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ABSTRACT

The potential use of optical forces in microfluidic environment enables highly selective bio-particle manipulation.
Manipulation could be accomplished via trapping or pushing a particle due to optical field. Empirical determi-
nation of optical force is often needed to ensure efficient operation of manipulation. The external force applied to
a trapped particle in a microfluidic channel is a combination of optical and drag forces. The optical force can be
found by measuring the particle velocity for a certain laser power level and a multiplicative correction factor is
applied for the proximity of the particle to the channel surface. This method is not accurate especially for small
microfluidic geometries where the particle size is in Mie regime and is comparable to channel cross section. In
this work, we propose to use Boundary Element Method (BEM) to simulate fluid flow within the micro-channel
with the presence of the particle to predict drag force. Pushing experiments were performed in a dual-beam
optical trap and particle’s position information was extracted. The drag force acting on the particle was then
obtained using BEM and other analytical expressions, and was compared to the calculated optical force. BEM
was able to predict the behavior of the optical force due to the inclusion of all the channel walls.
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1. INTRODUCTION

Lab-on-a-chip (LOC) technology and microfluidics enables chemical, biological and physical analyses of bio-
particles in miniaturized platforms. Highly selective bio-particle manipulation is necessary for such applications
to ensure satisfactory operation. The use of optical forces in microfluidics brings a well-established technology
to perform fundamental operations such a trapping, separation, transportation, and sorting in LOC systems.1

Optical manipulation could be accomplished via trapping and transporting, deflecting, and pushing particles due
to gradient and scattering optical force components. Gradient force created in optical tweezers have been used
to trap and transport cells in a microfluidic system,2 and separation of a single cell from a population,3 while
scattering force due to radiation pressure has been utilized for the deflection of cells into a target channel for
sorting applications.4 Active cell sorting based on both fluorescence sensing5 and mechanical properties6 have
been accomplished using radiation pressure from an expanding optical beam.

Empirical determination of optical force is often needed to calibrate an optical trap and ensure efficient
operation of particle/cell manipulation. The external force acting on a trapped particle in fluidic environment
is a combination of optical and drag force. Calibration in a petri dish environment can be conducted using
Boltzmann statistics or power spectral density function, where position data can be obtained using a quadrant
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photodiode or video microscopy techniques. Both methods aim to fit empirical data to an analytical expression
to extract trap stiffness, k (pN/µm), although in a microfluidic environment, the optical trapping force can be
over or underestimated based on the method used.7 Another method is to measure the escape force velocity of
a stationary particle from the optical trap and calculate the viscous drag force.8 This calibration method relies
on the trapped particle being far away from to the glass surface, h� a, where h is location of the sphere center
from the nearest surface, and a is the particle radius. The drag force acting on a spherical particle in a stagnant
fluid can be written as:

F = −γup, (1)

where γ is the hydrodynamic drag coefficient and up is the measured particle velocity. Under the assumption of
Stoke’s flow, the drag coefficient can be written as:

γ = λ6πηa, (2)

where η is the viscosity and a is the particle radius, and λ is a correction factor. In an infinite medium, λ = 1.0,
and the equations is knowns as Stoke’s law. If the particle surrounded by finite fluid domain, and/or there
exists multiple particles, value of λ deviates from unity. Some analytical expressions exist for λ as a function of
diameter-over-separation ratio for applications that include a particle moving parallel or against a single wall.9

However, there is no general expression for a particle confined by several walls. For the optical force calibration,
an accurate estimation of the drag force on the particle is crucial. For the estimation of drag force, it is a
common practice to use Stoke’s law10 or Faxen formula11 in the literature. Strictly speaking, Stoke’s law is valid
if the particle is moving in an infinite stagnant fluid, and Faxen formula is valid if a particle is flowing parallel
to a planar wall in an infinite fluid. Therefore, if the particle size small compared to the micro-channel size,
use of Stoke’s law is appropriate whereas if the experiments are performed in a petri dish,12 Faxen formula is
applicable. However, In the case of microfluidic applications, the particles/cells are enclosed in a microchannel
at least one dimension of which is comparable to the size of the particle/cell; therefore, the effect of the wall(s)
on the drag force needs to be included in the analysis. For an accurate prediction of the drag force on a particle,
the hydrodynamic stress tensor on the particle surface needs to be determined and integrated.13 In this work,
a Boundary Element Method (BEM) based computational model14,15 is used to simulate fluid flow within the
microchannel with the presence of the particle to predict drag force on a particle. A dual-beam optical trapping
setup was fabricated and pushing experiments were performed on a particle with size in Mie regime to extract
the position and temporal information. The extracted data was fed into computational model to obtain the drag
force on the particle and calibrate the optical trap. The obtained results were also compared to the Stoke’s law.

2. BOUNDARY ELEMENT FORMULATION

The governing equations for the Stoke’s flow is given as15

−∇P + µ∇2u = 0, (3)

along with the continuity condition
∇ · u = 0, (4)

where u = (u1, u2, u3) is the velocity field, µ is the viscosity of the fluid, P is the modified pressure defined in
terms of the pressure, p, the gravitational acceleration, g, the density ρ and the cartesian coordinates x as

P = p− ρg · x (5)

The boundary element formulation of the Stoke’s flow can be written as:15

Cij(A)uj(A) =

∫
S

Gij(A,P )tj(P )dS −
∫
Hij(A,P )uj(P ),dS (6)

where A represents the fixed (evaluation) point and P represents the varied (integration) point. Cij takes values
1, 1/2 or 0 depending on the position of A within the solution domain.15 The field variables of Eq. (6) are
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Table 1. Comparison of BEM with Stoke’s law

Number of Elements Stoke’s law BEM % Error

64 18.8496 18.3892 2.44

128 18.8496 18.6146 1.25

256 18.8496 18.7304 0.63

512 18.8496 18.7898 0.32

1024 18.8496 18.8197 0.16

the velocity components, ui, and the traction components, ti. In Eq. (6) Gij and Hij are the first and second
fundamental solutions of Stoke’s equation. Following the discretization of the solution domain, a matrix relation
can be obtained as:

H · u = G · t, (7)

where the elements of the matrices G and H can be evaluated through the following integral relations:

Glk
ij =

∫
Ck

Gij(Al, Pk)dS,

H lk
ij =

∫
Ck

Hij(Al, Pk)dS, (8)

where l refers to the element that the fixed point A is on, and k refers to the element being integrated. The
matrix relation in Eq. (7) constitutes to a 3N equations of 6N unknowns, 3N of which is to be determined by
given boundary conditions. Note that, the imposition of boundary conditions requires the definition of one and
only one of the couples (uni , t

n
i ) or a combination of these two at all points of the defined boundary, where n

represents the node number and i represents the direction. Solving Eq. (7) in view of the imposed boundary
conditions, traction components on the boundary of the particle is obtained. The total net drag force on the
particle, then, can be obtained through

fBi =

M∑
n=1

fn =

M∑
n=1

∫
Cn

ti(Pn)dS =

M∑
n=1

tni An, (9)

where M is the number of nodes on the particle and An are the areas of the triangular elements on the particle.
Note that, in this present study, constant elements are employed to discretize both the channel and the particle
boundaries.

2.1 Code Validation

To validate the computational model, Stoke’s law problem is used as a benchmark problem. A spherical particle
with a unit radius is placed in an infinite medium with a free-stream velocity of unity and viscosity of unity.
The analytical drag force for this problem can be obtained using Eqs 1 and 2. The comparison of the result of
BEM with the analytical solution is given in Table 1. As seen from the Table even with 64 number of elements,
BEM-based computational model can predict the drag force with an error of around 2%.

3. EXPERIMENTAL ANALYSIS

3.1 Dual-beam Optical Trap

First dual-beam optical trap was built by Ashkin in 1970 using CW argon laser and focusing lenses.16 The rays
hitting the particle surface results in momentum transfer and optical force components pushes the particle to
the center of the channel along the optical axis where the radiation pressure from both fibers cancels each other.
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Figure 1. (a) Schematic drawing of the capillary and microfluidic channel, (b) schematic of the experimental set-up, (c)
photograph of the experimental set-up

This is a stable location when there is no fluid flow and lasers are set to the same power level. Although it
is possible to build a dual-beam trap using free space optical components, we chose to use optical fibers and
took advantage of microfabrication technologies for fiber to channel alignment. In order to trap particles using
optical forces, a compact fiber optic based dual-beam optical trap setup was built (Fig. 1). Two single mode
fiber coupled semiconductor diode lasers at a wavelength of 807 nm (Lumics GmbH, Germany) were used as
laser sources. The wavelength was chosen to minimize water absorption in the infrared, hence to avoid heating
effects. The maximum power out of each fiber was measured to be 150 mW. The fiber ends were coupled to
compact DBOT setup and the ends of the bare optical fibers (HI780, Corning, USA) were used as Gaussian light
sources for particle trapping. The mode field diameter given by the manufacturers datasheet is 4.8± 0.5µm and
the calculated beam diameter at the center of the flow channel is 23.0 ± 1.0µm. The bare ends of the optical
fibers were submerged into a index matching gel before placing the next to the flow channel in order to avoid
reflections at the air-glass boundary. The lasers were driven by laser controllers (CLD1015, Thorlabs, USA),
which were controlled by Labview. A microscope (AIV Labs µ-MIT) was used to observe the experiment, and
video was recorded at 90 fps by a CCD camera.

A square capillary channel with 100µm inner diameter and wall thickness (Fig. 1-(a)) was placed perpendic-
ular to the optical fibers on the micro-fabricated alignment chip (Fig. 1-(b)) which was placed under the metal
plate. The capillary was used as a flow channel to transport particles to the trapping site by adapting to the
custom-made DBOT housing using steel connectors which was placed under a customized microscope (Fig. 1-(c))
and was connected to a peristaltic pump (Ismatech, USA) using microfluidic adapters. A shutoff valve was used
between the pump and the capillary channel to stop the flow when needed. Fiber optical connectors were used
to couple both lasers to the custom DBOT setup.

3.2 Pushing Experiments

To calculate the drag force acting upon the trapped particle, we performed pushing experiments11 on polystyrene
particles with a diameter of ∼ 10µm. The refractive index of the particle was given as 1.61 by the manufacturer.
The fluid flow was stopped when the particle was near the trapping region. The optical power was set to 20 mW
and trapping was achieved at the center of the channel. By increasing the power of only one laser to 50−100 mW,
the particle was pushed to other side of the channel, almost touching the channel wall. The same laser was turned
off suddenly by software and the particle was pushed to the other wall by the optical radiation pressure while
temporal information was recorded. The pushing experiments were repeated with 50 and 100 mW power coming
out of the fibers. The recorded videos were then processed frame by frame by ImageJ software to extract the
particle location with respect to walls. The velocity data was found to calculate the drag force. The viscosity of
the water was taken 0.001 Pa · s.
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Figure 2. Schematics of the different cases used in the simulations

3.3 Data Processing and Force Calculation

Once the position vs time data was generated, a fourth-order polynomial was fitted on the data, and the velocity
values were obtained from the derivative of the polynomial at the measurement points. Ignoring the inertia
of the particle and assuming the velocity data corresponds to the terminal speed of the particle at the given
location, the drag force on the particle was determined using boundary element code by assigning the velocity
data on the particle boundary. This analysis was performed for several different cases: (a) particle is infinite
fluid, (b) particle is flowing against a single wall (right wall) in z-direction, (c) particle is flowing against the
right wall with the presence of left wall (fluid is infinite in y-direction), (d) particle is flowing against the right
wall in a micro-channel. Note that if a wall is absent fluid domain is infinite in that direction. The schematics of
these cases are shown in Fig. 2. 306 elements were used to discretize the sphere (Case-a). 952 elements for the
particle with right wall only (Case-b), 1296 elements for the particle with right and left wall (Case-c), and 1984
elements for the particle in micro-channel (Case-d) were used. Simulation were performed on MacBoook Pro
desktop computer (2.3GHz Intel Core i7, 16GB 1600MHz DDR3). The simulations with the largest number of
elements took approximately 5 mins for a given particle location. A picture of the mesh used in the simulations
can be seen in Fig. 3.

For comparison, drag force was also calculated based on Faxen formula, which gives an analytical expression
for the drag force on the sphere flowing parallel to a planar wall, and Brenner formula, which gives an analytical
expression for the drag force on the sphere flowing against a planar wall. The correction factor for Faxen formula
can be written as,9

λ =
1

1− 9

16

(a
h

)
+

1

8

(a
h

)3
− 45

256

(a
h

)4
− 1

16

(a
h

)5 (10)

while the correction factor for Brenner formula can be written as:9

λ =
4

3
sinhα

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)

[
2 sinh(2n+ 1) alpha+ (2n+ 1) sinh 2α

4 sinh2(n+ 1
2 )α− (2n+ 1)2 sinh2 α

− 1

]
(11)

To compare the drag force results with the estimated optical force, we also calculated the scattering optical
force on the particle by using ray optics11,17 by assuming the particle was placed along the optical axis. The
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Figure 3. Mesh used in the simulations

particle was treated as a spheroid with equal major and minor axes. The rays entering the particle propagated
through 5 internal reflections inside the particle, each of which causes a loss in momentum. The effective force
on unit area was calculated and was repeated for the front and back surfaces to obtain the total force from one
laser beam.

4. RESULTS AND DISCUSSION

The position data for 50 mW and 100 mW can be seen in Fig. 4-(a) and Fig. 5-(a), respectively. As seen form the
figure, 4th–order polynomial fits the data quite well (with and R2 ∼ 0.999). Results for drag force calculations
(BEM, Faxen formula and Brenner formula) together with the optical force is illustrated in Fig. 4-(b) and Fig. 5-
(b) for 50 mW and 100 mW, respectively. For the BEM simulations, aforementioned four cases were used. Several
observations can be deduced from the figures:

• The important and expected observation is the increase of drag force with the inclusion of the walls for
50 mW and 100 mW cases due to the hydrodynamic interaction of the particle with the walls.

• Optical force monotonically decreases as the particle moves far away from the laser source due to a decrease
in optical power and Gaussian beam expansion. Stoke’s law was not able to predict the optical force
behavior, instead it predicts a plateau followed by a decrease. Faxen formula introduces a correction as a
function of spacing between the particle and the bottom wall; therefore it predicts the same behavior with
the Stoke’s law, and was also not able to predict the same behavior as the optical force .

• BEM simulations with right channel wall only (Case-b, red curve) was able to give a similar result with
the Brenner formula (black curve), although the behavior of the optical force is not achieved. Both results
predict an increase in the drag force as the particle is in the close vicinity of the right wall due to the
hydrodynamic interaction of the particle with the wall. Similarly, the same increase is also observed for
the cases with the left wall included (Case-c, blue curve) and all walls included (Case-d, green curve). This
behavior is not expected since the optical force tend to decrease with distance. One possible cause of this
inconsistency is due to the neglecting the rotation of the particles in our analysis. The rotation of the
particle could not be observed during our experiments due to fact that the polystyrene particles used were
spherical.

• With the inclusion of the left wall, the monotonic decrease of the optical force was observed. The inclusion
of the top and bottom walls further increases the drag force. At the both ends the blue curve and green
curve approaches to the same value, which is quite expected since the the effect of the side walls have a
stronger effect on the drag force compared to that of the upper and the lower wall.
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Figure 4. Results for 50 mW experiments: (a) Position, (b) Force data
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Figure 5. Results for 100 mW experiments: (a) Position, (b) Force data

• The most important conclusion of these figures is that the use of analytical expressions for the optical force
calibration is not appropriate for the particles trapped/manipulated in micro-channels. The effect of the
hydrodynamic interaction of the particle with the walls needs to be included in the analysis which can only
be performed by some numerical techniques. BEM is a convenient option for these kinds of applications
considering the linear nature of the governing equations. Moreover, the well-known analytical expressions
(i.e. Faxen and Brenner formulas) for the correction factor do not take into account the rotation of the
particle. There is a high possibility that the due to the non-symmetric flow field (mainly due the presence
of the walls), the particle would rotate and that would change the drag force on the particle. In a future
study, we would like to include the rotation by modeling the particle as a freely rotating particle.
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