss when this is worthwhile. For instance, avoiding eye contact will not serve
any purpose when it is very likely that they saw each other, e.g. if the bar had no-
body else present and was very well lit (i.e. when pM′ and pD′ are small). Likewise,
avoiding eye contact serves no purpose if, when it is commonly known that both
parties see each other doing an act, neither is expected to play any differently than



92 N.A. Dalkiran et al.

if neither transgressed (i.e. σ∗(M,D) = (A, A)). For example, the transgression is
not perceived as related to the ensuing coordination game, e.g. if the two religious
men have already discussed their secret abhorrence of the religion.

Moreover, avoiding eye contact only serves a purpose if there will be an ensuing
coordination game (i.e. a > c). If in fact Michael would prefer to rat on Dave,
regardless of whether Dave rats on Michael (e.g. because he knows the Rabbi will
believe him, and he would like Dave to be excommunicated) then Dave does not
help himself by avoiding Michael’s eyes. In fact, to the extent that Dave thinks
this might be the case, he might want to avoid eye contact, as it may make his
presence more conspicuous to Michael.

Lastly, Michael may even purposely make eye contact, or yell out “hey Dave,
is that you,” if he in fact wants to switch from them both playing A to both
playing B (which would be the case if d > a). For instance, this would be the
case if Dave was looking for someone to leave the community with him and help
him start a new life in the secular world.

5 n-Player Framework

We now introduce r-coordination games. Let Ω be all possible states of the
world. There are n players, each of whom can take action A or B. A player’s
payoff for a particular action is a function of the fraction of players who play B.
In particular, a player’s payoffs are a function of whether the fraction of players
who play B exceeds a threshold r̄. Let r denote the fraction of players who play
B. The payoffs are as follows.

ui(A, r) =
{

a : r ≤ r̄
b : r > r̄

ui(B, r) =
{

c : r ≤ r̄
d : r > r̄

We again use assumption 1 on the values of the parameters, namely that a > c
and d > b. In this context, these assumptions on the payoff parameters generalize
that of a 2 player coordination game in that a player best respond by playing A
if and only if sufficiently many others play A.

We will also assume that n is sufficiently large such that a particular player’s
decision to play A or B does not affect whether r exceeds r̄.

Furthermore, we will again use p∗ = d−b
d−b+a−c . For n-players, p∗ is a general-

ization of risk dominance. If player i believes with probability exactly p that at
least (1 − r̄) players will play A at ω, then player i will be indifferent between
playing A and B at ω.

Note that this setup is a generalization of the two player setup. In particular,
if there are two players, then we can let r̄ be any value in (1/2, 1) in order to
obtain the two player model.

In Definitions 10, 11, and 12, we generalize p-beliefs, evident p-beliefs, and
common p-beliefs to n players.
Definition 10 ((r, p)-belief). For any 0 ≤ p ≤ 1 and any 0 ≤ r ≤ 1, we
say that event E is (r, p)-belief at ω if |{i | ω ∈ Bp

i (E)}| ≥ rn. We define
Br,p(E) = {ω : |{i | ω ∈ Bp

i (E)}| ≥ rn} as the event that at least a fraction of
r players p-believes E.
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Definition 11 (evident (r, p)-belief). An event E is evident (r, p)-belief if
E ⊆ Br,p(E).

Definition 12 (common (r, p)-belief). Given an event C, let C0 = Br,p(C)
and inductively define Cn = Br,p(

⋂
i<n Ci) for all n ≥ 2. Then C is common

(r, p)-belief at ω if ω ∈ ⋂
n≥1 Cn

Note that common (r, p)-beliefs is identical to common p-beliefs when n = 2 and
r = 1. The following theorem and corollaries are analogous to our two-player
theorems and corollaries, despite the differing setup and proofs.

Theorem 2. There exists a state-dependent Bayesian Nash equilibrium σ∗ if
and only if there exists a non-empty evident (1 − r̄, p∗)-belief event E and a
non-empty evident (s, 1−p∗)-belief event F such that E∩F = ∅ for some s > r̄.

Corollary 3. A strategy profile σ∗ is a state-dependent Bayesian Nash equilib-
rium if and only if there exists a non-empty evident (1 − r̄, p∗)-belief event E
and a non-empty evident (s, 1 − p∗)-belief event F for some s > r̄ such that
Bp∗

i (E) ∩ B1−p∗
i (F ) = ∅ and Bp∗

i (E) ∪ B1−p∗
i (F ) = Ω for all i, in which case

Ai(σ∗) = Bp∗
i (E) and Bi(σ∗) = B1−p∗

i (F ) for all i.

Corollary 4. If σ∗ is a Bayesian Nash equilibrium such that |{j | σ∗
j (ω) =

A}| ≥ 1− r̄ and |{j | σ∗
j (ω′) = B}| > r̄, then ¬ω′ is common (1− r̄, p∗)-belief at

ω and ¬ω is common (r̄, 1 − p∗)-belief at ω′.

6 n-Player Application: The Emperor’s Clothes

Suppose that John Doe is on his way to being the next game theorist superstar.
He finally comes out with his first paper, and superficially it is a spectacular
paper. However, the paper offers no real insight, a fact that John attempts to
hide with mathematical complexity. And this is fairly clear to nearly everyone
in the field. Nevertheless, editors start requesting the paper, departments start
offering him positions, conferences start asking him to give the keynote. Why?

Presumably, no one wants to be the lone person in the field who disrespects
the superstar. For example, nobody wants to be the only person not to invite
John to a conference or a special journal issue; he might end up with a powerful
enemy, even if John’s research is not good. However, if everyone in the field
disrespects John Doe, then everyone benefits from doing likewise, since no one
wants his keynote speaker to be unpopular or his new recruit never to be invited
to conferences. Thus, we can model this as a r-coordination game where A is
the act of showing John Doe respect (e.g. inviting him to a conference), and B
is an act of disrespect.1

We make the assumption that if in fact John Doe’s researchwere as great as peo-
ple expected, then everyonewould treat him with respect. Furthermore, we assume
1 Note that “The Emperor’s New Clothes” can be seen as a metaphor for this story.

John Doe is analogous to the Emperor and his colleagues are analogous to the citizens
who do not, initially, publicly disrespect the obviously flawed superstar.
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that if a person can detect that John’s research is bad, he can only approximately
estimate how many others can detect this as well. We will show (Theorem 3) that,
under mild conditions, if John’s research is bad, no matter what fraction of peo-
ple in the field can detect that his research has no insight, he will still be treated
with respect. However, if people know exactly what fraction of the field know that
John’s research is bad, and that fraction is sufficiently high, then it is possible to
treat John with disrespect (subsequent Claim). This is in stark contrast with the
case where the error in a person’s estimate is arbitrarily small.

The Model. We model the information structure as follows: we assume that if
John’s research is in fact bad, then 1 − ε of the population can detect that it is
bad. Everyone who can detect that it is bad has some impression of how easy it
is for others to detect how bad it is; namely, they each get a signal θi which is
independently drawn from U [ε− δ, ε + δ]. After observing his private signal, but
not ε, player i can choose to play A or B. As in the general setup, the payoff
from each action is a function of the fraction of players who play B. Let r denote
the fraction of players who play B. The payoffs are as in Section 5.

We can interpret Theorem 3 as follows. Suppose players disrespect John if
their private signal θi of the true state ε is smaller than some (arbitrarily small)
threshold ε̄. Then, if the fraction r̄ of players needed to coordinate on B is larger
than the risk-dominance p∗, this set of strategies is not an equilibrium. Note that
the condition on r̄ does not depend on ε̄. Another way of interpreting our results
is the following. Even if many believe that many believe that many believe...that
John’s research is bad (for finitely many iterations), John will still be respected.
Whereas, if it is common knowledge (subsequent Claim), e.g. if it is publicly
announced how bad John’s research is, he will no longer be respected.

Theorem 3. Let ε ∼ U [0, 1] and θi ∼iid U [ε − δ, ε + δ] for all i and for some
δ > 0. Let σ∗ be a strategy profile such that σ∗

i (θi) = B when θi ≤ ε̄ and
σ∗

i (θi) = A when θi > ε̄ for some ε̄ ∈ [δ, 1 − δ]. Then for δ → 0, σ∗ is not a
Bayesian Nash equilibrium if r̄ > p∗.

We contrast this result with the scenario in which the exact value of ε is observed
by those who can detect that John’s research is bad (i.e. θi = ε). The following
claim can be easily established.

Claim. The strategy profile σ∗ is a Bayesian Nash equilibrium if σ∗
i (θi) = A if

ε ≤ 1 − r̄ and σ∗
i (θi) = B otherwise.
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