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ABSTRACT

In this paper, a Content Based Image Retrieval (CBIR) al-

gorithm employing relevance feedback is developed. After

each round of user feedback Biased Discriminant Analysis

(BDA) is utilized to find a transformation that best separates

the positive samples from negative samples. The algorithm

determines a sparse set of eigenvectors by L1 based optimiza-

tion of the generalized eigenvalue problem arising in BDA for

each feedback round. In this way, a transformation matrix is

constructed using the sparse set of eigenvectors and a new fea-

ture space is formed by projecting the current features using

the transformation matrix. Transformations developed using

the sparse signal processing method provide better CBIR re-

sults and computational efficiency. Experimental results are

presented.

Index Terms— Relevance Feedback, CBIR, BDA, L1-

ball, Sparsity

1. INTRODUCTION

Relevance feedback is the process of refining the outputs of

an information retrieval system based on the input from a user

after he/she is presented with initial query results [1]. Rele-

vance feedback is also used in CBIR problems [2].

Relevance feedback and Shannon entropy are used in [3],

to obtain a diverse set of refined queries. At each iteration of

feedback they choose a number of samples around the query

to present to the user for feedback. The points are added to

the set using a cost function that is a weighted average of a

distance function and an empirical entropy function. They

use the Biased Discriminant Analysis (BDA) to evaluate their

method and refine the returned query points.

Biased discriminant analysis introduced in [4] can be used

to increase the performance of relevance feedback algorithms

by efficiently learning from a few training samples. In this

method, which is also called (1+x)-class learning, the num-

ber of classes is not known but only one class is important.
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The user, during the relevance feedback, marks the samples

as “positive” or “negative”. Although there is one positive

class, there might be more than one negative class. The main

idea of the method is that during relevance feedback, posi-

tive samples are more likely to have a compact support, and

therefore the method is biased toward positive examples. The

solution of the BDA is equivalent to solving a generalized

eigenvalue-eigenvector computation.

Another discriminant analysis method is the Common

Spatial Patterns (CSP) that is used in brain computer inter-

face (BCI) applications. In [5], they convert the generalized

eigenvalue-eigenvector computation to an optimization prob-

lem to obtain a sparse solution.

In our relevance feedback application after the user labels

the initial query results, a sparse transformation is obtained by

projecting the solution of the biased discriminant optimiza-

tion problem on L1-ball [6]. For each feedback round a new

feature space is formed by projecting the current features us-

ing the sparse transformation matrix. Sparse solution leads

not only to a computationally efficient algorithm but also bet-

ter CBIR results.

The rest of the paper is organized as follows; in Section 2

we review the BDA algorithm, in Section 3 we introduce the

sparse BDA method and in Section 4 we present the experi-

mental results.

2. BIASED DISCRIMINANT ANALYSIS

In BDA two different covariance matrices, A and B, from the

positive and negative examples are constructed, respectively.

Biased discriminant analysis solves the following Rayleigh

Quotient problem:

Wopt = argmax
W

|WTBW |
|WTAW | (1)

where

A =

na∑

i=1

(ai −ma)(ai −ma)
T (2)

B =

nb∑

i=1

(bi −ma)(bi −ma)
T (3)
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ai and bi represent the feature vectors extracted from positive

and negative samples, respectively, and ma = 1
na

∑na

i=1 ai is

the mean of the positive samples. Compared to linear discrim-

inant analysis (LDA) [7], BDA has larger effective dimension

(i.e., nonzero eigenvalues of the generalized eigenvalue so-

lution), because the dimension of LDA is equal to “number

of classes-1” whereas it is min(na, nb) for BDA. Therefore

BDA usually performs better in separating the positive exam-

ples when the number of samples is small [4].

The optimal solution Wopt in Eq. 1 is the solution of the

generalized eigenvalue problem where the matrix of eigen-

vectors V and the matrix of eigenvalues Λ satisfy:

BRV = ARV Λ (4)

The biased discriminant transform (BDT) matrix can be

formed as [4]:

T = V Λ1/2 (5)

In a relevance feedback architecture BDA is used as a small

sample learner. After each round of feedback BDA trans-

forms the feature space using the BDT matrix in Eq. 5. A

major problem with the generalized eigenvalue solution is that

it may overfit the data by producing too many small eigenval-

ues. Instead of solving the generalized eigenvalue problem

we employ a sparse signal processing method which yields a

significant set of eigenvalues even in small data sets.

3. SPARSE BDA

To obtain a sparse BDT solution the following optimization

problem should be solved [5]:

wopt = argmax
w

|wTBw|
|wTAw| s.t. ||w||1 = z (6)

where z determines the sparsity level of the solution. In our

method we maximize the Rayleigh Quotient problem subject

to the constraint:

||w||1 ≤ α (7)

which defines an L1-ball. We solve this problem iteratively

by making orthogonal projections on L1-ball. Making a pro-

jection onto the L1-ball consists of making orthogonal projec-

tions onto hyperplanes [8]. The pseudo code of the proposed

method is given in Algorithm 1. After solving for Wopt we

sort the eigenvectors in ascending order in terms of their cor-

responding eigenvalue amplitudes. We only use the first M
eigenvectors. The value of M can be different for each feed-

back round.

For each eigenvector we find the parameter α that deter-

mines the sparsity level of the projection. α can be selected

proportional to the L1-norm of each eigenvector v as in the

following equation:

α =

∑
i |v(i)|

(1 + δ)
(8)

where δ ≥ 0 can be used to adjust the sparsity level of the

projection, increasing δ yields sparser vectors. The smallest

elements of the eigenvector are set to zero depending on the

value of α. Since α is different for each eigenvector we cannot

determine a single sparsity level for the algorithm, therefore

we average the sparsity levels of all eigenvectors to obtain a

comparative sparsity level.

Algorithm 1 Sparse BDA Algorithm

Solve for Wopt

Sort eigenvectors in ascending order

Retain only M eigenvectors

for Each eigenvector v do
Determine α
N ⇐ length(v);
||v||1 ⇐ ∑

i |v(i)|;
for i = 1 → N do
vk(i) ⇐ v(i) + sign(v(i)) (α−||v||1)N ;

if (sign(vk(i)) �= v(i)) then
vk(i) ⇐ 0;

end if
end for
vk ⇐ vk∑

i |vk(i)| ;
end for

4. EXPERIMENTAL RESULTS

In the experiments we first used a synthetic dataset to test

the performance of the sparse BDA algorithm. We created a

dataset of 100K vectors; each vector has 64-elements that are

distributed according to a Gaussian distribution. The mean

of the distribution determines the class of the sample. We

created 1000 classes each with 100 vectors. We compare the

performances of different methods in terms of precision/recall

graphs. We used 10 samples in the dataset as the query vectors

and averaged the results to obtain the final precision/recall

values. To find the distances between the query and the sam-

ples in the dataset we use an exhaustive search method since

the dimension of our data is usually high. Indexing meth-

ods such as kd-tree [9], work better when the dimension is

low. We return 200 vectors for the initial query and assume

50 of them are labeled by the user as positive or negative

samples. In Fig. 1a we compare our L1-ball projection based

method (called L1-BDA), with the regular BDA after one and

two feedback rounds. We observe that the L1-BDA performs

significantly better than the regular BDA for both feedback

rounds. In Fig. 1b average sparsity ratios that are calculated

as the ratio of the number of the zero elements of eigenvec-

tors to the length of the eigenvectors are shown for the Gaus-

sian dataset. Making the vectors too sparse decreases per-

formance, because this means that too few eigenvectors are

selected.
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(a) (b)

Fig. 1: a) Precision/Recall graph for L1-BDA and BDA on

Gaussian dataset. b) Average precision values vs sparsity ra-

tio for the Gaussian dataset.

In Fig. 2a, the proposed projection method is compared

with the Euclidean L1-projection method given in [6] on a

different realization of the Gaussian dataset (10K classes, 10

samples for each class) used in the first experiment. We see

that the proposed method has higher precision values at the

same sparsity ratios.

(a) (b)

Fig. 2: The proposed projection algorithm is compared with

Euclidean projection method in [6]. In terms of a) preci-

sion/recall performance, and b) sparsity ratios.

For the second test we used the feature vector set from

the AFTER project [10]. There are 3400 samples each with

338 elements corresponding to different color and texture

features. The features are obtained from the COREL image

dataset; there are 34 classes each with 100 images. We used

34 samples in the dataset as the query vectors and averaged

the results to obtain the final precision/recall values. We re-

turn 200 vectors for the initial query and assume 50 of them

are labeled by the user as positive or negative samples. In

Fig. 3a we observe that the L1-BDA performs better than

the regular BDA for both feedback rounds. Fig. 3b average

sparsity ratios are shown. We see that for this dataset we

can have almost % 90 sparsity ratio without decrease in the

performance.

For the last experiment we used the KTH-TIPS database

that contains 810 images for 10 different classes of colored

textures [11]. To extract features from the images we used the

(a) (b)

Fig. 3: a) Precision/Recall graph for L1-BDA and BDA on

COREL dataset. b) Average precision values vs sparsity ratio

for the COREL dataset.

(a) (b)

Fig. 4: a) Precision/Recall graph for L1-BDA and BDA on

KTH-TIPS dataset. b) Average precision values vs sparsity

ratio for the KTH-TIPS dataset.

dual-tree complex wavelet transform (DT-CWT) as texture

features and histograms in HSV color space as color features.

Dual-tree complex wavelet transform tree, is recently devel-

oped to overcome the shortcomings of conventional wavelet

transform, such as shift variance and poor directional selec-

tivity [12]. To obtain wavelet features we divide images into

four non-overlapping blocks and calculate the energies and

variances of six different subbands (oriented at +/-15, +/-45,

+/- 75) for each block. The combined feature vectors of all

blocks are used as the texture feature of the image. We return

100 images for the initial query and assume 50 of them are la-

beled by the user as positive or negative samples. The results

for this test are in Fig. 4a and Fig. 4b.

In Table 1, query response times of BDA and L1-BDA are

compared for each feedback round on different datasets. All

tests are performed on a PC with Intel I7 3 GHz processor

and 6GB ram. D1 has 100K normally distributed samples

(the format of the samples is the same as the first experiment)

and 10 samples for each class, D2 has 200K total samples

and 10 samples for each class, D3 has 100K total samples

and 100 samples for each class, D4 has 1M total samples and

100 samples for each class. R1, R2, R3 denote three different

feedback rounds. The results are obtained by averaging the

response times of different query images. We see that L1-
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Table 1: Comparison of query response times of BDA and

L1-BDA for each feedback round on different datasets.

Query Response Times (sec)

BDA L1-BDA

R1 0.2309 0.1508

D1 R2 0.1274 0.0888

R3 0.0816 0.0577

R1 1.3202 0.7758

D2 R2 0.7466 0.4843

R3 0.4224 0.2964

R1 2.6019 1.5101

D3 R2 1.4446 0.9156

R3 0.8174 0.5756

R1 5.2058 2.9993

D4 R2 2.8516 1.7854

R3 1.6170 1.1065

BDA usually has lower response times than BDA.

5. CONCLUSION

A method is developed to obtain sparse eigenvectors from the

biased discriminant transform by projecting the vectors on

L1-ball. The method is used in a relevance feedback frame-

work for CBIR applications. After each round of feedback,

features of the images returned by the user are mapped to a

new sparse feature space using the sparse transformation. It

is possible to achieve high sparsity levels using this method

without sacrificing performance. The method performs better

than the regular BDA on the colored texture (KTH-TIPS) and

object categories datasets (COREL). Since we USE L1-ball

projections the method is computationally efficient even on

large datasets. Making a projection onto the L1-ball consists

of making orthogonal projections onto hyperplanes forming

the boundary of the L1 ball.
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