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Abstract Gene expression centered gene regulatory networks studies can provide
insight into the dynamics of pathway activities that depend on changes in their
environmental conditions. Thus we propose a new pathway analysis approach
to detect differentially behaving pathways in abnormal conditions based on
G-network theory. Using this approach gene regulatory network model parameters
are estimated from normal and abnormal samples using optimization techniques
with corresponding constraints. We show that in a ‘‘p53 network’’ application, the
proposed method effectively detects anomalous activated/inactivated pathways
related with MDM2, ATM/ATR and RB1 genes, which could not be observed
from previous analyses of gene regulatory network normal and abnormal
behaviour.

1 Introduction

One of the fundamental problems of biology is to understand complex gene reg-
ulatory networks (GRNs), and various mathematical and statistical models have
been introduced for inference from GRNs [1]. Based on such networks, over-
represented biological processes or pathways of a group of genes are identified by
mapping them onto the gene ontology (GO) terms or regulatory structures [2].
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These pathway analyses provide the annotations and functional insight of the
group of genes which are usually determined by conventional statistical tests such
as the t-test. However, these differentially expressed gene (DEG) derived analyses
are limited in detecting defective pathways since they only observe the amount of
expression of a gene itself rather than considering the flows of expression signals
that communicate with neighboring genes.

Here we aim to detect the abnormal pathways of GRNs by modelling them
using G-Networks [3] which is a probabilistic model of a system with special
agents such as positive and negative customers, signals and triggers. In contrast
to normal queuing networks, the negative customers of G-Networks describe
the inhibitory effects of GRNs [4, 5]. G-networks have a product form solution
which enables us to handle the dynamics of complex GRNs without heavy
computation times. The parameters of the modelled GRN are inferred from
normal samples with the assumed transition probabilities of gene expression
signals. Then the transition probabilities of abnormal conditioned samples are
estimated by minimizing the difference between the observed and predicted
steady-state probabilities with constraints. Finally, permutation tests are per-
formed to determine the statistical significance of the estimated transition
probabilities.

2 G-Networks for Gene Regulatory Networks

Following [4] consider the notion of a ‘‘packet’’ that contains the gene expression
signals, and a network node that represents a gene consisting of a queue where its
packets are stored and a server where the packets’ fates are determined. Let kþi and
k�i be the positive and negative packet input rates to the ith node, respectively.
li is the packet firing rate (service rate) of the ith node. Furthermore we
define x ¼ fx1; :::; xng a non-negative integer n-vector with xþi ¼ fx1; :::; xi þ
1; :::; xng; x�i ¼ fx1; :::; xi � 1; :::; xng; and xþ�ij ¼ fx1; :::; xi þ 1; xj � 1; :::; xng:
Let pþij and p�ij be the transition probabilities for packet motion from the ith node to
the jth node as a positive and a negative packet, respectively. Note that a negative
packet has the effect of disappearing after it destroys one packet of the target
node, or it disappears also if it does not find a positive packet to destroy.
Lastly, di denotes the probability that a packet leaves the system so that
Pn

j¼1ðpþij þ p�ij Þ þ di ¼ 1:
Consider now a random process XðtÞ ¼ fX1ðtÞ; :::;XnðtÞg where XiðtÞ is an

integer-valued random variable representing the number of packets in the ith node
at time t� 0: If Pr(x,t) is the probability that X(t) takes the value x at time t, then
the G-network equations are:
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Prðx; t þ DtÞ ¼
Xn

i¼1

�
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þ
Xn
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n
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Xn
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o

þ ðdiliDt þ oðDtÞÞPrðxþi ; tÞ þ ð1� ðkþi þ k�i þ liÞDt þ oðDtÞÞPrðx; tÞ
�

ð1Þ

where I(C) is 1 if C is true and 0 otherwise, and oðDtÞ ! 0 as Dt! 0: The
complete equilibrium solution of (1) was given in [4]. Let qi be the steady-state
probability that the ith gene is activated:

qi ¼ min 1;
kþi þ Kþi

li þ k�i þ K�i

� �

ð2Þ

with

Kþi ¼
Xn

j¼1

qjljp
þ
ji þ

Xn

j;l¼1;l 6¼j

qjqlljpjli and K�i ¼
Xn

j¼1

qjljp
�
ji þ

Xn

j;l¼1;l 6¼j

qlllplij

then the steady-state probability that there are xi packets of ith node in each of the
n cells is:

lim
t!1

PrðX1 ¼ x1; :::;Xi ¼ xi; :::;Xn; tÞ ¼ Pn
i¼1qxi

i ð1� qiÞ ð3Þ

3 Abnormal Edge Detection

The packets in the G-network represent latent objects containing the gene
expression signal, and we assume that the number of packets is proportional to the
mRNA expression levels which are actually observable data. We also assume that
the mRNA levels are observations of the steady-state. Therefore the steady-state
probability that there is at least one mRNA of ith gene is qi ¼ ai

aiþ1 from (3) if we

denote by ai the average mRNA level (average queue length) of ith gene, also
given by ai ¼ qi=ð1� qiÞ:

To determine the G-network parameters under normal conditions we use (2)
where there are four sets of unknown parameters pji ¼ fpþji ; p�ji ; qjli; qlijg; kþi ; k�i ;
and li: We initially set pji ¼ 1=ðnout

j þ 1Þ where nout
j is the out-degree of gene

j. We set the packet output rate li based on the values of kþi and k�i which are
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kþi ¼ 0:0062 sec�1 and k�i ¼ 0:002 sec�1 [6], with li ¼ c � nout
i where c is a scaling

constant. From (2) we have qi ¼ fiðkþi ; k�i ; lijqj; pjiÞ where q ¼ ðq1; ::; qnÞ: Then

c can be found by minimizing the following equation given the initial values of kþi
and k�i ;

~c ¼ arg minc

X

i

ðqi � fiðcjq; pji; k
þ
i ; k

�
i ÞÞ

2 ð4Þ

Once each li is determined, we can find the optimal positive input rate kþi which

minimizes ðqi � fiðkþi jq; pji; ~li; k
�
i ÞÞ

2 for each gene with the initial value k�i and a

constraint 0� ~kþi � li þ k�i þ K�i � Kþi : Then we determine ~k�i which produces
exactly the same values of qi:

3.1 Transition Probabilities in Abnormal Conditions

In an abnormal condition, let q0i be the steady-state probability that ith gene is
activated and p0ji be a packet transition probability from the ith gene to jth gene in
the same condition. If there are k unknown p0ji for ith gene, then we will denote
them by a vector pki: For the detection of the abnormally behaving pathways, pki

needs to be estimated given the input (~kþi and ~k�i ) and output (~li) rates found in
normal conditions. pki can be determined by minimizing the following sqaured
error with two constraints, 0� ~p0ji and

P
i ~p0ji� 1;

~p0ki ¼ arg min
p
ðhÞ
ki

ðq0i � fiðpðhÞki jq0j; ~k
þ
i ;

~k�i ; ~liÞÞ2 ð5Þ

where p
ðhÞ
k is the hth hypothesis in the constrained parameter space. Our algorithm

searches for the optimal solution iteratively with different initial starting values to
reduce the possibility of remaining in a local minimum.

3.2 Permutation Test for the Estimated Transition Probabilities

When the estimated ~p0ij differs from its initially assumed value pij; it is necessary to
determine if the difference is statistically significant. The null hypothesis of this
test will be ~p0ij ¼ pij: To proceed with the test the set of samples is shuffled at
random and divided into normal and abnormal groups with the same sample size of
the original group. Then the proposed method is applied in the same way as the

original data. Let M be the number of permutations and ~pðmÞij be the estimated
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transition probability of the mth permutation. Then we can compute the emperical
p-value of the ~p0ij as follows,

p�value of ~p0ij ¼
1
M

PM
m¼1 Iðp0ij� ~pðmÞij Þ if p0ij [ pij

1
M

PM
m¼1 Iðp0ij� ~pðmÞij Þ if p0ij� pij

(

where I(C) is the indicator function. Thus if the p-value is less than a2 then the null
hypothesis is rejected. In our study, a2 ¼ 0:1:

4 The p53 Pathway

In order to evaluate our approach using experimental data, we selected the p53
pathway which is a well studied system in human cells whose most important
feature is tumor suppression when DNA is damaged. The regulatory structure of
the p53 pathway with 30 genes was constructed on the basis of the KEGG data-
base, and we also downloaded two microarray mRNA expression datasets from
GEO. The first dataset (GSE12941) consists of 10 non-tumor liver tissue and 10
hepatocellular carcinoma (HCC) samples. The second (GSE6222) is a dataset for
the study of liver cancer progression in HCC. In this dataset, we use 2 normal and
10 HCC samples. Before applying the proposed method, the data was normalized
and scaled with mean 3 so that the average number of mRNAs of a gene without
its interactions in a single cell are assumed to be approximately 3, while the
variance was scaled to 1. The gene input and output rates are assumed to be
0:0062 sec�1 and 0:002 sec�1 from [6] so that 0:0062=0:002 � 3:

Figure 1 shows the average expression levels of genes in each dataset, and the
corresponding p-values of t-tests which detect DEGs. The two datasets share nine
significant DEGs with 0.05 significance level while GSE12941 has four more
DEGs. This similarity can be confirmed by observing their expression patterns in
Fig. 1.However interpreting the DEGs even when we know their regulatory
structure is yet another challenge. Figure 2 shows the results from our proposed
method. Despite the apparent lack of significance of p53 and MDM2 in the t-test,
the p53-MDM feedback loop was clearly activated in cancer samples in both
datasets. In [7], the p53-MDM2 feedback loop appears to produce oscillatory
expression patterns. Thus in terms of the system dynamics, the activation of two
pathways between p53 and MDM2 in our result might be more appropriate than
the activation of only one pathway from MDM2 to p53. One of the significant
pathways in both datasets is TP53-IGFBP3-IGF1 [8]. Also our method properly
detects two pathways, ATM-CHEK2-TP53 and ATR-CHEK1-TP53 as expected
from [9] in both datasets, which cannot be detected merely by observing the
p-values of the DEG test.
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5 Discussion

We have proposed a new approach for detecting abnormal pathways in GRNs
based on G-network modelling. This method provides an effective way to describe
the flows of gene expression signals including negative or inhibitory effects on
gene expression. Using some experimental data, we show that one advantage
of our approach is that it can detect abnormal information flows in the dynamics of
gene pathways. Thanks to existing G-network theory, the model uses a compu-
tationally tractable steady-state analysis and therefore does not require a large
number of samples from time-dependent data. Moreover the analytic solution
provided by G-network theory offers the possibility that our approach may be
extended to very large-scale GRN systems.

In order to exploit this analytical tool, our work shows that a successful
application of this method requires that the model be started with a reliable prior
network structure based on real experimental data, or carefully calibrated GRN
information. Though our intial experimental evaluation appears quite positive,
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Fig. 1 Average mRNA expression levels of genes in two datasets, GSE12941 (top) and
GSE6222 (middle). The p-values of the t-tests are shown in the bottom panel where the y-axis
represents negative natural logarithms of the p-values. Note that multiple testing corrections are
not applied in these i-tests
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further experimental studies will be needed to validate the proposed approach and
apply it to attain biological meaningful and clinically useful results.
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