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Abstract-Cancer cell lines are widely used for research pur­
poses in laboratories all over the world. In this paper, we present 
a novel method for cancer cell line image classification, which is 
very costly by conventional methods. The aim is to automatically 
classify 14 dif1'erent classes of cell lines including 7 classes of 
breast and 7 classes of liver cancer cells. Microscopic images 
containing irregular carcinoma cell patterns are represented by 
randomly selected subwindows which possibly correspond to 
foreground pixels. For each subwindow, a correlation descriptor 
utilizing the fractional unbalanced wavelet transform coeffi­
cients and several morphological attributes as pixel features is 
computed. Directionally selective textural features are preferred 
primarily because of their ability to characterize singularities at 
multiple orientations, which often arise in carcinoma cell lines. 
A Support Vector Machine (SVM) classifier with Radial Basis 
Function (RBF) kernel is employed for final classification. Over 
a dataset of 280 images, we achieved an accuracy of 88.2 %, which 
outperforms the classical correlation based methods. 

Index Terms-Carcinoma cell line, microscopic image process­
ing, correlation descriptor, unbalanced wavelet. 

I. INTRODUCTION 

A UTOMATIC classification of biomedical images is an 
emerging field, despite the fact that there is a long 

history of image recognition techniques [1]. Automated clas­
sification of carcinoma cells through morphological analysis 
will greatly improve and speed up cancer research conducted 
using established cancer cell lines as in vitro models. Distinct 
morphologies of different types and even sub-types of cancer 
cells reflect, at least in part, the underlying biochemical 
differences, i.e., gene expression profiles. Moreover, the mor­
phology of cancer cells can infer invasivenes of tumor cell 
and hence the metastatic capability. In addition, an automated 
morphological classification of cancer cells will enable the 
correct detection and labelling of different cell lines. Predicting 
labels of cancer cell lines in a fast and accurate manner via a 
pattern classification approach will greatly enhance biologists' 
ability to identify different types of cell lines without the 
need to scrutinize each and every microscopic image one by 
one. Although cell lines are being used widely as in vitro 
models in cancer research and drug development, mislabeling 
cell lines or failure to recognize any contamination may lead 
to misleading results. Short tandem repeat (STR) analysis is 
being used as a standard for the authentication of human cell 
lines. However, this process takes a long time and has to be 
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carried out by an expert. Automated analysis, on the other 
hand, will provide the scientists a fast and easy-to-use tool 
that they can use in their own laboratories to verify their cell 
lines. 

In this study, discrimination of 14 classes of biomedical 
images is achieved, which are all images of cancer cell lines. 
The dataset in hand consists of two types of cancer cell 
lines, namely breast cancer and liver cancer (hepatocellular 
carcinoma). The breast cancer cell lines used in our study are 
BT-20, Cama-l, MDA-MB-157, MDA-MB-361, MDA-MB-453, 

MDA-MB-468 and T47D, while the liver cancer cell lines are 
Focus, Hep40, HepG2, Huh7, mv, PLC and SkHepl. Sample 
images from breast cancer and liver cancer cell lines are shown 
in Figures 1-8. 

Fig. 1: Sample image from BT-20 class 

Fig. 2: Sample image from Focus class 

We adopt a correlation based approach by exploiting pixel­
level attributes to construct local region descriptors encoding 
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Fig. 3: Sample image from HepG2 class 

Fig. 4: Sample image from MDA-MB-157 class 

correlations of several attributes inside a region of interest. 
Pixel attributes are extracted using directional difference scores 
and directionally selective fractional wavelet transform. Since 
background regions occur frequently in a cancer cell line 
image, we randomly sample subwindows from the foreground 
image regions after foreground-background segmentation and 
each microscopic image is represented by correlation matrices 
of certain number of subwindows sampled randomly from the 
whole image. Finally, an SVM classifier with RBF kernel is 
trained to learn the class boundaries. 

This paper is organized as follows. In Section 2, feature ex­
traction steps are described comprising image decomposition 
method by directionally selective fractional wavelet transform, 
directional difference score computation and correlation matrix 
construction. In Section 3, SVM based correlation matrix clas­
sification algorithm is explained along with the foreground­
background segmentation by EM algorithm and random sub­
window selection. Section 4 presents the experimental results 
and Section 5 concludes the paper. 

II. FEATURE EXTRACTION 

A. Directionally Selective Fractional Wavelet Transform 

Microscopic cancer cell line images contain significant 
amount of oriented singularities. To characterize the singu­
larities at multiple orientations, we propose the directionally 
selective fractional wavelet transform (DS-FWT) for analysis 
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Fig. 5: Sample image from MV class 

Fig. 6: Sample image from PLC class 

of microscopic images [2]. Fractional wavelet decomposition 
[3] is based on two-channel unbalanced lifting structures 
whereby it is possible to decompose a given discrete-time 
signal x [n] sampled with period T into two sub-signals Xl [n] 
and x2 [n] whose average sampling periods are pT a�d

. 
�T, 

respectively. Fractions p and q are rational numbers satlsfYIng 
the condition: ljp + ljq = 1. In FWT, a structure similar to 
the lazy filterbank forwards every pth sample of the original 
signal to the upper-branch and remaining p-l samples out of p 
samples go to the lower branch. An example of an unbalanced 
lifting structure with p = 3 : 1 and q = 3 : 2 is shown in 
Figure 9. 

In Figure 9, upper branch sub-signal samples xL [n] are 
updated using the neighboring lower-branch samples as 

1 2 3 2 1 
xL [n] = -x[3n- 2]+-x[3n- l]+-x[3n]+-x[3n+l]+gx[3n+2] 

9 9 9 9 (1) 
where x [n] is the original input signal to the filterbank. Lower 
branch detail signal samples are predicted from the upper 
branch and the difference is transmitted to the output lower 
branch: 

[3n+2] _ 2xdif]+XL[if+l] X 2 3 '  
[3n+l] _ 2xd�]+xd�] X 2 3 '  

n is even 
(2) 

n is odd 



Fig. 7: Sample image from SkHepJ class 

Fig. 8: Sample image from T47D class 

We extended the fractional wavelet transform to two­
dimensional signals in a non-separable manner and use it to 
extract directionally selective textural features from cancer cell 
line images. 2-D DS-FWT unbalanced lifting structure with 
p = 9 : 1 and q = 9 : 8, which produces five directional 
subbands, is shown in Figure 10. 

In this study, DS-FWT is used with p = 25 : 1 and q = 
25 : 24. A 2-D image is divided into 5x5 nonoveriapping cells 
and eight values corresponding to eight orientations between 
o and 7r are computed inside each cell. With J (x, y) denoting 
the center pixel of the cell, fractional wavelet features can be 
computed by taking differences between the center pixel and 
the weighted region sums as follows: 
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Fig. 9: Unbalanced lifting scheme with p = 3 : 1 and q = 3 : 2 
downsampling ratios. 
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Fig. 10: 2-D non-separable extension of the unbalanced lifting 
structure with p = 9 : 1 and q = 9 : 8. 

D3(X, y) = J(x, y) - L wijJ(x + i, y + j) 
2>i>-2 

(5) 

2�j�-2 
O>ij 

D4(X, y) = J(x, y) - L wijJ(x + i, y + j) 
2>i>-2 
l�j�-l 

O>ij 

(6) 

where Di(x, y), i = 1.. .8, represents the directional feature 
for the ith direction, Wij denotes the weight associated with 

D1(x,y)= J(x,y)- L wijJ(x+i,y+j) 
l>i>-l 
2�j�-2 

(3) the corresponding pixel in the neighborhood of the center 
pixel and Li,j Wij = 1. The subband images Di(X, y) for 

i = 5 . . .  8 are computed in a similar manner. They repre­
sent 7r / 4 counterclockwise rotated versions of the differences 

Di(x, y), i = 1.. .4, respectively. Each Di can be regarded as 
a directional detail subband whose size is five times smaller 

D2(x, y) = J(x, y) - L wijJ(x + i, y + j) 
l>i>-l 
2�j�-2 

O?ij 

(4) than that of the original size. To obtain an approximation 
subband the same size as the detail subbands, we decimate 
the image by a factor of five using anti-aliasing filters and 



obtain an approximation image Ia(x, y). Thus, we obtain 9 
attributes for each pixel (x,y) of the image la, which are 
the intensity Ia(x, y) and 8 values Di(x, y) obtained from 
fractional wavelet transformation. These values will be used 
as features in correlation matrix computation. 

B. Directional Differences 

In order to account for the large morphological variation of 
the images in our dataset, we evaluated differences between 
pixels in various directions. Consider a point PI on a two­
dimensional function I(x, y). Now consider a second point 
P2. The Euclidean distance between PI and P2 is d and P2 lies 
on line that has an orientation of angle a with respect to the 
x-coordinate, i.e., P2 lies on a circle, which's center point is 
PI and has a radius d. The difference between PI and P2 can 
be written as 

T(d,a) = II(x,y) - I(x + d· cosa,y + d· sina)l. (7) 

Now consider we want to compute a couple of difference 
values for equidistant concentric circles where the largest 
circle has radius R and the smallest has radius Rj A, where 
A is an integer with values ranging from [1, R]. When the 
parameters R and A are fixed, we can rewrite the above 
equation as 

T(i, a) = I I(X,y) - I(x + i�. cosa,y + i�. sina) l , 
(8) 

where i E 1, 2, ... , A. We can compute a score for each a value 
by computing a function with respect to i, as 

(9) 

For example, F) can be the median function. In that case So: 
is simply the median of all the differences between the center 
pixel and the points at distances i � at the fixed orientation 
a. We use these scores as features in correlation matrix 
computation. Three different functions, namely median, max 
and mean functions, are employed for F) in this study. For 
each image Ia(x, y) obtained in Section II-A, 8 output images 
of the same size are generated as the result of the function 
F), corresponding to 8 different orientations when the radius 
d is chosen as 5 in the experiments. Hence, in addition to DS­
FWT features, each pixel (x,y) of the image Ia has 8 attributes, 
which denote the scores So: for 8 different a values. 

C. Correlation Matrices for Cell Line Description 

Successfully employed in texture classification [4], pedes­
trian detection [5] and flame detection [6], covariance descrip­
tors enable the combination of different features over an image 
region of interest. Given an intensity image I of size mxn, we 
define a mapping ¢ from image domain to feature domain as 

F(x,y) = ¢(I,x,y) (10) 

where each pixel (x,y) is mapped to a set of features and 
F is the mxnxd dimensional feature function. For a given 
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subwindow R consIstIng of n pixels, let (fk)k=l...n be the 
d-dimensional feature vectors extracted from R. Then, the 
covariance matrix of region R can be computed as 

1 n C = -- '"'(fk - fL)(fk - fL)T 
n-l L... k=l 

(11) 

where fL is the mean of the feature vectors inside the region 
R. The covariance matrix is symmetric positive-definite and 
of size dxd. There exists a very efficient multiplier-less im­
plementation of covariance descriptors, called co-difference 
matrices, which have been shown to yield comparable per­
formances to the original ones [7]. 

Correlation descriptors are obtained by normalizing covari­
ance matrices. Correlation matrix estimation is perfonned as 
[8] 

A • •  {JC(i,j), C(l,J) = C(i,j) 
VC(i,i)C(j,j) , 

if i = j 

otherwise (12) 

With 

D(x,y) = [DI(x,y) ... Ds(x,y)] (13) 

and 

s�(x,y) = [S�,(X,y) ... S�8(X,y)] (14) 

where al ... as correspond to the eight orientations of direc­
tional difference score estimation and k = 1, 2,3 denote, 
respectively, the median, max and mean functions F) in 
Section II-B, feature mapping functions employed in this study 
are 

¢I(I,X,y) = [Ia(x,y) D(x,y) s�(x,y)]T, (15) 

¢2(I,x,y) = [Ia(x,y) D(x,y) s�(x,y)]T, (16) 

where IIxl and IIxxl denote the first- and second-order deriva­
tives at (x, y) of the image Ia. 

III. CLASSIFICATION USING A MULTICLASS SVM 

The images in our dataset show a large amount of back­
ground pixels. Clearly, the background is not discriminative. 
Therefore, we address the issue of segmenting the images 
into foreground and background before classification. For our 
dataset a simple thresholding scheme is not sufficient for 
segmentation, since foreground pixels have a large variance 
and may therefore have values higher and lower than the 
background pixels. We modeled the image as a mixture of two 
Gaussians, representing the foreground and background pixels, 
respectively. Using this model, an Expectation-Maximization 
(EM) algorithm was applied for segmentation. 



Since it is necessary to focus on foreground-like regions 
in carcinoma cell line images, s analysis square windows 
are randomly selected, as in [9], from each image with 
the two constraints: the percentage of the foreground pixels 
in the selected region of an image must be above 50 and 
the variance of the selected region must exceed an image­
dependent threshold, which is the variance of the whole image. 

For each subwindow, a covariance matrix is computed using 
Equation (11) for each of the feature mapping functions in 
(15)-(18). The image signature is composed of s covariance 
matrices of the same size. Each class is represented by 
sx#(images in each class) covariance matrices. Covariance 
matrices are symmetric positive-definite and do not lie in 
the Euclidean space; so, they are vectorized resulting in 
d( d + 1) /2-dimensional vectors for dxd matrices. A multiclass 
SVM classifier is trained with REF kernel in the d( d + 1) /2-
dimensional vector space using the training points. SVM 
algorithm is implemented using LIBSVM library [10]. For 
each test subwindow, the corresonding covariance descriptor is 
vectorized and fed into the trained SVM model for prediction. 
Therefore, there exist s labels for each microscopic image 
corresponding to s subwindows, and the image in question 
is assigned the label that gets the majority of votes among 
s labels. The above process is re-executed using correlation 
matrices instead of covariance matrices. 

IV. EXPERIMENTS 

The dataset used in this study consists of 280 microscopic 
human carcinoma cell line images with each of the 14 classes 
having 20 images. All the images in the dataset were acquired 
at 20x magnification. The size of each image is 3096x4140 
pixels. 7 classes belong to breast cancer cell lines and the other 
classes belong to liver cancer. Breast cancer cells tend to be 
smaller and round whereas liver cancer cells tend to be more 
spread out and have pods. Moreover, breast cells generally do 
not contain dots within the cytoplasm. 

We adopt a 20-fold cross-validation strategy for the exper­
iments. The dataset is divided into 20 disjoint subsets and 
each subset consisting of 14 images is used exactly once as 
the test set. For k = 1...20, kth subset is formed by taking 
the kth indexed image of each class. We run 20 experiments, 
choosing each image as the test image only once for each 
class, and obtain the average image classification accuracy 
over 20 runs. The number of selected random subwindows 
is taken to be s = 100. We perform the above experiment for 
both covariance and correlation matrices, and for four different 
mapping functions in (15)-(18). SVM RBF kernel parameters 
are chosen as 'Y = 0.5 and C = 1000. Experimental results 
are shown in Table I. 

It can be seen from Table I that correlation matrix-based 
method outperforms the covariance method for all map­
ping functions. This can be attributed to the normalization 
performed in correlation computation. Unbalanced wavelet 
features based classification methods (15)-(17) have higher 
accuracies than the classical covariance/correlation method in 
(18). It is clearly demonstrated via experiments that image 
classification accuracy can be enhanced by exploiting the 

directional information through the use of DS-FWT features 
and directional scores obtained by median, max and mean 
functions. 

Feature Covariance Correlation 
mapping -based -based 
function classification classification 

(PI(1,x,y) 82.5 85 
<P2(1, x, y) 84.3 87.1 
<P3(I,x,y) 87.1 88.2 
<P4(1, x, y) 73.2 80 

TABLE I: Average classification accuracies (in %) of carcinoma cell 
line images over 20 runs using SYM with RBF kernel 

V. CONCLUSION 

In this paper, fractional wavelet transform and region co­
variance framework are successfully applied to classify the 
cancer cell line images. We demonstrate that automatic classi­
fication of microscopic carcinoma cell line images can be reli­
ably performed using directionally selective fractional wavelet 
transform (DS-FWT) and correlation descriptors. Fractional 
wavelet transformation is achieved by using unbalanced lift­
ing structures where sampling intervals of upper and lower 
branches are different. Covariance and correlation descriptors 
are computed for features extracted from DS-FWT subbands 
and directional difference scores. Promising classification re­
sults are obtained with the experiments, which reveal the 
ability of the proposed features to characterize breast and liver 
carcinoma cell line textures. 
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