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ABSTRACT 
This paper presents a new method to increase the available 

measurement resolution of quadrature encoder signals. The 

proposed method features an adaptive signal correction phase 

and an interpolation phase. Typical imperfections in the encoder 

signals including amplitude difference, mean offsets and 

quadrature phase shift errors are corrected using recursive least 

squares with exponential forgetting and resetting. Interpolation of 

the corrected signals are accomplished by a quick access look-up 

table formed offline to satisfy a linear mapping from available 

sinusoidal signals to higher order sinusoids. The position 

information can be derived from the conversion of the high-order 

sinusoids to binary pulses. With the presented method, 10nm 

resolution is achieved with an encoder having 1µm of original 

resolution. Further increase in resolution can also be satisfied 

with minimizing electrical noises. Experiment results 

demonstrating the effectiveness of the proposed method for a 

single axis and two axis slider systems are given.  

INTRODUCTION 
There is growing interest for precision motion control with      

increasing demand for micro/nano-technology related equipment 

[1]. Precision positioning is required in many industrial 

applications including micro/nano-scale manufacturing and 

assembly, optical component alignment systems, scanning 

microscopy applications, cell/tissue engineering etc. [2-4]. 

Micro/nano-scale applications require micro/nano-positioning 

devices with high precision and resolution. However, the 

performance characteristics of the positioning devices depend 

highly on the precision and resolution that can be obtained from 

the encoders. Hence, in order to achieve high performance with 

the overall positioning system, it is crucial to increase the 

resolution of the encoders. Yet, achievable resolution is limited by 

the available manufacturing technologies used for the encoders [5, 

6]. As an example, with the current available manufacturing 

technologies, commercially available linear optical encoders can 

have 0.512 micrometers scale grating in pitch satisfying 0.128 

micrometers of optical resolution. However, further development 

in resolution with decreasing the pitch of scale grating is rather 

limited. Signal processing techniques for interpolation of the 

available encoder signals serves further improvement of the 

encoder resolution by deriving intermediate position values out of 

the sinusoidal encoder signals.    

Although it is possible to achieve high resolution values using 

various kinds of interpolation approaches, both hardware and 

software interpolation methods require ideal encoder signals with 

a quadrature phase difference between them. However, the 

encoder signal pairs usually contain some noise and errors due to 

encoder scale manufacturing tolerances, assembly problems, 

operation environment conditions, and electrical grounding 

problems. Interpolation errors will occur while extracting 

intermediate position values from the distorted pair of sinusoidal 
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encoder signals. Therefore, these errors and noises have to be 

compensated before the interpolation method is applied. 

So far, many different approaches have been developed to 

correct the distorted encoder signals containing amplitude errors, 

mean offsets, and quadrature phase shift errors. The first 

introduced method was proposed by Heydemann [7]. In this 

method, the errors in the encoder signal pairs are determined 

effectively using least squares minimization. Then, the correction 

is done based on the calculated error values. However, since the 

correction parameters are calculated offline, this method does not 

offer an effective compensation when the errors are changing 

dynamically through the motion. Applications of this correction 

method can be found in [5] and [8].  In order to compensate the 

dynamic errors in encoder signals, several online compensation 

methods are developed. In [9], Balemi used gradient search 

method to calculate the correction parameters online, but 

performance of this method is not effective in low frequencies and 

noisy signals as mentioned in [10]. Another online error 

compensation method proposed in [6] corrects the sinusoidal 

signals obtained from a linear optical encoder by making use of an 

adaptive approach based on radial basis functions. Then, authors 

use the similar procedure to increase the resolution of the encoder. 

Although high-resolutions are achieved with this method, it 

requires a training period for every new encoder. Also, changes in 

the environmental conditions may require a training period.  In 

addition to this method, some other interpolation methods applied 

on optical encoders to increase the resolution are discussed in [11] 

and [12]. Cheung [11] proposed a sine-cosine interpolation 

method using logic gates and comparators. In [12], interpolation 

of encoder signals is accomplished by using the digital signal 

processing (DSP) algorithms following the digitization of 

sinusoidal encoder signals with analog-to-digital converters 

(ADC). However, these interpolation approaches require external 

hardware such as high precision ADCs and DSPs to obtain high 

resolution from the encoder.  Hence, their applicability to typical 

servo controller with a digital incremental encoder interface is 

limited [6]. Another interpolation approach used so far is based on 

look-up tables. Tan et al. [5] obtained high-order sinusoids from 

original encoder signals and stored them in a look-up table for 

online mapping of encoder signals. With this method, they 

managed to achieve high resolution. Some other hardware and 

software based interpolation methods are also applied on magnetic 

encoders and resolver sensors [10, 13, 14].  

This paper presents a new method to obtain high-resolution 

position values out of the original encoder signals. Our motivation 

here is to obtain high-order sinusoids from original encoder 

signals. Mapping of original signals to high-order ones is 

accomplished by a look-up table. Signal conditioning before the 

interpolation is achieved using an adaptive approach. Important 

aspects of the work presented here can be given as the adaptive 

characteristics of the correction method as well as the simplicity of 

the interpolation method (i.e. for real time performance). 

Requirement for additional hardware is also eliminated. Moreover, 

applicability of the presented interpolation method is examined on 

single and two axis positioning devices. Experimental results 

obtained with the application of the proposed method on a linear 

optical encoder are provided in the related sections of the paper.  

OVERVIEW OF THE PROPOSED APPROACH 
Proposed method features two main steps: correction of signal 

errors and interpolation of corrected signals. For the correction 

step, an adaptive correction method is adopted to compensate the 

encoder signal errors including amplitude difference, mean offsets, 

and quadrature phase shift errors. The adaptation is satisfied by 

the recursive least squares (RLS) with exponential forgetting and 

resetting. The reason for adopting an adaptive correction 

technique is due to the dynamic characteristics of the errors. For 

high precision positioning applications, assembly and alignment of 

the encoder is very important to be able to obtain required 

accuracy and precision. However, for closed systems or long range 

positioning systems, it may not be possible to align the encoder to 

obtain perfect quadrature signals. Characteristics of the resulting 

signal may change through the motion. Hence, adaptive approach 

used in this paper is more suitable for the systems where the signal 

errors change dynamically. In the second step of the proposed 

method, interpolation of the corrected signals is satisfied by a 

look-up table based method. In this method, the basic idea is to 

obtain high-order sinusoids from the original encoder signals by 

mapping the original signals to high-order ones online with the 

help of a quick access look-up table. Since the look-up table is 

formed offline, the computational effort is considerably less 

compared to the previously mentioned online interpolation 

methods. At the end of the interpolation step, position information 

can be derived from the conversion of the high-order sinusoids to 

binary pulses. This conversion is accomplished without using an 

additional hardware such as high precision ADCs. 

An overall flow diagram for the proposed approach is shown 

in Fig. 1. In this figure, signal correction and interpolation steps 

are labeled as step 1 and step 2, respectively. The correction step 

takes the encoder signals u1 and u2 and generates signals û1 and û2 

as corrected quadrature signals. In order to compensate the errors 

in u1 and u2, a set of correction parameters θ is calculated using 

RLS with exponential forgetting and resetting in the parameter 

adjustment block and fed into the signal correction block. Here, 

our parameter adjustment rule uses the current encoder signals u1 

and u2 and corrected signals û1 and û2 from previous iteration. λ is 

the forgetting factor or discounting factor. When the correction 

step is completed, index calculator generates index, i, for signals 

to obtain the corresponding high-order sinusoid values, u1n and u2n, 

from the look-up table. The look-up table is constructed using the 

correct values of high-order sinusoids since the corrected signals 

coming from the Step 1 are calculated with sufficient precision 

through the adaptive correction scheme. Therefore, the look-up 

table can be easily generated offline without requiring high 

computational effort. Using high-order sinusoids, pulse generator 

generates quadrature binary pulses A and B without requiring 

high-precision ADCs. Finally, position value is calculated by 

detecting zero crossings of high-order sinusoids.  

2 Copyright © 2012 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 07/02/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



  

 

FIGURE 1. GENERAL FLOW DIAGRAM OF THE PROPOSED 
APPROACH 

Step 1: Adaptive Encoder Signal Correction 
Before the interpolation step, it is crucial to correct the errors 

in the original encoder signals to prevent high interpolation errors. 

Common errors affecting the quadrature encoder signals are 

amplitude difference, mean offsets and quadrature phase shift 

errors. In this paper, an adaptive approach is used to correct these 

errors. In some applications, it is possible to have similar error 

characteristics through the motion. In these cases, errors can be 

compensated with offline correction methods given in [5] and [7]. 

On the other hand, in some cases where the encoder alignment 

cannot be performed effectively or systems have long range of 

movement track, the errors change throughout the motion. In these 

cases, in order to obtain high-resolution, adaptive approaches may 

be adopted to track the errors better. For this purpose, RLS with 

exponential forgetting and resetting method is developed to adjust 

correction parameters adaptively. In order to develop the 

mathematical foundation (i.e. Eq. (1) - Eq. (14)) for our proposed 

method, we will start with the formulation given in [7]. 

An ideal set of quadrature encoder signals with amplitude of 

A, u1i and u2i, can be expressed as 

 
1

2

cos

sin

i

i

u A

u A








 (1) 

where α is the instantaneous phase of the signals with phase 

difference of π/2.  

Relation between real (u1 and u2) and ideal encoder signals 

(u1i and u2i) can be written as 

 

1 1 1

2 1 2

1
( cos( ))

i
u u m

u A a m
R



 

  
 (2) 

where m1 and m2 are mean offset values and  is the quadrature 

phase shift error. In Eq. (2), R is the gain ratio (A1/A2) where A1 

and A2 are amplitudes of actual encoder signals. Using Eq. (1) and 

Eq. (2), a conventional least squares formulation can be obtained 

as shown in Eq. (3) and Eq. (4). 
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 (4) 

Although it is possible to calculate θi (i=1,2,…,5) constants 

offline using least squares, in this paper RLS with exponential 

forgetting is used to calculate θi’s adaptively. For this purpose, an 

equivalent of Eq. (3) can be written as shown in Eq. (5). 

 

1 1 2 2 3 3 4 4

5 5

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 1

( ) ( ) 1
T

or

t t t t t t t t

t t

t t

       

 

 

  

 



 (5) 

where superscript T denotes transpose of a matrix, t is time index, 

θi’s are parameters to be determined and 
i

 ’s are known functions 

depending on actual encoder signal values. Then, the parameter 

update and regressor vectors given in Eq. (6) are obtained. 
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FIGURE 2. ENCODER SIGNAL PARAMETERS RECORDED 
THROUGH THE 120mm MOTION OF THE SINGLE AXIS 

SLIDER 
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The aim of RLS with exponential forgetting and resetting is to 

determine the parameters so that Eq. (5) should be satisfied as 

closely as possible. For this purpose, a loss function given in Eq. 

(7) is determined so that the chosen θ should minimize its value. 

 
2

1

1
( , ) (1 ( ) )

2

t t k T

k
V t k   




   (7) 

where k is index and λ is forgetting factor such that 0 1  . By 

adjusting the value of λ, effects of old data to the loss function is 

determined so that most recent data is given unit weight whereas 

old data is weighted by λ
s
, where s is number of time units passed 

from the old data. 

Then, the recursive parameter adjustment law can be obtained 

as follows 

 
1

( ) ( 1) ( )(1 ( ) ( 1))
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( ) ( ( ) ( )) ( 1) /

T
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T
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 


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   

  

 (8) 

where I is identity matrix and P is a non-singular matrix which can 

be chosen as P I ,  is a large number.  

For simplicity, time index t is omitted from this point, 

although each correction parameter is time-varying. Calculating 

the θi’s using the Eq. (8), the correction parameters (A1, R, m1, m2 

and ) can be obtained in terms of θi’s using Eq. (4) as 
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 (9) 

As a result, the corrected quadrature signals can be calculated 

using the correction parameters obtained in Eq. (9) as follows 

 

1 1 1

1

2 1 1 2 2

1

1
( )

1
(( ) sin ( ))

cos

û u m
A

û u m R u m
A




 

   

 (10) 

Using this method, the correction parameters are adjusted in 

each iteration recursively considering the effects of parameter 

values from previous iterations. Hence, slow changes in the 

parameters can be covered effectively. In Fig. 2, changes in the 

signal amplitude, gain ratio, mean offsets, and phase shift errors 

recorded through the 120mm motion of our single axis slider are 

shown. For short range movements (less than hundreds of 

micrometers), parameters can be assumed to change smoothly and 

continuously. However, as it can be observed in Fig. 2, they may 

change more dramatically for long range motions. For this case, a 

standard RLS with exponential forgetting cannot estimate the 

parameters very well. Hence, in long range motions, resetting is 

used to cover the significant parameter changes. For this purpose, 

the matrix P in the RLS algorithm given in Eq. (8) is reset 

periodically to its initial value of I . As a result of resetting, the 

parameter estimate is updated with larger step size so that the 

significant changes in the parameters can be estimated well since 

the gain K(t) in Eq. (8) gets larger [15]. In Fig. 3, corrected 

encoder signal data obtained through the end of 120mm motion of 

slider is given for RLS with resetting and without resetting cases. 

It is obvious that a better correction of the encoder signals is 

accomplished using RLS with resetting where long range motion 

is the focus of interest. As shown in the Fig. 3, when there is no 

resetting of matrix P in the RLS algorithm, corrected signals still 

contain amplitude, mean offset and phase shift errors at the end of 

long range motions. The amplitude error for no resetting case is 

around 14% and 16%. Mean offset errors can reach up to 0.1V 

and phase shift error is about 2.5-3 degrees. Although the phase 

shift error seems small, when high-resolution measurements are 

concerned, it is not acceptable. Moreover, these errors will be 

amplified when an interpolation method is applied to obtain high-

resolution. Illustration of the encoder signals obtained before and 

after correction using RLS with exponential forgetting and  
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FIGURE 3. CORRECTED ENCODER SIGNALS USING RLS 
WITH AND WITHOUT RESETTING 

resetting is given in Fig. 4. In order to illustrate the quadrature 

phase shift of the corrected signals more clearly, variation of 

amplitude of corrected signals between 0 and π/2 radians are given 

Fig. 5. As it can be observed in this figure, corrected signals have 

a phase difference of π/2 as desired.  

Step 2: Signal Interpolation 
Calculation of higher order sinusoids can be a tedious 

operation based on general formulations such as given in [5]. This 

may reduce accuracy and the real time performance of the 

interpolation process. In our method, we use a look-up table based 

interpolation method for mapping of original encoder signals to 

high-order sinusoids at high process speeds. For this purpose, a 

quick access look-up table is formed offline. The look-up table 

used in this paper directly uses the actual mathematical values of 

high-order sinusoids since the corrected signals coming from the 

adaptive signal correction step are sufficiently close to the real 

sinusoidal signal values. Moreover, as mentioned previously, 

signal characteristics changes significantly in long ranges. Hence, 

it is much more practical to use the mathematical values of high-

order sinusoids. Also, generation of the look-up table in this 

method becomes very easy and the same look-up table is 

applicable to different encoders or operation conditions. 

In the interpolation step, the index calculator shown in Fig. 1, 

takes the values of corrected signals, û1 and û2, as inputs and 

generates an index number, i. Using this number as an addressing 

data, the values of n
th

 order sinusoids, u1n and u2n, corresponding 

to û1 and û2 are obtained from the quick access look-up table.  

 

FIGURE 4. CORRECTED AND ORIGINAL ENCODER 
SIGNALS 

 

FIGURE 5. VERIFICATION OF QUADRATURE PHASE 
DIFFERENCE BETWEEN CORRECTED SIGNALS 

Construction of Look-up Table and Generation of 

Index Numbers. For our research, we construct our look-up 

table by dividing each octants (i.e. interval of π/4 radians) of a set 

of n
th

 order sinusoidal signals, cos( )na and sin( )na , into N 

samples leading 8N samples over one period of a high-order 

sinusoids. Then, values of these samples are stored in the look-up 

table prior to the process. A generic look-up table for an n
th

 order 

interpolation is given in Tab.1. In this table, i denotes the index 

number generated by index calculator for û1 and û2. 

After the look-up table is constructed, the index number 

should be calculated for mapping of corrected signals to the n
th

 

order sinusoids. As also observed in [5], when the index 

calculation is based on just one signal, û1 or û2, poor resolution 

will be obtained around 
1
1û  or 

2
1û  due to the highly nonlinear 

relationship between amplitude and angle α of sinusoidal signals. 

Although it is sufficient to use high N values to solve this 

problem, it will also increase the size of look-up table. Hence, 

index number may be calculated using the one of the signals, û1 or  
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TABLE 1. A GENERIC LOOK-UP TABLE 

Index cos( )na  sin( )na  

0 1 0 

1 cos( )
8

n

N


 sin( )

8

n

N


 

2 cos( )
4

n

N


 sin( )

4

n

N


 

: : : 

i cos( )
8

ni

N


 sin( )

8

ni

N


 

: : : 

8N 1 0 

 

û2, which is outside of that poor resolution region. Defining the 

poor resolution region as  

 

1

2

sin( )
4

sin( )
4

û

û









 (11) 

the index can be calculated by using almost linear relationship 

between amplitude and angle α outside of these regions in 

combination with the signs and magnitudes of the signals û1 and 

û2. Signs and magnitudes of the signals are only used to find the 

correct octant of the current angle. For example, for 0 / 4a   , 

1
( ) 0sign û   and 

2
sin( / 4)û  . Since û2 is in the poor resolution 

area mentioned above, it is suitable to use the value of û1 to 

calculate the index value. Using the linear relationship between 

amplitude of signal û1 and the angle, it can be calculated as 

 1

sin( / 4)

û N
i


  (12) 

Similarly, for / 4 / 2a   , 
2

( ) 0sign û   and 
1
sin( / 4)û  . 

Hence, since û2 is at outside of the poor resolution region, it can be 

used in the calculation leading the index value of 

 22
sin( / 4)

û N
i N


   (13) 

However, using Eq. (12), Eq. (13) and similar ones given in Tab.2 

for the other octants of sinusoids, obtained index numbers may not 

be integers. Therefore, calculated index values should be rounded 

to the closest integer values while implementing the above method 

in order to reach the correct value in the look-up table.  

TABLE 2. INDEX CALCULATION TABLE 

Sign 

Condition 

Magnitude 

Condition 
Index, i Angle, α 

1
( ) 0sign û 

 
2
sin( )

4
û


  

1

sin( / 4)

û N


 0

4


   

2
( ) 0sign û 

 
1
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4
û


  
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û N
N




 
4 2

 
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2
( ) 0sign û 

 
1
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4
û


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N




 

3

2 4

 
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1
( ) 0sign û 

 

2
sin( )

4
û


 

 

14
sin( / 4)

û N
N




 

3

4


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1
( ) 0sign û 

 

2
sin( )

4
û


 

 

14
sin( / 4)

û N
N




 

5

4


    

2
( ) 0sign û 

 

1
sin( )

4
û


 

 

26
sin( / 4)

û N
N




 

5 3

4 2

 
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2
( ) 0sign û 

 

1
sin( )

4
û


 

 

26
sin( / 4)

û N
N




 

3 7

2 4

 
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1
( ) 0sign û 

 
2
sin( )

4
û


  

18
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û N
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7
2

4


  

 

 

In Tab. 2, there are two conditions to define the index. These 

are called as sign and magnitude conditions. Index is calculated 

following the similar procedure as in the above examples. Since 

the table is constructed by considering only the signs and 

magnitudes of the available encoder signals, it is easier to 

understand and implement in real time applications compared to 

the ones mentioned in the literature. It also serves as a quick 

access tool for the look-up table. Moreover, round off error is 

minimized by eliminating extra index numbers proposed in [5].   

Using Tab. 2 for calculation of index and obtaining the 

corresponding values from the look-up table, n
th

 order sinusoidal 

signals can be obtained. An example interpolation results for n=25 

is given in Fig. 6. In the interpolation, N is chosen to be 1000. 

Considering the results shown in Fig. 6, it is obvious that high-

order sinusoids can be obtained effectively using the presented  
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FIGURE 6. INTERPOLATION RESULTS FOR n=25 

 

FIGURE 7. VARIATION OF INDEX NUMBER (n=25) 

correction and interpolation methods. Moreover, calculated index 

number, i, corresponding to the corrected signals, û1 and û2, is 

given in Fig. 7. In this figure, amplitudes of sinusoidal signals are 

set to 8000 deliberately to show the relationship between signal 

amplitudes and index clearly.  Expectedly, index number varies 

from 0 to 8000 (8N) linearly in one period of signals. Linear 

relationship shown in this figure also illustrates the effectiveness 

of the proposed interpolation method. See the experiments section 

for more detailed experiments and results for the proposed 

interpolation method. 

Binary Pulse Generation 
In order to use the interpolated encoder signals, u1n and u2n, as 

position information in a system, quadrature signals should be 

converted to the binary pulses. Then, the position information can 

be derived by counting the zero-crossings of these binary pulses. 

Although it is possible to use extra hardware for this purpose, it 

can be accomplished in software easily by using the following 

equations 
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 (14) 

where A and B are binary pulses as illustrated in Fig.1. In the Eq. 

(14), ε is the small threshold value. This value should be chosen  

 

FIGURE 8. BINARY PULSES OBTAINED WITH n=25 

considering the noise level of the interpolated signals coming from 

the interpolation step. With the proper selection of this number, 

undesired zero crossings can be eliminated although encoder 

signals contain significant amount of error. 

In Fig. 8, binary pulses generated using Eq. (14) are shown. 

In this figure, corrected (û1 and û2) analog signals are also given. 

Interpolation is conducted for n=25 and threshold value, ε, is 

chosen to be 0.05V. In order to prevent confusion, amplitudes of 

binary pulses are set to 0.4 and 0.6 for A and B, respectively. 

EXPERIMENT RESULTS 
In this section, several experiments conducted on a single axis 

and two axis slider systems are given to illustrate the performance 

of the proposed adaptive correction and interpolation methods. 

In Fig. 9, single axis slider testbed on which the experiments 

conducted is shown. Two axis experiments are also performed on 

a system which is obtained by assembling two identical sliders on 

top of each other perpendicularly. Each slider is driven by a 

permanent magnet linear motor. As a position sensor, they include 

Heidenhain LIP481R linear optical encoder with the original 

resolution of 1 micrometer. Travel range of the sliders is 120mm.  

Raw signals collected using the linear encoder attached on the 

slider. Then, the proposed adaptive correction and look-up table 

based interpolation methods are used to obtain high resolution. 

Figure 10, Fig. 11 and Fig. 12 show the interpolation results with 

n=16, n=50 and n=100, respectively. In Fig. 6, interpolation with 

n=25 is also given. In these figures, interpolated signals and 

corrected signals are shown to illustrate the performance of the 

presented method. All of these processes is accomplished with 

N=1000 samples per octant. As it can be observed from these 

figures, sensitivity to noise increases with increasing interpolation 

number. Hence, as mentioned previously, it is very important to  
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FIGURE 9. SINGLE AXIS SLIDER 

 

FIGURE 10. INTERPOLATION RESULTS FOR n=16 

select a proper threshold value, ε, for binary pulse generation. 

With the proper selection of ε, undesired switching due to the 

interpolation noise can be eliminated. Therefore, resulting position 

value will not be affected from the noise generated during the 

interpolation. On the other hand, in order to achieve high 

interpolation values, noise in the encoder signals should be 

minimized by proper shielding, grounding and etc. [5].   

Positioning performance of the single axis slider system is 

experimented to compare the cases with and without interpolation 

of the encoder signals. For this purpose, same reference inputs are 

applied to the system. A conventional PID controller is used as a 

feedback controller. For the interpolation case, n=50 is used so 

that the resolution of the measured position is 20nm. In Fig. 13, 

performance of the system for the reference input of 5 

micrometers is illustrated. In order to compare the tracking errors, 

the reference input is given as an S-curve. From this figure, it is 

obvious that the positioning precision is increased significantly 

considering the focus of interest is micro/nano-meter level 

positioning.   

Also, the method presented here is successfully implemented 

on a two axis positioning system achieving high-tracking and 

contouring accuracy. In Fig.14, reference input trajectory applied 

to the two-axis positioning system is given. Shape of the input is 

designed to observe tracking and contouring performance of the 

system. Figure 15 shows the resulting tracking and contouring  

 

FIGURE 11. INTERPOLATION RESULTS FOR n=50 

 

FIGURE 12. INTERPOLATION RESULTS FOR n=100 

 

FIGURE 13. TRACKING PERFORMANCE OF THE SINGLE 
AXIS SLIDER 

errors for the cases with no interpolation and interpolation with 

n=40. Here, contour error is defined as the distance between 

actual position and the nearest position on the contour. For this 

experiment, cross coupled control with iterative learning is 

implemented as controller. When there is no encoder signal 

interpolation, both tracking and contouring errors are at 

micrometer scale. However, when the encoder signal interpolation 

is employed, root mean square (RMS) of contouring error, x-axis 

and y-axis tracking errors are obtained as 27nm, 21nm and 66nm, 

respectively. Details on this study can be found in [16]. 
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FIGURE 14. REFERENCE INPUT TRAJECTORY 

 

FIGURE 15. TRACKING AND CONTOURING PERFORMANCE 
OF TWO-AXIS POSITIONING SYSTEM 

CONCLUSION 
In this paper, a new approach to obtain high resolution 

position information from original encoder signals is proposed. In 

this approach, correction of signal errors including amplitude 

difference, mean offsets and quadrature phase shift errors is 

accomplished adaptively by using recursive least squares with 

exponential forgetting and resetting. With the implementation of 

this method, even dynamically changing errors are effectively 

compensated. Then, a look-up table based interpolation method is 

proposed for mapping of original sinusoids to high-order ones. 

Since the table is constructed offline, computational effort is kept 

minimal. Converting the high-order sinusoids into binary pulses, 

high resolution position information is obtained. Effectiveness of 

the proposed method is illustrated with the experimental results.  

Using the proposed method, up to 100 interpolations have 

been accomplished successfully. As a result, 10nm resolution is 

obtained with an optical encoder having 1µm original resolution. 

Minimizing the electrical noise, the number of interpolation, 

hence, the resolution can be further increased. Moreover, 

applicability of the proposed method is proven with the 

implementation on single and two-axis positioning devices without 

requiring any extra hardware. Combining our interpolation method 

with a suitable controller, tracking performance of both systems 

are increased significantly [16]. Less than 30nm contouring error 

is accomplished for two axis positioning system.  

Although nanometer level resolutions are accomplished with 

the presented interpolation method, it is sensitivity to noise cannot 

be ignored for high interpolation numbers (>100). Hence, in 

future, sensitivity to noise is to be reduced to obtain higher 

resolution values.                
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