Runtime Verification of Component-Based
Embedded Software

Hasan So6zer, Christian Hofmann, Bedir Tekinerdogan
and Mehmet Aksit

Abstract To deal with increasing size and complexity, component-based software
development has been employed in embedded systems. Due to several faults,
components can make wrong assumptions about the working mode of the system
and the working modes of the other components. To detect mode inconsistencies at
runtime, we propose a “lightweight” error detection mechanism, which can be
integrated with component-based embedded systems. We define links among three
levels of abstractions: the runtime behavior of components, the working mode
specifications of components and the specification of the working modes of the
system. This allows us to detect the user observable runtime errors. The effec-
tiveness of the approach is demonstrated by implementing a software monitor
integrated into a TV system.

1 Introduction

An evident problem in the embedded systems (ES) domain is the increasing
software size and complexity. As a solution, component-based development has
been recognized as a feasible approach to improve reuse and to ease the creation of

This work has been carried out as part of the TRADER project under the responsibility of the
Embedded Systems Institute. This project is partially supported by the Netherlands Ministry of
Economic Affairs under the Bsik program.

H. Sozer (X))
Ozyegin University, Istanbul, Turkey
e-mail: hasan.sozer@ozyegin.edu.tr

C. Hofmann - M. Aksit
University of Twente, Enschede, The Netherlands

B. Tekinerdogan
Bilkent University, Ankara, Turkey

E. Gelenbe et al. (eds.), Computer and Information Sciences I, 471
DOI: 10.1007/978-1-4471-2155-8_60, © Springer-Verlag London Limited 2012

472 H. Sozer et al.

variants of products [1]. Hereby, usually each component has to deliver a set of
well defined services in a set of working modes. Components can correctly
work together in the integrated system only if their working modes are con-
sistent with each other; however, several faults can lead to mode inconsisten-
cies at runtime.

We observed that mode inconsistencies between components can cause severe
errors that lead to user-perceived failures. To detect and recover such errors,
dedicated fault tolerance mechanisms are required. Instead of tolerating faults, one
may try to avoid them by adopting theorem proving and model checking tech-
niques at design time. Although these techniques have showed their value for
many practical applications, the existing tools do not scale-up easily. Moreover,
some faults may simply remain undetected during design and/or new faults may be
introduced during the implementation.

In our approach, we define 3 levels of abstractions: the runtime behavior of the
components, the working mode specifications of components and the specification
of the working modes of the system. We establish explicit links among these
levels. This allows us to detect runtime errors caused by inconsistent working
modes of components. The effectiveness of the approach is demonstrated with a
software monitor integrated into a TV system.

The remainder of this paper is organized as follows. Section 2 introduces the
problem using an industrial case. Our solution approach is described in Sect. 3.
Section 4 proposes diagnosis and recovery techniques. Section 5 discusses the
effectiveness and the limitations of the solution approach. In Sect. 6, related
previous studies are summarized. Finally, the paper is concluded in Sect. 7.

2 Industrial Case

In this section, we illustrate the problem using digital TV (DTV) as an industrial
case. The DTV software is composed of many components working in coordi-
nation [1]. Each component has a set of working modes. These modes should be
mutually consistent to provide the functionality that is required by a working mode
of the system. If the synchronization between the component’s working modes is
lost (by loosing a notification message, data corruption etc.) inconsistent behavior
occurs and component interactions no longer work in the anticipated way.

Consider for example the Teletext Page Handler component, which is
responsible for requesting and acquiring a teletext page. Another component,
Display Manager renders teletext pages on the screen. If Display Manager cor-
rectly assumes that the TV is in Teletext mode whereas Teletext Page Handler
assumes that the TV should display the video stream, the combined behavior leads
to a failure: no Teletext page is rendered leaving the user with a blank screen.

Due to the large number of components and the cost sensitivity of the ES
domain, it is not feasible to check mode consistencies at the system level.
Therefore, we propose to detect mode inconsistencies at component level as
follows.

Runtime Verification of Component-Based Embedded Software 473

Table 1 Mapping between the component modes and the 4 system working modes

Application manager Txt page handler Display manager

Mode Map Mode Map Mode Map
On screen display 1000 On 111 On screen display 1000
Txt 0111 Off 1000 Txt full screen 0100
off 0000 subtitle 0111 Txt left-half screen 0010
TV 1000 Default screen 1000

3 Error Detection

Our approach is based on models of the working modes of the system and its
components. We map the models describing the component working modes to the
implementation of the corresponding component in order to observe the compo-
nent modes at runtime. We also map all component modes to the system modes.
This makes the inter-dependencies between component modes explicit. The
mappings between modes specify the mutual consistency condition, which is
checked by monitoring the system at runtime. An error is detected whenever an
inconsistency has been observed. In the following, we will discuss a prototype
implementation of this approach in more detail. Then, we generalize this imple-
mentation and provide a formal definition of the mode consistency condition.

3.1 Implementation: A Prototype

The number of errors that can be detected by our approach depends on the number
of working modes of the system that is considered and the number of component
modes that are monitored. We developed a prototype and integrated it into a real
TV system, where 4 system working modes are considered and 3 components are
monitored. System working modes are TV, Txt, dual screen, and transparent
teletext. The monitored components are Teletext Page Handler, Display Manager,
and Application Manager. The Application Manager component controls the
execution of applications in the system. Each component mode is represented by a
bit vector, (bob1b2b3), where each bit corresponds to a system working mode, e.g.,
b, corresponds to dual screen. The mapping between the system working modes
and the component modes is shown in Table 1.

Application Manager, Teletext Page Handler and Display Manager compo-
nents can be in one of 4, 3 and 4 different modes, respectively. In total, there are
3 x 4 x 4 = 48 different mode combinations. AND ing the bit vector representa-
tions of the component modes leads to the value 0 in 40 of the cases. In 8 cases the
result is non-zero, i.e., there is at least one bit where all of the component modes
have the value 1. Therefore, our prototype can detect 40 error cases. The error
detection mechanism polls the system periodically, where the current state values
of the components are ANDed and an error is issued if the result is O.

474 H. Sozer et al.

We injected 4 different faults in the TV system. These lead to mode incon-
sistencies between the Teletext Page Handler and Display Manager components,
which eventually end up in lock-up failures in the Teletext functionality. We
systematically activated the faults with a key combination from the remote control.
In all cases the detection mechanism was able to detect the errors (notified by
blinking the TV status LED) even before we observed the associated failure. This
allows to (possibly) recover from an error before a failure is perceived by the user.

3.2 Generalization of the Prototype

In this section, we generalize and formalize our approach. We define a finite set of
components C, where for each component C; € C, there exists a set of working
modes M;. Furthermore, there exists a set of working modes of the system M. For
each mode couple (m,s) s.t. m € M; and s € Mg, we define a mapping function,

0, s= A(-mW-s)
1, otherwise

wotn |

where s = A(—mW=s) is a Computational Tree Logic [2] formula denoting that
when s occurs, m should never occur until the mode of the system changes. For
every mode m € M; of a component C;, we define a bit-vector v;,, of length |Ms].
Each bit in v; , refers to a mode s in My and its value is assigned according to the
mapping function. The consistency condition is defined as /\ogi <|c| Vi, where

vim corresponds to the current mode of component C;. There exists an error if this
condition is evaluated to 0, meaning that there is no consistent assumption of each
component about the current mode of the system.

3.3 Performance Overhead

To measure the performance overhead introduced by the error detection mecha-
nism, we used an existing feature of the system that measures the load in terms of
CPU cycles. We have made load measurements during two scenarios; watching
TV (TV) and reading a Teletext page (TXT). For each scenario, we calculated the
maximum, minimum and average CPU load of the system with and without the
error detection mechanism. The results are presented in Table 2.

In Table 2, we see that the CPU load during the TV scenario did not differ at all.
For the TXT scenario, the average CPU loads was increased by 1,2% on average.
This shows that the overhead introduced by the error detection mechanism can
vary depending on the usage scenario. In the case of the TV and TXT scenarios, the
overhead is at acceptable levels. In general, our approach provides several
advantages in terms of simplicity and efficiency. Error checking is performed with
a single AND operation over bit-vectors and a space of size (|C| x |Sg|) bits must

Runtime Verification of Component-Based Embedded Software 475

Table 2 CPU load of the system with and without error detection

Scenario Without error detection With error detection

Min.(%) Avg.(%) Max.(%) Min.(%) Avg.(%) Max.(%)
v 34 36.9 51 34 36.9 51
TXT 39 429 46 41 434 47

be allocated only. Also note that the modeling effort is limited to assigning binary
values that indicate the mode compatibility.

4 Diagnosis and Recovery

Error detection is the main focus in this paper. Another essential step of fault
tolerance is recovering from the detected errors. We have recently developed a
local recovery framework [3] for this purpose. Local recovery is an effective
approach, in which the recovery procedure takes actions concerning only the
erroneous components. To make local recovery possible, an additional diagnosis
step should be introduced, which identifies the components that do not have a
consensus on the current system mode. We can apply a voting mechanism to
pinpoint such components in O(|Sg| % |C|) time as shown in Algorithm 4.

Algorithm 1 Diagnosis Procedure

1. systemmode «— @

2. maximumvotesum «—
3. for j =0 — |Sg| do
4. votesum «— 0

5. fori=0— |C|do
6 votesum «— votesum + Vi, [j]
7 end for

8 if maximumvotesum <votesum then
9 systemmode «— j

10. maximumyvotesum <— votesum
11. endif
12. end for

13. for i=0— |C| do

14. if v; ... [systemmode] # 1 then
15. mark the component C;

16. end if

17. end for

476 H. Sozer et al.

5 Discussion

We assigned the monitor to the lowest priority task, which can proceed after all
the other tasks become idle. This provides a safe point in time to perform the
error checking: (i) the monitor does not intervene with other tasks and func-
tions, (ii) the system reaches to a stable state before the mode information is
collected, and (iii) the introduced performance degradation is negligible. The
only drawback of this approach is that error detection might be late. Error
checking may never have a chance to execute in case the system is continu-
ously busy or deadlocked. Such errors can be detected by other mechanisms
like watchdog [4].

6 Related Work

There have been several proposals regarding formal specification of behavior
[5-7]. Behavior protocols [8] and contracts [9] have been mainly used to formalize
component interaction and utilized for design-time verification.

The scheme proposed by Thai et al. in [10] detects errors by checking
consistency of states. The decision about whether there exists an error or not is
made statistically. The outcome is according to the ratio between checks that
passed and the total number of checks executed. Our approach is deterministic in
the sense that an error is issued whenever a check does not pass.

Classification schemes have been provided for on-line monitoring [11] and real-
time system monitoring [12]. We can classify our work as a monitoring approach
for fault tolerance. 1t is based on time-driven sampling of component modes and
built-in event interpretation that triggers recovery actions.

7 Conclusion

We pointed out a problem associated with component-based software that con-
stitutes a challenge for reliability of ES. Either because of implicit assumptions at
the design level or faults introduced during the implementation, mode inconsis-
tencies can occur between components, which end up with the failure of the
system. Such errors can be detected and recovered, (possibly) before a failure is
observed. In this paper, we proposed an error detection mechanism that can detect
mode inconsistencies at runtime. It can be adopted independent of the utilized
component technology. We implemented a prototype of our solution and inte-
grated it into a TV system. We obtained promising results.

Runtime Verification of Component-Based Embedded Software 477

References

10.

11.
12.

. van Ommering, R.C., et al.: The Koala component model for consumer electronics software.

IEEE Comput. 33(3), 78-85 (2000)

. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize

synchronization skeletons. Sci. Comput. Program. 2(3), 241-266 (1982)

. Sozer, H., Tekinerdogan, B., Aksit, M.: FLORA: a framework for decomposing software

architecture to introduce local recovery. Softw. Pract. Exper. 39(10), 869-889 (2009)

. Huang, Y., Kintala, C.: Software fault tolerance in the application layer. In: Lyu, M.R. (ed.)

Software Fault Tolerance, pp.231-248. John Wiley & Sons, Chichester (1995)

. Peters, D.K., Parnas, D.L.: Requirements-based monitors for real-time systems. IEEE Trans.

Softw. Eng. 28(2), 146-158 (2002)

. Zulkernine, M., Seviora, R.: Towards automatic monitoring of component-based software

systems. JSS ACBSE Special Issue 74(1), 15-24 (2005)

. Diaz, M., Juanole, G., Courtiat, J.: Observer—a concept for formal on-line validation of

distributed systems. IEEE Trans. Softw. Eng. 20(12), 900-913 (1994)

. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Trans. Softw.

Eng. 28(11), 1056-1076 (2002)

. Berbers, Y. et al.: CoConES: an approach for components and contracts in embedded

systems. LNCS 3778, 209-231 (2005)

Thai, J., et al.: Detection of errors using aspect-oriented state consistency checks. In: ISSRE,
pp- 29-30 (2001)

Schroeder B.: On-line monitoring: a tutorial. IEEE Comput. 46(25), 72-78 (1995)

Schmid, U.: Monitoring distributed real-time systems. Real-Time Syst. 7(1), 33-56 (1994)

	60 Runtime Verification of Component-Based Embedded Software
	Abstract
	1…Introduction
	2…Industrial Case
	3…Error Detection
	3.1 Implementation: A Prototype
	3.2 Generalization of the Prototype
	3.3 Performance Overhead

	4…Diagnosis and Recovery
	5…Discussion
	6…Related Work
	7…Conclusion
	References

