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Robust airline schedules can be considered as flight schedules that are likely to minimize passenger delay. Airlines usually add an
additional time—e.g., schedule padding—to scheduled gate-to-gate flight times to make their schedules less susceptible to variability
and disruptions. There is a critical trade-off between any kind of buffer time and daily aircraft productivity. Aircraft speed control
is a practical alternative to inserting idle times into schedules. In this study, block times are considered in two parts: Cruise times
that are controllable and non-cruise times that are subject to uncertainty. Cruise time controllability is used together with idle time
insertion to satisfy passenger connection service levels while ensuring minimum costs. To handle the nonlinearity of the cost functions,
they are represented via second-order conic inequalities. The uncertainty in non-cruise times is modeled through chance constraints
on passenger connection service levels, which are then expressed using second-order conic inequalities. Overall, it is shown, that a
2% increase in fuel costs cuts down 60% of idle time costs. A computational study shows that exact solutions can be obtained by
commercial solvers in seconds for a single-hub schedule and in minutes for a four-hub daily schedule of a major U.S. carrier.
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1. Introduction

During the implementation of airline schedules, numer-
ous disruptions are faced that result in operational delays.
The continuous increase in fleet sizes, number of flights,
and number of passenger connections result in congestion,
which make the effects and propagation of delays very sig-
nificant. Therefore, airlines need to generate robust flight
schedules that can respond to these disruptions during im-
plementation and ensure desired service levels even under
uncertainty. We refer to Barnhart and Cohn (2004) for an
extensive discussion on flight operations.

As reported in Barnhart et al. (2012), the total cost of
delays in the United States in 2007 was estimated at $31.2
billion, $8.3 billion being direct cost to airlines and $16.7
billion to passengers. Moreover, approximately $6 billion
of the total direct cost to airlines and passengers was as-
sociated with the additional time—e.g., idle time or sched-
ule padding—airlines add to scheduled gate-to-gate flight
times to make their schedules less susceptible to disruptions.
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It is important to note that there is a critical trade-off
between any kind of buffer time and daily aircraft pro-
ductivity. As stated in Cook (2007), a waiting aircraft with
unused buffer time always includes a sunk cost—e.g., just
5 minutes of unused buffer—at-gate, for a B-767-300 ER,
would amount to over e 50,000 over a period of 1 year (or
e 27.40 a minute) on just one leg per day. Consequently,
some airlines place more emphasis on aircraft utilization
and add almost no slack (or idle time) into their sched-
ules, which makes them more vulnerable to variability and
disruptions. In other applications, the block time for each
flight is calculated independently without considering the
propagation of delays or the impact of variability on the en-
tire network. Since the extra time on the ground is cheaper,
the additional slack time is usually included in the aircraft
turnaround time at the destination airport.

A growing literature highlights the importance of ro-
bustness, increasing service levels, delay reduction, and cost
management in airline operations. An extensive review for
irregular airline operations can be found in Barnhart (2009)
and Clausen et al. (2010). Lan et al. (2006) considered flight
delays in two categories as propagated and nonpropagated
delay. An aircraft routing is a sequence of flights flown by a
single aircraft, so a delay in one of these flights propagates
to the following fight if there is no slack time in between.
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They suggested that propagated delay can be reduced by
assigning slack optimally to aircraft routings. Delay prop-
agation for airline networks was analyzed and robustness
measures were developed in Arıkan et al. (2013). Arıkan
and Deshpande (2012) analyzed the impact of scheduled
block times on on-time performance. Dunbar et al. (2012)
presented a mathematical model to minimize propagated
delay costs while integrating aircraft routing and crew
pairing problems. Other researchers have addressed the
problem of slack distribution and its effects on schedule
performances. Ahmadbeygi et al. (2010) and Chiraphad-
hanakul and Barnhart (2013) worked on re-allocating
already scheduled slack to have a more effective slack dis-
tribution in the schedule that can better absorb disruptions.
Petersen et al. (2012) studied an integrated airline recovery
problem using a single-day horizon and proposed sepa-
rate mixed-integer mathematical models for the schedule,
aircraft, and crew and passenger recovery problems. They
utilized a Benders decomposition scheme together with the
column generation approach to achieve coordination be-
tween these four mathematical models. Since it could take
a significant computation time to solve the overall problem,
they also proposed a sequential recovery algorithm.

Sohoni et al. (2011) took an alternative approach and
modeled block-time distributions using chance constraints.
They perturbed the departure times of an initial sched-
ule to achieve improved passenger and network service
levels while maximizing operational profits. To solve the
model, they developed linear approximations on chance
constraints. Marla and Barnhart (2010) employed two ap-
proaches to robust airline optimization focusing on the air-
craft routing problem: the extreme value-based approach
and chance-constrained programming approach. In the ex-
treme value-based approach, the main focus is on minimiz-
ing the worst-case propagated delay, whereas the chance-
constrained programming approach tries to minimize the
probability of passenger misconnections as in Sohoni et al.
(2011) or the probability of a certain flight being delayed
less than a prespecified threshold as in Marla and Barnhart
(2010).

In the existing literature on robust airline schedules, the
cruise speed of an aircraft is taken as a fixed parameter, al-
though the current industry practice of using a cost-index
ratio allows airlines to dynamically adjust the cruise speed
as discussed in Cook et al. (2009). Therefore, the most com-
mon approach is to insert idle times into the block times in
order to deal with potential variability or disruptions. One
significant advantage of having controllable cruise times is
the added flexibility. Flight times can be reduced by increas-
ing the cruise speeds to compensate the time losses in the
system with, of course, additional fuel costs. Since there is
an upper bound on the compression amount of the cruise
times, cruise speed controllability should be considered si-
multaneously with idle time insertion to ensure the desired
service levels for passenger connections at a minimum cost.
In an airline schedule recovery problem, Marla et al. (2011)

used cruise speed control as a means to decrease delay costs.
In their time – space network model, they created flight
copies with different cruise speeds to generate alternative
schedules against a given disruption. We take a different
approach and consider the nonlinear relationship between
fuel consumption and cruise speed by expressing the cruise
speed as a continuous variable instead of approximating
it through a set of discrete variables. Furthermore, we use
the recent advances in second-order cone programming to
solve the resulting nonlinear programming formulation us-
ing an exact optimization approach.

In this study, we develop an optimization model that uses
both idle time insertion and aircraft speed control to gen-
erate a robust schedule of minimum cost that satisfies given
passenger connection service levels. We take all passenger
connections into account and superimpose the passenger
connection network with the flight network to consider the
effects of aircraft delays on passenger service-level require-
ments, which are modeled through chance constraints. In
previous studies, chance constraints (Charnes and Cooper,
1959) have been used to model the desired service levels;
however, the resulting models were solved by approxima-
tion methods. For a general review on mathematical pro-
gramming formulations with probabilistic constraints, we
refer to Luedtke et al. (2010). In our study, instead of devel-
oping approximations, chance constraints are transformed
into second-order conic inequalities and solved exactly in
very short times. More information on conic program-
ming can be found in Ben-Tal and Nemirovski (2001) and
Günlük and Linderoth (2010). To the best of our knowl-
edge, these methods have not previously been applied to
robust airline scheduling.

The contributions and scope of this study can be summa-
rized as follows. We start by taking an initial daily sequence
of flights, passenger itineraries, and the specified time win-
dows for the departure times. For each flight, the block time
is defined as the time interval from which the plane departs
from the gate at the origin location to the time the plane ar-
rives at a gate at the destination point, where cruise time is
the longest and most steady part of the block time and it is
not significantly affected by variability. Therefore, we con-
sider cruise times to be controllable and non-cruise times
to be random variables. Obviously, increasing the cruise
speed (albeit at the cost of additional fuel costs) is always
more beneficial in terms of aircraft utilization as opposed
to inserting idle times into the schedule.

In this study, the uncertainty associated with the random
variables is modeled with chance constraints on the service
level of passengers on their flight connections. Fast and
exact solutions to this large-sized model of probabilistic
constraints and nonlinear cost components are obtained
by the use of second-order cone programming. We are
able to solve the resulting nonlinear model in reasonable
computation time using commercial solvers such as IBM
ILOG CPLEX. As will be demonstrated in the Computa-
tional Study section, using published schedules of a major
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U.S. carrier, the makespan of a day-to-day operation of an
aircraft is significantly decreased (or, equivalently, the air-
craft utilization is increased) when we introduce the control-
lable cruise times. Moreover, we show that slack times can
be drastically reduced, achieving significant cost savings,
by using speed controllability while satisfying the existing
service levels on passenger connections.

Another important contribution is the incorporation of
origin and destination information of a flight when cal-
culating non-cruise time variability of each flight. It is
known that airport congestion levels are different at each
airport and an aircraft taking off from a non-hub loca-
tion spends a lot less time for take-off compared with an
aircraft that originates from a hub location, with the same
concept applying to landing times. Therefore, the variability
in non-cruise times in this study is calculated separately for
each flight, considering the effect of the origin–destination
airport congestions.

In the next section, the mathematical model is explained
and a numerical example is provided to explain the me-
chanics. In Section 3, a conic reformulation of the model
is shown in detail. Section 4 is devoted to a comprehen-
sive computational study. We test the proposed model on
two different flight schedules retrieved from the “Airline
On-Time Performance Data” database of the Bureau of
Transportation Statistics (BTS, 2010a). Conclusions and
future study opportunities are discussed in Section 5.

2. Proposed model

Given the routings of aircraft, flight sequences, and pas-
senger itinerary information, the model perturbs the de-
parture times of flights in the initial schedule by inserting
slack into the schedule and speeding up aircraft as neces-
sary and hence determining proposed departure times and
cruise time durations for all flights. While doing so, the
objective is to minimize costs, with a given constraint on
passenger connection service levels. As a result, the model
generates a more robust schedule that can respond better
to delays and ensure a given target of passenger connection
service level of the overall network.

2.1. Model definition

The notation used in the mathemohed model is as follows:

Parameters
J : set of all flight legs
T : set of aircraft types
B : set of airports
ti : the aircraft type of flight i ∈ J, ti ∈ T
Oi : origin of flight i ∈ J
Di : destination of flight i ∈ J
F I Li : number of passengers in flight i ∈ J
f u
i : original cruise time duration of flight i ∈ J

T Pi j : turnaround time needed to connect passen-
gers between flights i, j ∈ J

T Ai j : turnaround time needed to prepare an air-
craft between flights i, j ∈ J

PASi j : normalized passenger connection level be-
tween flights i, j ∈ J

Ct : fuel burn rate of aircraft type t ∈ T in tons
of fuel per minute

It : unit idle time cost of aircraft type t ∈ T in
dollars per minute

[lbi , ubi ] : time window for departure time of flight i ∈
J

[ f l
i , f u

i ] : time window for cruise time of flight i ∈ J
Pi : set of flights that has a passenger connection

with flight i ∈ J
PAIR : set of pairs of consecutive flights of the same

aircraft
eb : airport congestion coefficient for b ∈ B
γ : desired minimum service level for passenger

connections
c f : fuel cost per ton of aircraft fuel

Decision Variables
xi : departure time of flight i ∈ J
si : idle time after flight i ∈ J
fi : cruise time of flight i ∈ J
γi j : service level for passenger connections be-

tween flights i, j ∈ J

f u
i is the ideal duration of the flight, which corresponds

to the scheduled duration in the initial plan. This duration
in flight operations is decided by airlines using the cost
index ratio (Cook et al., 2009). The cost index is a number
between zero and 999 (or sometimes zero and 99), where
zero corresponds to the cruise speed that minimizes the
fuel burn per unit distance and 999 corresponds to the
maximum cruise speed that can be achieved by the aircraft.
f u
i in the model is associated with the zero cost index,

generally known as the maximum range cruise speed. This
will serve as an upper bound on the cruise time decision
variable in the model.

Pi represents the set of flights for which i has an imme-
diate passenger connection at the destination point of i ;
i.e., set Pi consists of flights that passengers from flight i
use to continue their itineraries. Flights having the same
destination as to origin of flight i are not allowed in the
connection set, as passengers immediately returning back
to the origin point is an unrealistic situation.

[lbi , ubi ] is the optional time window for the departure
time of flight i . The model chooses departure times within
this interval. This time window allows the planner to cap-
ture marketing and resource considerations when setting
the departure time of a flight.

The set PAIR holds the pairs of consecutive flights flown
by the same aircraft. For flights (i, j ) ∈ PAIR, TAi j repre-
sents the turnaround time needed by the aircraft between



Robust airline scheduling 67

two consecutive flights. The realized turnaround times de-
pend on the congestion levels at the airports. They are also
affected by the type of aircraft, since each aircraft needs a
different amount of time for this operation.

2.1.1. Random variable Ai

An airline can influence the cruise time of an aircraft by
adjusting the cruising speed, but it has no influence on
the taxi-in and taxi-out phases. Taxi-in and taxi-out times
are highly uncertain and can cause significant delays, espe-
cially at congested airports. The descend phase of a flight
is also subject to uncertainty due to air traffic congestion,
weather conditions, and airborne holding. Our purpose is
to incorporate cruise time controllability and the uncer-
tainty arising from airport congestion in the same frame-
work. Thus, when modeling the flight time, cruise time is
considered as a decision variable and the other stages of
the flight are pooled into a random variable. Pooling is
a mathematically necessitated assumption which enables
deriving closed-form expressions for the random variable
constraints.

This pooled random variable, Ai , represents the portion
of the block time except the cruise time for each flight
i ∈ J. Arıkan and Deshpande (2012) performed an exten-
sive study on airline flight schedules across several U.S.
airlines. They tested several distributions and showed that
block times fitted a log Laplace distribution, so Ai values
are assumed to be log Laplace random variables. We also
assume Ai variables are independent random variables for
each flight i . Note that the propagation of delays in the
network actually might cause a correlation between Ai s,
especially for flights of the same aircraft. This has not been
considered in this study.

We include the effects of congestion on flight time un-
certainty by adjusting the distribution parameters α and
β. For each airport b ∈ B, eb represents the congestion co-
efficient, which is a measure of the level of congestion at
that airport. These coefficients are used for calculating the
turnaround time of an aircraft and for deciding related pa-
rameters of the random variable Ai . More information on
the values of congestion coefficients used in this study can
be found in Section 4.

Each random time Ai is associated with two parameters,
α and βi . Since the origin and destination airport conges-
tion affects the block time duration separately and indepen-
dently, for each flight, βi is calculated by multiplying a base
parameter β with a real-valued function of two congestion
coefficients corresponding to origin and destination air-
ports of the flight. In other words, the mean and variance
of the random variable changes depending on the origin
and destination airports. A robust verbal explanation for
this is that higher congestion levels will result in a higher
parameter βi , which translates into a higher value for the
random variable. βi can be expressed as

βi = β × g(eOi , eDi ),

where Oi and Di are the origin and destination airports
of flight i ∈ J. The Ai s are assumed to be symmetric log
Laplace random variables, therefore the tail grows one-
sided; i.e., depending on the level of variability, the mean
of the random variable grows.

The properties for a symmetric log Laplace random vari-
able X with parameters α and βi > 0, where eα is a scale
parameter and 1/βi is the tail parameter, are given as

FX(x) =

⎧⎪⎨
⎪⎩

1
2

e
(ln(x)−α)

βi if ln(x) < α

1 − 1
2

e
−(ln(x)−α)

βi if ln(x) ≥ α,

fX(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 × βi × x

e
(ln(x)−α)

βi if ln(x) < α

1
2 × βi × x

e
−(ln(x)−α)

βi if ln(x) ≥ α,

with quantile function

F−1
X (p) =

⎧⎪⎪⎨
⎪⎪⎩

(2p)βi × eα if p <
1
2

eα

(2 − 2p)βi
if p ≥ 1

2
.

(1)

The quantile function of random variable X will be used in
the chance constraints in the proposed mathematical model
presented in Section 2.3, as well as in the conic reformula-
tion of the model in Section 3.

2.1.2. Service level
In this study, we superimpose the aircraft routing network
with the passenger connection network to achieve the de-
sired service levels. For flights i ∈ J and j ∈ Pi , T Pi j equals
the time needed by passengers to connect between flights
where the decision variable γi j represents the percentage
of passenger connections satisfied between i and j . The
γi j s are calculated using chance constraints for the above-
described random variable such that the probability of the
time between arrival of flight i and departure of flight j
being greater than the required connection time T Pi j is
at least γi j . The weighted average of these γi j values us-
ing weights PASi j needs to be greater than or equal to γ ,
the overall service level of the schedule. PASi j values are
assigned to flight connections in a manner that they repre-
sent the relative share of a given connection among all other
passenger connections based on the number of passengers
connecting. These values are normalized over the whole
flight network and are used as weights when calculating the
schedule service level.

Calculating the service level of the schedule using a
weighted average of individual passenger connection ser-
vice levels provides more accurate information on actual
service levels, since the value of each connection may
be different to the airline company. In this study, we
weigh the connections based on the number of passengers
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connecting, but a different weighting scheme such as per-
centage of higher class customers within all connecting pas-
sengers could be used as well. It is also possible to add
lower-bound constraints to each connection in the follow-
ing manner to ensure minimum connection service levels
for each flight:

γi j ≥ γi j
d i ∈ J, j ∈ Pi ,

where γi j
d represents the minimum desired connection ser-

vice level.

2.1.3. Fuel cost function
The fuel cost function for the cruise stage of flight i ∈ J is
given as

Kti ( fi ) = Cti × c f × ( f u
i )mi

f mi −1
i

. (2)

The fuel burn rate of the aircraft in tons per minute is
multiplied with the cost per ton of fuel to get how much
fuel an aircraft burns in monetary terms in 1 minute. This
resulting cost term is used in the nonlinear cost function by
multiplying it with the term ( f u

i )mi / f mi −1
i , where f u

i stands
for the original planned cruise time of flight i , fi is the
associated decision variable for the new cruise time of flight
i , and mi is the flight-specific cost exponent. In accordance
with the airline manufacturers’ technical specifications as
reported in Airbus (1998) and Boeing (2007), we present a
convex and increasing function to express the change in fuel
cost as the speed increases. Marla et al. (2011) also used a
nonlinear fuel cost function in an airline schedule recovery
problem to handle a cruise speed control strategy, although
they approximated the nonlinear fuel cost function by a set
of discrete settings in their approach.

There is a trade-off between fuel costs and idle time costs.
Note that it can be cheaper to speed up the aircraft and
then insert an idle time, if necessary, to compensate for the
variability, since fuel costs are defined by nonlinear func-
tions. Cruise time controllability is a practical alternative
to idle time insertion. In this study, we show that we can
solve the resulting nonlinear models by using second-order
conic programming.

A numerical example is provided in the next subsection,
before giving the mathematical model, so that the model
mechanics are easily understood.

2.2. Numerical example

The schedule used in this numerical example is a small
sample that consists of the daily plans of two aircraft. The
sample is taken from BTS (2010a) and is given in Table 1.
Tail numbers of the aircraft and the assigned flights to these
aircraft are given in the first and second columns, respec-
tively. The next two columns provide origin and destina-
tion information for flights, the following three columns
list planned and announced departure times, flight dura-
tions, and arrival times. In the next column, actual depar-
ture time information from the BTS database is listed, and
finally turnaround times are given in the last column. Note
that there is a through flight 336 for the first aircraft, which
can be defined as a single flight with one or more inter-
mediate stops and allows passenger connections in these
intermediate destination points.

Due to delays, actual departure times are different than
planned departure times. There can be various reasons for
the delays. First of all, because of variability, the actual du-
ration of the block times can be different than the planned
durations. In some cases, delayed arrival of a flight may
cause a departure delay for the succeeding flight. If the time
between the planned arrival time of a flight and planned
departure time of its successor is longer than needed, then
there is unnecessary idle time for the aircraft. It is also im-
portant to note that delays propagate through the network.
For example, if there is insufficient time between two con-
secutive flights, then even a short delay in a flight will affect
the next flight of the same aircraft.

The resulting flight network for the sample schedule can
be seen in Fig. 1. Continuous lines for flights show the ac-
tual arrival and departure times of flights, and the dashed
lines show the planned arrival and departure times. Con-
tinuous ground lines correspond to turn times of aircraft,
and the dashed ground lines represent unnecessary wait-
ing. We have 5 minutes of idle time after flight 2303 and

Table 1. Published schedule

Tail no. Flight no. From To Departure time Duration Arrival time Actual Departure TA time

N531AA 2303 ORD LGA 7:35 2:05 9:40 7:35 0:39
2336 LGA ORD 10:30 2:15 12:45 10:30 0:41
1053 ORD DFW 13:15 3:00 16:15 13:33 0:40

336 DFW ORD 16:50 3:00 19:50 17:20 0:21
336 ORD LGA 20:20 2:05 22:25 20:49

N4WPAA 2311 ORD DFW 7:45 2:25 10:10 7:45 0:37
2348 DFW ORD 11:30 2:25 12:55 11:30 0:38
1797 ORD LGA 14:00 2:20 16:20 14:41 0:36
1982 LGA ORD 17:20 2:00 19:20 17:44 0:38
1339 ORD SAN 20:20 4:30 0:50 20:29
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Fig. 1. Network graph for the published schedule.

35 minutes of idle time after flight 2311. Thus, we have
unnecessary waiting times for some flights and we have
some other flights with delays. These delays can also cause
connecting passengers to miss their flights since a certain
length of time is required for passengers to connect to their
next flight. Passenger connected flight pairs in this schedule
are 2336-1053, 336-336, 336-1339, 2348-1797, and 1982-
1339. We explain the calculation of average non-cruise
times in Section 2.1.1. In this example, we use α = ln 20,
β = 0.05, and the airport congestion coefficients that will
be given in Table 4.

Since schedule delays are costly, a better distribution of
slack time can reduce idle time costs and avoid flight delays
as reported in Ahmadbeygi et al. (2010). The departure
times for a perturbed schedule with a different distribution
of idle times is drawn in Fig. 2, where delay is completely
avoided, and the overall passenger service level is not less
than of the original schedule. It can be seen that in the new
schedule, two idle time slots are inserted after the first leg
of flight 336 and flight 2348, and there is no delay in the
schedule.

The adjusted departure times for this schedule can be
observed in Table 2. In this schedule, idle times are 48 min-
utes after flight 2348 and 10 minutes after first connecting
flight of 336. Note that total idle time is increased but delay
costs are totally avoided in this case. If we compare the costs
of two schedules without taking delay costs into consider-
ation, the total costs increased by around 5%. However,
when delay costs are considered, there is a total cost saving
of 32% when the second schedule is used.

In the schedule given in Fig. 2, flight times are taken as
fixed parameters. As stated earlier, costs can be improved
further without decreasing the service levels by utilizing
cruise time controllability. In exchange for extra fuel burn,
an aircraft can fly a route faster. For the same service level,
we can trade-off extra fuel cost and idle time costs to min-
imize the total cost. We give an alternative schedule with
adjusted flight times and idle times in Fig. 3. The adjusted
departure times for this schedule can be observed in Table
2 with the comparison to the case where cruise time control
is not allowed. Flights 2303, 2336, 1053, and the first con-
necting part of flight 336 have decreased cruise times. The

Fig. 2. Network graph with adjusted departure times.



70 Duran et al.

Table 2. Adjusted departure times

No cruise control allowed Cruise control allowed

Flight no. Departure time Speeding Idle time Departure time Speeding Idle time

2303 7:35 0:00 0:00 7:35 0:10 0:00
2336 10:26 0:00 0:00 10:16 0:11 0:00
1053 13:28 0:00 0:00 13:08 0:15 0:00
336 17:16 0:00 0:10 16:41 0:15 0:10
336 20:55 0:00 0:00 20:05 0:00 0:00
2311 7:45 0:00 0:00 7:45 0:00 0:00
2348 10:55 0:00 0:48 10:55 0:00 0:00
1797 14:55 0:00 0:00 14:06 0:00 0:00
1982 17:58 0:00 0:00 17:09 0:00 0:00
1339 20:44 0:00 0:00 19:54 0:00 0:00

original durations of the flights are drawn in dashed lines.
In this case, the idle time after flight 2348 is not needed any-
more since passenger service levels are ensured with speed
control. This new schedule has 8% more fuel cost than the
initial schedule, but idle time costs have decreased by 74%
and there is a 35% improvement in total cost.

The model given in the next section works with these
mechanics. The objective is to minimize the total cost in-
cluding idle time, fuel, and delay costs. By using cruise time
control, significant cost savings can be achieved by reduc-
ing idle time and delay costs in exchange for an increase in
fuel costs.

2.3. Mathematical model

Balancing cruise time reduction and idle time insertion is
a complex problem and decisions should be made for the
whole network due to delay propagations. Therefore, we
propose a global optimization tool that can generate flight
schedules that are likely to minimize passenger misconnec-
tions through a set of chance constraints while minimiz-
ing the operational costs (e.g., the sum of idle time and

fuel costs) that will be incurred while executing the airline
schedule as planned:

min
∑
i∈J

si × Iti + Cti × c f × ( f u
i )m

f m−1
i

(3)

s.t. Pr[Ai + fi ≤ xj − xi − T Pi j ]
≥ γi j , i ∈ J, j ∈ Pi , (4)∑

i∈J

∑
j∈Pi

PASi j × γi j ≥ γ, (5)

lbi ≤ xi ≤ ubi , i ∈ J, (6)

xj − xi − T Ai j − fi − E[Ai ] − si = 0, (i, j ) ∈ PAI R, (7)

f l
i ≤ fi ≤ f u

i , i ∈ J, (8)
si ≥ 0, i ∈ J, (9)

γi j
d ≤ γi j ≤ 1, i ∈ J, j ∈ Pi . (10)

The objective function (3) minimizes the sum of idle time
and fuel costs. We calculate fuel costs as explained in Sec-
tion 2.1.3. We utilize the idea of service levels through a set
of chance constraints in Equation (4) such that the proba-
bility of the time between arrival of flight i and departure
of flight j being greater than the required connection time

Fig. 3. Network graph with adjusted departure times and speed control.
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T Pi j is at least γi j for every passenger connection. In con-
straint (5), we require the weighted sum of γi j s to be greater
than the desired service level γ . In other words, passen-
ger connections are incorporated using a chance constraint
based on the block time variability. Note that we allow
the passengers that continue their itineraries on the same
aircraft to experience some inconvenience due to aircraft
delays (i.e., their service levels do not have to be 100%). In
constraint (6), we give the time window constraints for all
flights. In constraint (7), we guarantee that the minimum
aircraft connection time is available between two consecu-
tive flights of the same aircraft, using the mean value of the
random variable, since a flight cannot depart until the req-
uisite aircraft has arrived. In other words, we maintain the
aircraft routing network for each flight path. The expected
value of a log Laplace variable is derived in Proposition A5
given in Appendix A. In constraint (8), we give the allowed
boundaries for aircraft’s cruise speed.

In summary, we take all passenger connections into ac-
count and superimpose the passenger itinerary network
with the aircraft routing network in constraints (4), (6), and
(7). As a result, we can satisfy the given minimum passenger
connection service levels by either retiming the departures
of flights within a given time window or by adjusting cruise
speeds of incoming flights, or both, while minimizing their
overall cost impact on the whole network.

The solution of the model is a challenge. There is non-
linearity in the objective function, and there are proba-
bilistic constraints in the model. In the previous literature,
chance constraints are usually handled with approxima-
tions, but for non-cruise flight times showing log Laplace
distribution, we show that chance constraints can be han-
dled in their exact form. The methodology is to first trans-
form these probabilistic constraints into their closed-form
expressions. Later, we will represent them and the nonlin-
ear cost terms using second-order conic inequalities. The
next section explains this methodology in detail.

3. Conic reformulation of the model

Using a conic reformulation allows us to solve for the
chance constraints exactly to optima, as opposed to
using approximations. To achieve the conic reformulation,
the nonlinear expressions in the model are rewritten as
second-order cone programming constraints.

3.1. Conic representation of chance constraints

In the mathematical model constraint (4) formulates chance
constraints for passenger connections. Property 1 states
that constraint (4) can be expressed using the quantile func-
tion of the probability distribution of random variable Ai .

Property 1. For i ∈ J, j ∈ Pi ,

Pr[Ai ≤ xj − xi − T Pi j − fi ] ≥ γi j

is equivalent to

F−1(γi j ) ≤ xj − xi − T Pi j − fi .

Random variable Ai has log Laplace distribution as pre-
viously discussed. The quantile function for a log Laplace
random variable X with parameters α and βi is given as

F−1
X (p) =

⎧⎨
⎩

(2p)βi × eα, if 0 ≤ p < 1
2

eα

(2 − 2p)βi
, if 1

2 ≤ p ≤ 1.

F−1
X (p) is a piecewise function. Then, constraint (4) can be

expressed as

(2γi j )βi × eα ≤ xj − xi − T Pi j − fi , if 0 ≤ γi j <
1
2
,

i ∈ J, j ∈ Pi , (11)
eα

(2 − 2γi j )βi
≤ xj − xi − T Pi j − fi , if

1
2

≤ γi j ≤ 1,

i ∈ J, j ∈ Pi . (12)

In Proposition A5 in Appendix A we show that the mean
of a log Laplace random variable Ai is finite only if βi < 1.
Thus, in the rest of the article we will assume that βi < 1
for all i . For the case βi ≥ 1, the conic reformulations of
constraints (11) and (12) are discussed in Appendix A.

We will also restrict our analysis to the case where γi j ≥
1/2 for each passenger connection. This is a reasonable
assumption, since offering a service level below 50% to its
passengers on any given flight would not be desirable for
an airline. Thus, we can drop constraint (11).

We will first prove the convexity of the expression on the
left-hand side of inequality (12) in Proposition 1. Then, we
will give the second-order conic representation of Equa-
tion (12) in Proposition 2.

Proposition 1. For i ∈ J, j ∈ Pi ,

f (γi j ) = eα

(2 − 2γi j )βi

is a convex function when 0 ≤ γi j ≤ 1 and if function param-
eter βi ∈ [0, 1].

Proof. The second derivative of f (γi j ) is

f ′′(γi j ) = eαβi (βi + 1)
2βi (1 − γi j )βi +2

.

f ′′(γi j ) ≥ 0 when 0 ≤ γi j ≤ 1 and 0 ≤ βi ≤ 1. �

Proposition 2. For i ∈ J, j ∈ Pi , if 0 < βi < 1 and the con-
dition 1/2 ≤ γi j ≤ 1 holds then constraint (12),

eα

(2 − 2γi j )βi
≤ xj − xi − T Pi j − fi ,

can be represented via second-order conic inequalities.
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Proof. First, introduce two auxiliary variables wi j ≥ 0 and
vi j ≥ 0 and make the following conversions:

wi j = 2 − 2γi j , (13)
vi j = xj − xi − T Pi j − fi . (14)

Then, express

βi = ai

bi
,

where ai , bi are positive integers. Then, inequality (12)
becomes

eα ≤ w
ai /bi
i j vi j ,

which can be equivalently expressed as

eαbi ≤ w
ai
i j v

bi
i j .

Next, we choose li such that

li = ⌈
log2(ai + bi )

⌉
and define a new auxiliary variable yi j ≥ 0 and add
equation:

yi j = e
αbi
2li (15)

to the model.
Now, constraint (12) can be written as

y2li

i j ≤ w
ai
i j v

bi
i j . (16)

An inequality of the form

r2l ≤ s1s2 · · · s2l (17)

with restrictions si ≥ 0 for i = 1, . . . , 2l defines the hypo-
graph of the geometric mean of 2l variables, s1, s2, . . . , s2l .
This hypograph is a convex set. It is easy to observe that
inequality (16) with restrictions wi j ≥ 0 and vi j ≥ 0 also
defines a hypograph of the geometric mean of 2l variables.
ai of those variables equal to wi j , bi of them equal to vi j
and remaining 2li − ai − bi equal to one.

Due to Ben-Tal and Nemirovski (2001), a hypograph of
the geometric mean of 2l variables is known to be second-
order conic programming representable. The hypograph
can be equivalently represented by O(2l ) variables and
O(2l ) hyperbolic inequalities of the form

u2 ≤ v1v2, u, v1, v2 ≥ 0.

which can be represented by the following second-order
conic inequality:

‖(2u, v1 − v2)‖ ≤ v1 + v2,

which concludes the proof. �

Example 1: Suppose that α = 1, βi = 2.5 and thus ai =
5 and bi = 2. Then, following the steps of the proof of
Proposition 2 inequality (12) for flight pair i, j :

e
(2 − 2γi j )2.5

≤ xj − xi − T Pi j − fi

is first represented by the system

e2 ≤ w5v2,

w = xj − xi − T Pi j − fi ,

v = 2 − 2γi j ,

w ≥ 0,

v ≥ 0.

Then, adding auxiliary variable y and constraint

y = e1/4,

the first inequality becomes

y8 ≤ w5v2,

which can be expressed by the following three inequalities
and two new nonnegative auxiliary variables u1, u2 ≥ 0:

u2
1 ≤ w × 1,

u2
2 ≤ u1 × v,

y2 ≤ u2 × w.

Figure 4 shows the generation of the inequalities.
These constraints can be represented by the following

conic quadratic inequalities:

4u2
1+(w − 1)2 ≤ (w + 1)2,

4u2
2+(u1 − v)2 ≤ (u1 + v)2,

4y2+(u2 − w)2≤(u2 + w)2,

which can easily be input to a conic optimization software
such as IBM ILOG CPLEX.

3.2. Conic representation of the fuel cost function

The fuel cost function associated with the speeding of an
aircraft is a nonlinear function and it can be expressed via
second-order conic constraints.

Fig. 4. Illustration of generation of conic quadratic constraints.
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Proposition 3. For i ∈ J, the fuel cost function

Kti ( fi ) = Cti × c f × ( f u
i )mi

f mi −1
i

is second-order cone programming representable.

Proof. Kti ( fi ) appears in the objective function and can be
replaced with an auxiliary variable qi ≥ 0 and sent to the
constraint set. The objective function is now linear and is
written as

min
∑
i∈J

si · Iti + qi .

Then, we add the following constraints to the model for
each i ∈ J:

Cti × c f × ( f u
i )mi

f mi −1
i

≤ qi .

Define ni = ⌈
log2 mi

⌉
and introduce variable zi = (Cti ×

c f × ( f u
i )mi )1/2ni to rewrite the inequality as

z2ni

i ≤ qi f mi −1
i ,

which is second-order come programming representable as
discussed in the proof of Proposition 2. �

3.3. Reformulated model

After the above-described changes, the model becomes

min
∑
i∈J

si × Iti + qi , (18)

s.t. y2li

i j ≤ w
ai
i j v

bi
i j , i ∈ J, j ∈ Pi , (19)

wi j = 2 − 2γi j , i ∈ J, j ∈ Pi , (20)
vi j = xj − xi − T Pi j − fi , i ∈ J, j ∈ Pi , (21)

yi j = e
bi α

2li , i ∈ J, j ∈ Pi , (22)∑
i∈J

∑
j∈Pi

PASi j × γi j ≥ γ, (23)

z2ni

i ≤ qi f mi −1
i , i ∈ J, (24)

zi = (Cti × c f × ( f u
i )mi )1/2ni

, i ∈ J, (25)
xj − xi − T Ai j − fi − E[Ai ] − si

= 0, (i, j ) ∈ PAI R, (26)
lbi ≤ xi ≤ ubi , i ∈ J, (27)
f l
i ≤ fi ≤ f u

i , i ∈ J, (28)
0.5 ≤ γi j ≤ 1, i ∈ J, j ∈ Pi , (29)

si ≥ 0, i ∈ J, (30)
qi , zi ≥ 0, i ∈ J, (31)

wi j , vi j , yi j ≥ 0, i ∈ J, j ∈ Pi . (32)

In this new formulation, constraints (19) to (22) are due
to the reformulation discussed in Proposition 2. Due to
Proposition 3 we now have qi variables in the objective and

constraints (24) and (25) in the model. We have all auxil-
iary variables required by reformulations. Constraints (19)
and (24) can be represented via second-order conic inequal-
ities as discussed in Propositions 2 and 3. Note that this
resulting model is solvable via commercial solvers in rea-
sonable computation time and can easily be used by airline
practitioners. We will demonstrate the performance of the
model through an extensive computational study in the
next section.

4. Computational study

In this section, we test the computational performance of
the conic reformulation of the problem. We analyze the
CPU time performance of the model. We compare the
schedule generated by our model against the published
schedule by using various performance criteria. The idea is
to evaluate the service level of a given schedule and then
to solve the model to get a robust schedule for the same
flight set and for the given service level. In order to eval-
uate possible impacts of different problem parameters, we
performed a 2k full-factorial experimental design. The four
experimental factors and their levels are given in Table 3.
For each factor combination we took five replications.

Fuel cost represents the unit price for jet fuel ($/ton).
We use two levels of fuel price $600 and $1200 per ton.

Compression level represents the maximum allowable
compression in percentage over planned cruise time for
a flight. In the low setting, an aircraft is allowed to speed
up to shorten the cruise time by 10%, whereas in the higher
setting this value is 15%. For example, in the low setting, a
flight with a cruise time duration of 120 minutes is allowed
to be expedited by a maximum of 12 minutes.

β is a parameter of the log Laplace distribution as de-
scribed in Section 2. We use β to adjust the mean and
variance of the non-cruise flight time random variable. We
adjusted this parameter for each flight using airport con-
gestion coefficients. We used a fixed α value of ln 20 in our
experiments.

Finally, connection density represents the percentage of
the possible passenger connections between flights. A pas-
senger connection is possible between flight i and a consec-
utive flight j only if destination of j is a different airport
than the origin of i and the scheduled departure time of j

Table 3. Factor values

Levels

Factor Description Low (0) High (1)

A Fuel cost ($/ton) 600 1200
B Compression level (%) 10 15
C β 0.01 0.05
D Connection density (%) 50 100
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Table 4. Congestion coefficients

Airport Location Coefficient Airport Location Coefficient

MIA Miami, FL 1.96 DCA Washington, DC 1.17
ORD Chicago, IL 1.88 SAN San Diego, CA 1.10
LAX Los Angeles, CA 1.82 STL St. Louis, MO 1.10
DEN Denver, CO 1.82 MCI Kansas City, MO 1.04
DFW Dallas, TX 1.74 AUS Austin, TX 1.00
LGA New York, NY 1.69 RDU Raleigh/Durham, NC 1.00
BOS Boston, MA 1.69 MSY New Orleans, LA 0.96
ATL Atlanta, GA 1.63 SNA Santa Ana, CA 0.96
PHX Phoenix, AZ 1.56 SAT San Antonio, TX 0.90
LAS Las Vegas, NV 1.56 RSW Fort Myers, FL 0.90
SFO San Francisco, CA 1.44 SJU San Juan, PR 0.84
MSP Minneapolis, MN 1.32 PBI West Palm Beach, FL 0.81
PHL Philadelphia, PA 1.32 TUS Tuscan, AZ 0.77
EWR Newark, NJ 1.25 MCO Orlando, FL 0.72
FLL Fort Lauderdale, FL 1.25 EGE Eagle, CO 0.72
SLC Salt Lake City, UT 1.17 HDN Hayden, CO 0.64

is within the range of 30 to 180 minutes of the scheduled
arrival time of i . When connection density is set to 100%,
all possible passenger connections are realized. When it is
low (50%), there exists a passenger connection between two
flights with a 50% probability.

Flight-specific βi values were calculated using the con-
gestion coefficients eOi and eDi that were introduced earlier
in Section 2. The functional form used in the calculation
was

βi = β × (eOi )
2 × (eDi )

2.

The functional form employed for this calculation had no
effect on the complexity of the model or the computational
times; therefore, the planner is free to use the function he
sees fit. In Table 4, we give the airport congestion coeffi-
cients used in this study. These coefficients take a value be-
tween 0.6 and 2, the latter representing the most congested
airport. These values were decided based on the number
of passengers visiting the airports from T-100 market data
BTS (2010b). Specifically, the volume of passengers the air-
ports see were scaled and rounded to be between 0.6 and 2.
These upper and lower bound values were determined so
that the finiteness of the means of the log Laplace random
variables were ensured, the conditions for which are pro-
vided in Proposition A5. The values for these coefficients
and the form of the function used can be decided jointly
by the airline depending on the congestions they observe.

Table 5. Aircraft parameters

Aircraft Type 1 2 3 4 5 6

Idle time cost ($/min) 140 142 136 144 147 150
Fuel burn rate (tons/min) 0.12 0.108 0.064 0.065 0.058 0.083
Base turn time (min) 36 26 40 28 30 32
Number of seats 261 262 158 159 131 190

The flight-specific cost component, mi , was assumed to be
the same and equal to three for each flight i ∈ J. The orig-
inal cruise time duration f u

i was calculated as 20 minutes
less than the published block time for each flight i ∈ J.

Passenger connection times were randomly generated
from a uniform distribution between 25 and 40 minutes.
The number of passengers in a flight was randomly gener-
ated from a uniform distribution with a lower bound of 60%
and an upper bound of 100% of full seat capacity. There
were six different types of aircraft used in our experiments,
each with different costs and seat capacities. The values for
these parameters are provided in Table 5.

In our experiments, we estimated the turnaround time
required for a given aircraft at a given airport by multi-
plying the base aircraft turnaround time with the square
root of the congestion coefficient of the airport. The result-
ing turnaround times are compatible with the findings of
Arıkan et al. (2013). For example, for two selected airports
MIA and HDN, the turnaround times for different types
of aircraft are as given in Table 6. It can be observed that
these values are close to the calculated averages in Arıkan
et al. (2013). Moreover, if the flight is a connecting flight,
the turnaround time is taken to be 70% of the calculated

Table 6. Turnaround times for selected airports

Turn around time (min)

Type MIA HDN

1 50.4 28.8
2 36.4 20.8
3 56 32
4 39.2 22.4
5 42 24
6 44.8 25.6
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value, since the number of passengers and cargo loading
and unloading times are significantly less in case of a con-
nection. Again, airlines can set true values for the necessary
turnaround times in their operations.

In order to be consistent with the published schedules, the
departure time of the first flight for each aircraft was set to
the published value in the original schedule. In this compu-
tational study, we did not impose time window constraints
on other flights, since they could lead to infeasibilities in
the published schedule when there is a high variability in
block times or when we are trying to attain higher service
levels on passenger connections. Consequently, we can eval-
uate the impact of delay propagation on service levels and
operational costs for all problem instances.

4.1. Results for single hub data

We first tested our model on a problem instance used in a
recent work by Aktürk et al. (2014). The instance is called
Single Hub Data as the flight network is formed by consid-
ering aircraft that originate their first flight from Chicago
O’Hare International Airport (ORD) and revisit ORD at
least once during the same day. The schedule was retrieved
from the BTS database. The schedule is given in Table 7.
It includes 114 flights operated by 31 different aircraft. We
added the randomly generated passenger connection net-
work to assess the impact of the proposed robustness on
the given flight schedule.

In Table 8, a comparison between different cost compo-
nents of the optimum solution of the proposed model and
the published schedule are given. The costs are calculated
by simply using the unit idle time, fuel and delay costs, and
the respective total idle time, total delay, and speed reduc-
tion of the schedule. The values in the table correspond to
reduction in idle time costs, increase in fuel costs, reduction
in total costs, and reduction in total costs without including
delay costs. The motivation for considering total costs in
two cases is that the unit delay cost can be difficult to ac-
curately measure, but it is evident that our model performs
better cost-wise even when the unit delay costs are assumed
to be zero. The improvement percentages were calculated
using the following formula:

Improvement = 100

×Published schedule costs – Proposed model costs
Published schedule costs

,

where the percentage of cost increases are calculated using
the negative of the same formula.

Before analyzing the results, it is important to mention
that fuel costs make up approximately 90% of the total costs
for the proposed model results and they make up approxi-
mately 75% of the total cost for the published schedule.

Costs for the published schedule were also calculated
from scratch by summing up the fuel, idle time, and

delay costs. The fuel costs for the published schedule were
calculated using the fuel cost function for the model where
the published cruise time f u

i was submitted in place of both
fi and f u

i . The idle time cost for each flight was calculated
by multiplying the unit idle time cost of the assigned aircraft
type with the scheduled idle time for that flight. Similarly,
delay costs were calculated by multiplying the minutes of
delay of each flight by a unit delay cost per minute. This
unit delay cost was taken to be constant at $200 merely
for comparison since it is shown that the model proves
improvements even in the case of a $0 delay cost.

Factor A—i.e., fuel price—has significant effects on the
total cost and total fuel cost improvements as expected. The
result is that our model achieves better total cost savings
when the fuel price is low, and the performance of the model
in improving idle time costs is slightly affected by fuel price.
The reason for this behavior is that since the idle time cost
contribution to the total cost is lower than that of fuel cost,
the increase in unit fuel price results in slightly lower idle
time cost improvements overall.

Factor B represents the maximum allowed compression
level on the cruise time of the flight. In solutions to our
model, we observed that compression in flight times did
not hit this boundary even in the low setting. Therefore, the
change of this compression level does not have a statistically
significant affect on the model performance.

Factor C—i.e., the log Laplace random variable base
parameter β—shows another interesting result. It is ob-
served that an increase in fuel costs does not change for
higher levels of β whereas all other cost improvements are
decreased. The reason for this behavior is that a higher β

causes a higher variance in block times, which necessitates
more idle time insertion into the final schedule and there-
fore more idle time costs.

Factor D—i.e., the connection density of the network—
has a similar effect as Factor C. More passenger connec-
tions result in a higher need for idle times, and therefore
total cost improvements decrease, since idle time cost sav-
ings is a strong advantage of our model.

Overall, it is important to observe that a 2% increase
in fuel costs allows for a 60% improvement in total idle
time costs. This is because fuel cost is a huge part of the
total airline operational costs, and cruise time controllabil-
ity results in great savings from unnecessary idle times.

As previously mentioned, five replications for each factor
combination were perfomed to see whether random values
had any effect on objective values. The comparisons for
cost improvements for different replications are given in
Table 9, which indicates that the randomization does not
have a statistically significant effect on the overall results.

Another measure of interest is the service level of the
schedules. Results show that the only significant factor af-
fecting service level values is β. The overall average of the
service level is 94%. A higher setting of β causes the average
service level to drop to 92.7%, whereas a lower setting of β

results in service levels of 95.3% on average. We see that the
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Table 7. Single hub data

Tail Flight Departure Flight Arrival Tail Flight Departure Flight Arrival
no. no. Departure Arrival time time time no. no. Departure Arrival time time time

N530AA 398 ORD LGA 6:15 2:14 8:29 N3ETAA 1704 ORD EWR 6:35 2:05 8:40
319 LGA ORD 9:25 2:50 12:15 1883 EWR ORD 9:30 2:40 12:10

2329 ORD DFW 13:35 2:35 16:10 810 ORD DCA 13:10 1:45 14:55
2364 DFW ORD 17:00 2:30 19:30 2013 DCA ORD 15:45 2:15 18:00

N459AA 394 ORD LGA 6:50 2:15 9:05 2013 ORD LAS 19:00 4:10 23:10
321 LGA ORD 10:00 2:50 12:50 N3DYAA 1063 ORD LAX 8:50 4:35 13:25
366 ORD LGA 13:55 2:20 16:15 874 LAX ORD 14:30 4:15 18:45
347 LGA ORD 17:15 2:50 20:05 874 ORD BOS 19:45 2:15 22:00

N531AA 2303 ORD DFW 6:45 2:35 9:20 N3DRAA 1021 ORD LAS 8:30 4:05 12:35
2336 DFW ORD 10:10 2:20 12:30 1544 LAS ORD 13:25 3:35 17:00
1053 ORD AUS 13:25 2:50 16:15 1544 ORD DCA 18:00 1:45 19:45

336 AUS ORD 17:00 2:45 19:45 N5DXAA 1048 ORD MIA 7:35 3:10 10:45
336 ORD LGA 20:40 2:05 22:45 1763 MIA ORD 11:55 3:20 15:15

N4XGAA 2079 ORD SAN 8:45 4:30 13:15 1899 ORD MIA 16:20 3:05 19:25
1438 SAN ORD 14:00 4:10 18:10 N454AA 2441 ORD ATL 6:30 2:00 8:30

346 ORD LGA 19:50 2:15 22:05 1986 ATL ORD 9:15 2:15 11:30
N598AA 1341 ORD SFO 7:50 4:55 12:45 1872 ORD MCO 12:25 2:40 15:05

348 SFO ORD 13:30 4:25 17:55 1131 MCO ORD 15:50 3:05 18:55
1521 ORD TUS 19:15 3:55 23:10 N4YMAA 1137 ORD MSY 8:20 2:25 10:45

N439AA 2455 ORD PHX 7:10 4:00 11:10 1768 MSY ORD 11:30 2:30 14:00
358 PHX ORD 11:55 3:30 15:25 1768 ORD PHL 15:05 2:05 17:10
358 ORD LGA 16:25 2:25 18:50 1697 PHL ORD 18:00 2:35 20:35
371 LGA ORD 20:00 2:35 22:35 N467AA 1823 ORD PBI 9:20 2:55 12:15

N475AA 407 ORD STL 6:20 1:10 7:30 2067 PBI ORD 13:00 3:20 16:20
755 STL ORD 8:35 1:15 9:50 2067 ORD STL 17:15 1:10 18:25
755 ORD SAT 10:45 3:00 13:45 1186 STL ORD 19:10 1:20 20:30
408 SAT ORD 14:30 2:40 17:10 N536AA 2305 ORD DFW 7:45 2:40 10:25
408 ORD PHL 18:05 2:05 20:10 2344 DFW ORD 11:35 2:20 13:55

N3EEAA 876 ORD BOS 6:35 2:10 8:45 1201 ORD STL 14:50 1:05 15:55
413 BOS ORD 9:35 3:05 12:40 1815 STL ORD 17:00 1:20 18:20
413 ORD SNA 13:45 4:35 18:20 1815 ORD SLC 19:15 3:40 22:55

1262 SNA ORD 19:10 3:50 23:00 N420AA 1686 ORD RDU 6:50 1:50 8:40
N4YDAA 451 ORD SFO 9:45 4:55 14:40 2435 RDU ORD 9:25 2:15 11:40

554 SFO ORD 15:45 4:25 20:10 2435 ORD PHX 12:35 3:55 16:30
N3ERAA 496 ORD DCA 6:45 1:40 8:25 1206 PHX ORD 17:15 3:25 20:40

1715 DCA ORD 9:15 2:10 11:25 N546AA 1462 ORD EWR 8:00 2:20 10:20
1715 ORD LAS 12:25 4:05 16:30 1387 EWR ORD 11:25 2:40 14:05
1708 LAS ORD 17:20 3:40 21:00 1397 ORD MCO 15:00 2:40 17:40

N5CLAA 1425 ORD SNA 8:25 4:40 13:05 1221 MCO ORD 18:25 2:55 21:20
556 SNA ORD 14:00 4:00 18:00 N4WPAA 2311 ORD DFW 9:05 2:35 11:40

1940 ORD MIA 19:25 3:00 22:25 2348 DFW ORD 12:35 2:20 14:55
N535AA 2460 ORD RSW 6:45 2:45 9:30 1797 ORD STL 15:50 1:10 17:00

564 RSW ORD 10:20 3:05 13:25 1982 STL ORD 18:00 1:20 19:20
1446 ORD EWR 14:55 2:45 17:40 1339 ORD SAN 20:15 4:30 24:45
1411 EWR ORD 18:45 2:45 21:30 N5EBAA 2375 ORD EGE 8:10 2:55 11:05

N3DMAA 568 ORD FLL 7:25 2:55 10:20 2378 EGE ORD 12:25 2:45 15:10
711 FLL ORD 11:10 3:15 14:25 1677 ORD SNA 18:40 4:30 23:10

2021 ORD SJU 15:25 4:35 20:00 N3DUAA 2099 ORD LAX 7:00 4:30 11:30
N544AA 2463 ORD MCI 6:25 1:30 7:55 1972 LAX ORD 12:40 4:05 16:45

754 MCI ORD 8:40 1:30 10:10 1972 ORD RDU 17:45 1:55 19:40
2321 ORD DFW 11:15 2:35 13:50 N3ELAA 2057 ORD SJU 8:30 4:50 13:20
2356 DFW ORD 14:40 2:20 17:00 2078 SJU ORD 14:25 5:35 20:00
2487 ORD DEN 17:50 2:45 20:35 N3DTAA 2363 ORD HDN 9:50 2:50 12:40

N3EBAA 1565 ORD MSP 6:40 1:30 8:10 2318 HDN ORD 13:40 2:50 16:30
779 MSP ORD 9:00 1:25 10:25 N412AA 2345 ORD DFW 17:15 2:35 19:50
779 ORD SAN 11:35 4:20 15:55 2374 DFW ORD 20:40 2:10 22:50

1358 SAN ORD 16:45 3:55 20:40
1358 ORD BOS 21:50 2:05 23:55
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Table 8. Comparison of factor effects

Idle time cost Fuel cost Total cost Total cost improvement (%)
improvement (%) increase (%) improvement (%) without delay costs

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

A 0 56.8 66.4 76.2 2.2 2.8 3.7 14.1 17.6 21.1 13.8 17.4 21.1
1 52.1 60.6 67.7 0.9 1.3 1.7 7.4 9.4 11.6 7.2 9.3 11.6

B 0 52.1 63.4 75.2 0.9 2.0 3.4 7.4 13.5 21.1 7.2 13.3 21.1
1 52.1 63.7 76.2 0.9 2.1 3.7 7.4 13.5 21.1 7.2 13.4 21.1

C 0 57.8 65.7 76.2 0.9 2.1 3.7 9.4 14.8 21.1 9.4 14.7 21.1
1 52.1 61.4 73.9 0.9 2.0 3.6 7.4 12.2 18.5 7.2 12.0 18.2

D 0 61.0 68.6 76.2 0.9 2.1 3.7 8.9 14.7 21.1 8.7 14.5 21.1
1 52.1 58.5 64.0 1.3 2.0 3.1 7.4 12.3 17.7 7.2 12.2 17.6

published schedule actually has really good passenger con-
nection service levels, and our model can achieve the same
service levels with significantly lower operational costs. In
fact, it will be shown later that our model achieves higher
service levels if total cost is allowed to be as much as the
published schedule costs.

4.1.1. Scenario analysis
The extensive computational study results raise several
questions on model behavior and performance. In this part,
some insights into model dynamics are provided by consid-
ering different scenarios.
What if time compression is not allowed? Since cruise time
controllability is an important contribution of the proposed
study, we would like to check the performance of the model
when speeding is not allowed, and the only tool is sched-
ule padding, as is commonly done in the current literature.
Since replications do not affect results, costs were calcu-
lated for a single set of replications, with 15% compression
allowed in one case and zero compression on the other case.
The cost values were compared with the published schedule
costs for both cases, the proposed model with time com-
pression allowed and not allowed. The results in Table 10
show that even without cruise time controllability, a better
utilization of idle times by the model results in important
idle cost and total cost improvements, parallel to the find-
ings in the literature. Moreover, the benefits of cruise time
controllability can be observed from the improvement rates.

What if variability was higher? Our expectation is that ben-
efits of the model will be less significant and service levels
will be much lower when there is higher variability. For
this analysis, Factor C was taken to be 0.07, which is the
highest possible value so that each βi < 1 for each flight
i ∈ J (Proposition A5). All other factors were taken as
their low level values. Computation for a single parameter
set resulted in a service level of 88%, which is quite low
compared with average service levels that were achieved
previously. Delay costs of the published schedule increased
significantly since a higher variance caused the block times
of flights to increase. Also in the same case, when the to-
tal cost of the model was taken to be equal to the original
schedule total cost, the proposed model resulted in a service
level of 98%.

4.1.2. Aircraft utilization
Computational results proved some additional benefits
of combining schedule padding with speed controllabil-
ity apart from the objective function values. The results
showed that for the available 31 aircraft paths in the data,
the model improved the makespan for almost all paths,
and there was a time-wise improvement in the average
makespan (or equivalently aircraft utilization) in all fac-
tor combinations. The average makespan improvement was
taken for each different factor and replication combina-
tion. The mean of this improvement over all cases was

Table 9. Cost comparison for different replications

Idle time cost Increase in Total cost
reduction (%) fuel cost (%) reduction (%)

Rep Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

1 56.2 63.8 76.2 0.9 2.1 3.7 7.8 13.6 20.9
2 54.8 64.8 75.6 0.9 2.0 3.1 7.8 13.9 21.1
3 54.4 62.8 75.8 1.0 2.0 3.5 7.6 13.4 20.9
4 52.1 62.8 74.9 1.1 2.2 3.6 7.4 13.3 20.6
5 56.4 63.4 74.4 1.1 2.1 3.3 7.8 13.4 20.7
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Table 10. Cost improvement (%) with and without flight time compression

With compression No compression

A C D Fuel Idle time Total Fuel Idle time Total

0 0 0 3.2 74.4 20.7 — 58.9 18.1
0 0 1 2.7 63.2 17.6 — 44.0 13.6
0 1 0 3.3 68.6 16.9 — 53.7 14.8
0 1 1 2.3 58.8 14.9 — 42.3 11.8
1 0 0 1.1 66.9 11.3 — 58.9 10.7
1 0 1 1.5 59.2 9.6 — 44.0 8.0
1 1 0 1.4 61.3 8.9 — 52.5 8.4
1 1 1 1.7 56.4 7.8 — 39.2 6.5

41.5 minutes for 1 day of operation, with a minimum of
28 minutes and a maximum of 59 minutes achieved in one
case. The average number of paths for which the makespan
improved was 30.5 out of 31, with a minimum of 28 paths
and a maximum of 31 paths. Reducing the idle time not only
affected the costs but created additional utilization oppor-
tunities such as adding an additional flight to a given flight
sequence. Note that makespan reduction is just mentioned
as a secondary benefit of speed control and is not mean-
ingful cost-wise without the utilization of this additional
generated time.

4.2. Results for four-hub data

To generate this schedule, data were taken from the BTS
database and filtered to include aircraft that originate their
first flight from four different hub locations and return to
them at least once during the same day. This way, we could
consider a schedule for four-hub locations. The airports
that were considered as hubs was Dallas–Fort Worth In-
ternational Airport (DFW), Chicago O’Hare International
Airport (ORD), Miami International Airport (MIA), and
New York John F. Kennedy International Airport (JFK).
This schedule had 469 flights operated by 141 different
aircraft.

In Table 11, a comparison among different cost compo-
nents between model objectives and published schedule is
given. The comparison is only done for two factors, A and
C, which are the fuel cost and β, respectively. Factor B—i.e.
speed compression—is taken as 15% for all runs since we
saw that the compression level does not affect the results
as the compressions on flights did not hit the boundaries.
Similarly, Factor D, the connection density, was taken as
50% throughout, since there are many possible connections
in a four-hub problem and 100% passenger connection may
not be realistic. Although we showed that replications did
not affect results in the single-hub study, we still conducted
three replications for each factor combination. We also did
not calculate total cost improvement without delay costs
separately in this case since it was shown earlier that the

model has cost improvements even when delay costs are
taken as zero.

It can be seen that results are very promising in the four-
hub case as well. Idle time cost savings are approximately
60%, whereas fuel cost increase is approximately 2%. This
is very similar to the results in the single-hub case. The
fact that model performance is not affected by the size
of the data is a good attribute. It shows that cost savings
from idle time even out nicely throughout the schedule and
the improvement rates are not negatively affected by an
increasing data size.

The results show that the idle time cost improvement
is decreased by increasing Factor A; i.e., unit fuel costs.
This is because speeding becomes more expensive when
unit fuel costs are higher, and the model depends more on
idle time to achieve robustness. Also, less speeding means a
smaller increase in total fuel costs, which can be observed
in the results. The total cost improvement is also negatively
affected by increasing the fuel costs. Around 80% of total
costs are from fuel costs, so doubling the unit fuel cost
resulted in the total cost improvements being almost half
of the previous values.

Results for Factor C—i.e., the parameter β—are similar
to the outcomes in the single-hub schedule as well. The fuel
cost increase is not affected by increasing β, whereas idle
time and total cost improvements are decreased. As stated
previously, this is because an increased variability results in
more idle time inserted in to the schedule. The decrease in
idle time cost improvements also reflects to the total cost
improvements.

Changing levels of β also affects the service level of the
schedules. For the case of a low β, the average service level
of the schedules is 96%, whereas it is 93% for the case a of
high β setting. It is reasonable that higher variability results
in lower service levels.

It is also interesting to observe how additional utilization
from decreased makespan levels change for the four-hub
schedule. Out of 141 flight paths, there were time savings
on 135 of the paths on average. The average of this im-
provement over all cases is 33 minutes, with a minimum of
25 minutes and a maximum of 45 minutes.
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Table 11. Comparison of factor effects

Idle time cost Fuel cost Total cost
improvement (%) increase (%) improvement (%)

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

A 0 59.0 61.1 62.8 2.7 2.8 3.1 14.6 15.6 16.4
1 52.2 54.6 56.4 1.1 1.2 1.3 7.7 8.2 8.8

C 0 55.9 59.3 62.8 1.2 2.0 3.1 8.6 12.5 16.4
1 52.2 56.4 60.7 1.1 2.0 2.9 7.7 11.3 14.9

4.3. Computation time analysis

All computations were conducted on an Intel Core i5
2410M computer with a 2.30 Ghz processor and 4.00 GB
RAM. The problem was modeled in Java language using
IBM ILOG CPLEX Optimizer. The model was solved by
CPLEX 12.1. In the following subsections, time analysis
for the single hub and four-hub schedules are provided.

4.3.1. Single hub study
Computation times are very reasonable for all factor set-
tings. Overall average, minimum, and maximum values
of computation times in CPU seconds can be seen in
Table 12. When we analyze the results we see that Fac-
tors A and B do not have a statistically significant effect
on computation times. Factor A is the unit fuel cost and
it is simply a coefficient term in the model, so changing it
does not change the computation times. For Factor B, the
maximum allowed compression does not achieve bound-
aries as stated earlier; thus, it does not affect the compu-
tation times. The results are different for Factors C and
D, however. Increasing the variability and the number of
passenger connections (or network density)—i.e., Factors
C and D respectively—increased the problem complexity
and overall computation times as expected.

Overall, the average time for all runs is 6.6 CPU seconds.
This is a very good result for a problem of that size, having
31 paths and 114 flights. As can be seen, the second-order
conic formulation of the chance constraints results in exact
and fast solutions.

Table 12. CPU time analysis for the single-hub schedule

CPU time (sec.)

Factor Level Min. Avg. Max.

A 0 2.4 6.2 12.1
1 2.3 6.1 12.1

B 0 2.3 6.2 12.1
1 2.4 6.1 11.7

C 0 2.3 3.9 6.4
1 4.7 8.4 12.1

D 0 2.3 4.0 6.9
1 4.7 8.3 12.1

4.3.2. Four-hub study
Computational results prove to be very good time-wise for
the four-hub case as well. The size of the problem was
141 paths and 469 flights. Overall average, minimum, and
maximum values of computation times in CPU seconds
can be seen in Table 13. The average time for all runs was
47.5 CPU seconds in this case. It can be observed that
changing unit fuel costs does not affect computation times.
However, changing β significantly affects times; e.g., almost
doubling them. This is reasonable as β affects variability
and increases problem complexity, whereas unit fuel costs
are merely coefficients in the model and do not add com-
plexity to the problem.

4.4. Simulation study

The computational study above compares the costs of the
published schedule and the costs resulting from the opti-
mization model. Since our model is a robust scheduling
model that performs under uncertainty, we also performed
a simulation study as a better indicator of model perfor-
mance. We used the single-hub schedule introduced above
and imposed the same published times, passenger and air-
craft turnaround times, and the same passenger connection
network in the simulation. The experimental factor setting
that we used in the simulation corresponds to low fuel cost,
low compression level, high beta factor, and high connec-
tion density.

We performed 10 replications, and random variables
associated with non-cruise times were generated from a
log Laplace distribution with the same parameters α and
βi for each flight, as in the optimization model. For the
single-hub schedule, there were 114 flights as reported in

Table 13. CPU time analysis for the four-hub schedule

CPU time (sec.)

Factor Level Min. Avg. Max.

A 0 30.0 48.1 65.6
1 31.9 47.4 62.6

C 0 30.0 32.4 34.2
1 59.7 63.0 65.6
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Table 14. Summary of simulation results on a single-hub schedule

Proposed schedule Published schedule

Min. Avg. Max. Min. Avg. Max.

Total delay (in minutes) 167.7 297.5 460.8 386.6 492.9 625.2
Maximum delay (in minutes) 12.3 31.7 64 24.7 39.2 72.7
Number of delays > 0 minutes 50 60.4 72 84 91.1 98
Number of delays > 5 minutes 9 16.8 26 24 30.1 39
Number of delays > 15 minutes 0 4.3 10 3 7 10
Missed connections (%) 5.8 7.6 10.1 6.6 7.9 9.2

Table 7, with 1467 connecting passengers in 301 connect-
ing flights. Different performance measures (e.g., the to-
tal delay for all flights, the maximum delay, the number
of delayed flights over 114 flights, and the percentage of
missed passenger connections) for the published sched-
ule and proposed schedule are reported in Table 14 along
with the minimum, average, and maximum values over 10
randomly generated runs. The overall service level for this
particular setting was 92.2%, which is consistent with the
simulation analysis. The results from the simulation study
also verified that the proposed schedule could achieve a
significantly better delay performance compared with the
published schedule, while satisfying the same passenger
service levels for the connecting passengers. In summary,
the proposed schedule can handle the variability in non-
cruise times better than the published schedule as can be
seen in several flight delay–related measures summarized in
Table 14.

5. Conclusions and future work

We developed a global optimization tool that can satisfy
given passenger connection service levels and avoid flight
delays while minimizing the sum of fuel and idle time
costs on a combined network of aircraft and passenger
itineraries. One of the main results of this study is that sig-
nificant cost reductions can be achieved from using cruise
time controllability in addition to solely utilizing schedule
padding, without deteriorating passenger service levels. As
far as we know, this is the first time this method of balancing
scheduled idle time with cruise time controllability is used
together to generate robust airline schedules. We show that,
approximately, with a 2% increase in fuel costs, we could
achieve a 60% decrease in idle time costs. Since cruise speed
decisions significantly affect the overall network and need
to be decided globally, the tool we developed will prove
many benefits for airlines.

In this study, block times were considered in two separate
parts as cruise and non-cruise times. Cruise times are sub-
ject to controllability where variability exists in non-cruise
times. The variability is modeled with chance constraints
on passenger connection service levels. By using a conic

formulation, we can exactly solve even large problems as
a four-hub daily schedule under a minute of time, where
solutions for a single-hub schedule can be obtained in sec-
onds. Moreover, the congestion information on airports
was used to arrange the aircraft turnaround times and the
variability on each flight. Maintaining a desired level of
passenger connection service levels is one of the objectives
of this study. However, passenger connection service levels
were allowed to be different for each flight as long as their
weighted average was above the desired level. This gave a
better chance to assess these connections based on to their
priority.

The benefits of this research can be extended with further
studies. Following the research in Arıkan and Deshpande
(2012), the random variable in this study is assumed to be a
log Laplace random variable. Our work could be extended
to see the properties and performance of the model under
a different random distribution.

Another important area for development could be incor-
porating routing and fleet assignment decisions in to the
decision process. Under this new setting, we could more
accurately assess possible benefits of the makespan reduc-
tions due to cruise time controllability.

In this study, block time random variables were assumed
to be independent but, actually, the propagation of de-
lays and the use of shared resources such as airports can
mean a correlation between these variables, especially for
the flights of the same aircraft. The study can be extended to
incorporate this correlation between the block time random
variables and benefits of the methodology can be analyzed
under this new setting. We expect the benefits to be no less,
as an assumed correlation will magnify the effects of delays,
but the computation times might grow, due to the added
complexity.

The airline scheduling process is a large-sized complex
process with many different subproblems. It is important to
integrate as many of these subproblems to obtain better so-
lutions that address the whole network with all interacting
parts. For example, crew costs are an important part of the
operating costs in the airline industry. A problem integrat-
ing crew scheduling problem with ours that employs idle
time insertion and cruise time controllability is a promis-
ing problem for future studies. This will be particularly
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interesting for the cases when the crew network differs sig-
nificantly from the aircraft network.
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Günlük, O. and Linderoth, J. (2010) Perspective reformulations of
mixed integer nonlinear programs with indicator variables.
Mathematical Programming, 124, 183–205.

Lan, S., Clarke, J. P. and Barnhart, C. (2006) Planning for robust air-
line operations: optimizing aircraft routings and flight depar-
ture times to minimize passenger disruptions. Transportation
Science, 40(1), 15–28.

Luedtke, J., Ahmed, S.,and Nemhauser, G. L. (2010) An integer
programming approach for linear programs with probabilis-
tic constraints. Mathematical Programming, 122, 247–272.

Marla, L. and Barnhart, C. (2010) Robust optimization: lessons
learned from aircraft routing. Working Paper, Department of
Civil and Environmental Engineering, Massachusetts Institute
of Technology, Boston, MA.

Marla, L., Vaaben, B. and Barnhart, C. (2011) Integrated disruption
management and flight planning to trade off delays and fuel
burn. DTU Management Technical Report.

Petersen, J. D., Solveling, G., Clarke, J.-P., Johnson, E. L.
and Shebalov, S. (2012) An optimization approach to
airline integrated recovery. Transportation Science, 46,
482–500.

Sohoni, M., Lee, Y. and Klabjan, D. (2011) Robust airline scheduling
under block-time uncertainty. Transportation Science, 45, 451–
464.

Appendix A: Formulation allowing low service levels

When β ≥ 1, the expected value of a log Laplace is infinity.
In this case, one can formulate the problem by using the
geometric mean of log Laplace random variable in con-
straint (7). We will show that when β ≥ 1 the problem can
still be reformulated using second-order conic inequalities.
We will have no restriction on γi j , so the results are valid
for all possible values of γ ; i.e., 0 ≤ γi j ≤ 1.

We first explore the properties of the quantile function
given in Equation (1). In Proposition A1, we show that the
second piece of quantile function F−1

X (γ ) is always greater
than or equal to the first piece.

Proposition A1. Denote the first and the second pieces of
F−1

X (γ ) by f1(γ ) and f2(γ ), respectively, so,

f1(γ ) = 2βi × eα × γ βi ,

f2(γ ) = eα

2βi × (1 − γ )βi
.

Then, the inequality f2(γ ) ≥ f1(γ ) always holds for 0 ≤ γ ≤
1. Furthermore, f2(γ ) = f1(γ ) only holds when γ = 1/2.

Proof. Consider

f2(γ ) − f1(γ ) = eα

(
1 − 4βi × γ βi × (1 − γ )βi

2βi × (1 − γ )βi

)
.

Notice that, eα > 0, 2βi × (1 − γ )βi > 0. Moreover, 1 −
4βi × γ βi × (1 − γ )βi ≥ 0 always holds since γ βi × (1 −
γ )βi ≤ 1/4βi is always true. Next, observe that f2(γ ) −
f1(γ ) = 0 when γ = 1/2. �

Proposition A2 states that F−1
X (γ ) is a convex function.

Proposition A2. F−1(γ ) is a convex function when βi ≥ 1.

Proof. Both f1(γ ) and f2(γ ) are convex for 0 ≤ γ ≤ 1. The
result follows. �
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Proposition A3. The chance constraint (4); that is,

F−1(γi j ) ≤ (xj − xi − T Pi j − fi ),

in the problem formulation can be replaced with the following
constraints:

2βi × eα × γ
βi
i j ≤xj − xi − T Pi j − fi , (A1)

eα

2βi × (1 − γi j )βi
× zi j ≤xj − xi − T Pi j − fi , (A2)

where zi j is a 0-1 decision variable defined as

zi j =
{

0, if γi j < 1
2

1, if γi j ≥ 1
2

.

Proof. Proposition A1 shows that f2(γ ) ≥ f1(γ ) always
holds. Thus, when γi j ≥ 1/2, zi j = 1, f2(γi j ) bounds the
right-hand side xj − xi − T Pi j − fi ; i.e., constraint (A2) is
active, whereas when γi j < 1/2 and zi j = 0, f1(γi j ) bounds
the right-hand side xj − xi − T Pi j − fi ; i.e. constraint (A1)
is active. �

Proposition A4. When β ≥ 1, constraints (A1)–(A2) are both
representable by second-order conic inequalities.

Proof. First, consider Equation (A1) and

2βi × eα × γ
βi
i j ≤ xj − xi − T Pi j − fi .

Since βi ≥ 1, by making the conversion

vi j = xj − xi − T Pi j − fi ,

as before, we obtain

2βi × eα × γ
βi
i j ≤ vi j ,

which is obviously in the form of Equation (17) and hence
can be represented via conic inequalities.

Next, consider Equation (A2),

eα

2βi × (1 − γi j )βi
× zi j ≤ xj − xi − T Pi j − fi ,

which is obtained by multiplying the left-hand side of con-
straint (12) by zi j . Constraint (12) is second-order cone
programming representable by Proposition 2.

Add auxiliary variables vi j and wi j such that

vi j =xj − xi − T Pi j − fi , (A3)
wi j =2 − 2γi j , (A4)

and we get

eαzi j ≤ w
βi
i j vi j .

Suppose that βi = ai/bi , where ai , bi are integers. Since
zi j ∈ {0, 1}, we can equivalently write

eαzbi
i j ≤ w

ai
i j v

bi
i j .

To put this inequality in the form of Equation (17), we
can increase the exponent of zi j and still get an equivalent
inequality since zi j ∈ {0, 1}:

eαz2k

i j ≤ w
ai
i j v

bi
i j ,

where

k = ⌈
log2(ai + bi )

⌉
.

The proof follows. �

Proposition A5. The expected value of log Laplace variable
X with parameters α and βi is finite only for βi < 1 and has
value eα

(1−βi )×(1+βi )
.

Proof. Define δ such that α = ln(δ). Then, we can rewrite
fX(x) as below:

fX(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 × βi × δ

(x
δ

)(1/βi )−1
, if x < δ

1
2 × βi × δ

(
δ

x

)(1/βi )+1

, if x ≥ δ.

Using the distribution function, we can calculate expected
value of X by

E[X] =
∫ ∞

−∞
x × fX(x) × dx

=
∫ δ

0

1
2βi

(x
δ

)1/βi × dx +
∫ ∞

δ

1
2βi

(
δ

x

)1/βi

· dx.

Define

g1(x) =
∫ δ

0

1
2βi

(x
δ

)1/βi · dx

g2(x) =
∫ ∞

δ

1
2βi

(
δ

x

)1/βi

· dx.

Then

g1(x) = δ

2(βi + 1)
,

whereas

g2(x) =

⎧⎪⎪⎨
⎪⎪⎩

−δ

2(βi − 1)
, if βi < 1

undefined, if βi = 1
∞, if βi > 1.

Consequently, for α and 0 < βi < 1 we get

E[X] = eα

(1 − βi ) · (1 + βi ).

�
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