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ABSTRACT
In this paper, Nusselt number for a flow in a microtube is

determined analytically with a constant wall heat flux thermal
boundary condition. The flow assumed to be incompressible,
laminar, hydrodynamically and thermally fully-developed. The
thermo-physical properties of the fluid are assumed to be con-
stant. The effect of rarefaction, viscous dissipation, axial con-
duction, which are important at the microscale, are included in
the analysis. For the implementation of the rarefaction effect, two
different second-order slip models are used for the slip-flow and
temperature-jump boundary conditions together with the thermal
creep at the wall. Closed form solutions for the fully-developed
temperature profile and Nusselt number are derived as a function
of Knudsen number, Brinkman number and Peclet number.

NOMENCLATURE
a1 coefficient defined in Eqn. (1)
a2 coefficient defined in Eqn. (1)
a3 coefficient defined in Eqn. (1)
b1 coefficient defined in Eqn. (2)
b2 coefficient defined in Eqn. (2)
Br Brinkman number
D tube diameter
k thermal conductivity
Kn Knudsen number

Nu Nusselt number

r radial coordinate

P pressure

Pe Peclet number

Pr Prandtl number

q̇′′ wall heat flux

Re Reynolds number

R tube radius

T temperature

u x-velocity

x longitudinal coordinate

Γ parameter defined in Eqn. (11)

η non-dimensional radial coordinate

θ non-dimensional temperature

κ parameter defined in Eqn. (7)

λ mean-free-path

µ viscosity

ξ non-dimensional longitudinal coordinate

ϒ parameter defined in Eqn. (21)

φ non-dimensional temperature

χ parameter defined in Eqn. (7)

Ω parameter defined in Eqn. (13)
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INTRODUCTION
With the today’s fabrication facility, micro-sized fluidic and

thermal systems with micrometer dimensions are used in many
biomedical and engineering applications such as micro-reactors,
micro-heat exchangers, cell reactors etc. For an effective and
economical design of such micro-sized systems, the fundamen-
tal understanding of the transport phenomena at microscale is
crucial. There are several issues that need to be considered at mi-
croscale. As the characteristic length (L) of the flow approaches
to the mean-free-path (λ ) of the fluid, the continuum approach
fails to be valid, and the fluid flow modeling moves from con-
tinuum to molecular model. The ratio of the mean-free-path to
the characteristic length of the flow (L) is known as the Knud-
sen number (Kn = λ/L). For theKn number varying between
0.01 and 0.1 (which corresponds to the flow of the air at standard
atmospheric conditions through the channel that has the charac-
teristic length of 1∼ 10µm), the regime is known as the slip-flow
regime. In this regime, flow can be modeled with the continuum
modeling as far as the boundary conditions are modified to take
into account the rarefaction effects.

The general form of the boundary conditions for velocity
and temperature can be written as follows:

u−uw = a1λ
(

∂u
∂n

)

w
+a2λ 2

(

∂ 2u
∂n2

)

w
+a3λ 2

(

∂T
∂ t

)

w
(1)

T −Tw = b1λ
(

∂T
∂n

)

w
+b2λ 2

(

∂ 2T
∂n2

)

w
(2)

wherew stand for wall,n and t stand for normal and tangen-
tial directions, respectively. First terms of the Eqs. (1) and (2)
are known as the first-order boundary conditions, and the second
terms are known as the second-order boundary conditions [1].
As the modeling moves to the edge of the slip flow regime (i.e.
Kn approaches 0.1), the inclusion of the second-order terms im-
proves the accuracy of the solution. The last term of the Eqn. (1)
is known as the thermal creep. There are two common mod-
els for second-order boundary conditions, which were suggested
by Karniadakis et al. [1] and Deissler [2]. In this study, these
two models are implemented. The corresponding coefficients for
these two models are tabulated in Tab. 3.

The effect of the viscous dissipation, which is character-
ized by Brinkman number, and the axial conduction, which
is characterized by Peclet number, are also important at mi-
croscale [3]. The fluid flow [4–7] and heat transfer [3, 8–21]
inside a micro-conduit was analyzed for different geometries
such as circular tube [3, 8–14], parallel plate [12, 15–19], rect-
angular channel [4–7, 20], annular channel [21] using first-
order [3, 6–8, 10–12, 15–17, 19, 21] and second-order models

TABLE 1 . LIST OF THE COEFFICIENTS USED IN EQN. (1)

a1 a2 a3

Karniadakis et al. [1] 1.0 1/2
3

2π
γ −1

γ
cpρ
µ

Deissler [2] 1.0 -9/8
3

2π
γ −1

γ
cpρ
µ

TABLE 2 . LIST OF THE COEFFICIENTS USED IN EQN. (2)

b1 b2

Karniadakis et al. [1]
2−FT

FT

2γ
γ +1

1
Pr

2−FT

FT

γ
γ +1

1
Pr

Deissler [2]
2−FT

FT

2γ
γ +1

1
Pr

−
9

128
177γ −145

γ +1

[4, 5, 13, 14, 18, 20]. Viscous dissipation [3, 9–12, 14, 16, 17,20]
and axial conduction [6,7,11,12,14,16,20] are included in some
studies .

Thermal creep is the fluid flow in the direction from cold
to hot due to the tangential temperature gradient along the chan-
nel walls, and observed for rarefied fluids [1]. Thermal creep
can enhance or reduce the flowrate in a channel depending on
the direction of the tangential temperature gradient at the chan-
nel wall. The effect of the thermal creep can be implemented
into the model by introducing an additional term in the slip-flow
boundary condition as seen in Eqn. (1). The effect of the thermal
creep on heat transfer is included in very few studies [6,7,18–20].

In this study, Nusselt number for a flow in a microtube is
determined analytically with a constant wall heat flux thermal
boundary condition. The flow assumed to be incompressible,
laminar, hydrodynamically and thermally fully-developed. The
thermo-physical properties of the fluid are assumed to be con-
stant. The effect of rarefaction, viscous dissipation, axial con-
duction are included in the analysis. For the implementation of
the rarefaction effect, two different second-order slip models are
used for the slip-flow and temperature-jump boundary conditions
together with the thermal creep at the wall. Closed form solutions
for the fully-developed temperature profile and Nusselt number
are derived as a function of Knudsen number, Brinkman number
and Peclet number.
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ANALYSIS
The steady-state, hydrodynamically-developed flow with a

constant temperature,Ti , flows into the microtube with the con-
stant heat flux at the wall. The non-dimensional governing en-
ergy equation including the axial conduction and the viscous dis-
sipation term, and the corresponding boundary conditions can be
written as,

ū
2

∂θ
∂ξ

=
1
η

∂
∂η

(

η
∂θ
∂η

)

+
1

Pe2

∂ 2θ
∂ξ 2 +2Br

(

∂ ū
∂η

)2

, (3)

θ = 0 at ξ = 0,
θ → θ∞ asξ → ∞,
θ → f inite at η = 0,
∂θ
∂η

= 1 at η = 1,

(4)

together with the following dimensionless parameters:

η =
r
R

, ξ =
x

Pe·R
, θ =

T −Ti

q̇′′R/k
, ū =

u
uo

,

uo =
dP
dx

R2

4µ
, Pe= Re·Pr, Br =

µu2
o

q̇′′R
. (5)

ū in Eqn. (3) is the dimensionless fully-developed velocity pro-
file for the slip-flow regime. ¯u can be determined by solving
the momentum equation together with the slip-velocity bound-
ary condition:

ū =
u
uo

= χ −η2+ κTξ , (6)

whereχ andκ are define as,

χ = 1+4a1Kn−8a2Kn2, κ = a3Kn2/Br. (7)

The fully-developed temperature profile has the following func-
tional form [1],

θ∞ = Tξ ξ + φ(η), (8)

where Tξ represents the temperature gradient at the wall
(∂T/∂ξ )wall (it is constant for a fully-developed temperature).
Tξ can be determined by substituting Eqn. (8) into Eqn. (3), and

integrating once inη-direction together with the boundary con-
dition at the wall as,

Tξ =
1−2χ +

√

(1−2χ)2+64κ(2Br +1)

4κ
· (9)

Integrating Eqn. (3) inη-direction together with the bound-
ary condition at the microtube center,φ can be determined as:

φ(η) = Γr2−

(

Br +
Tξ

32

)

r4

2
+C, (10)

whereC is an arbitrary constant, andΓ is defined as,

Γ = Tξ (χ + κTξ ). (11)

C can be determined by substituting Eqn. (8) into Eqn. (3) and
integrating resulting equation inη-direction from 0 to 1, and in
ξ -direction as,

C =
1
6

(

Br +
Tξ

8

)

−
Γ
16

+
Ω
12

(

Tξ

16
−Br +

48Tξ

Pe2

)

· (12)

whereΩ is define as,

Ω =
1

2χ −1+ κTξ
· (13)

Fully-developed temperature can be obtained by substituting
Eqn. (10) into Eqn. (8) as,

θ∞(ξ ,η) = Tξ ξ +
Tξ

8
(χ +κTξ )η2−

(

Br
2

+
Tξ

32

)

η4 +C, (14)

where constantTξ andC are defined in Eqs. (9) and (12), respec-
tively.

Note that to recover the result for the case without thermal
creep (i.e.a3 → 0), the limit ofTξ needs to be determined. The
limit results in,

lim
a3→0

Tξ =
8(2Br +1)

2χ −1
· (15)

Macrochannel result (i.e.Kn = Br = 0) [22] can be recovered
as1,

θ∞ = 8ξ + η2−
η4

4
−

7
24

+
32
Pe2 · (16)

1The coefficients of theξ term and 1/Pe2 is slightly differs from that of [22]
due to the non-dimensionlization of the velocity withuo instead ofumean.
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Fully-developed Nusselt number in terms of non-
dimensional parameters can be written as,

Nu∞ ≡
h∞D

k
= −

2
θm−θw

, (17)

whereθm is the non-dimensional mean temperature which is de-
fined as,

θm =
2uo

um

∫ 1

0
ūθηdη , (18)

and θw is the wall temperature, and can be determined by the
implementation of the temperature-jump boundary condition,
Eqn. (2) as,

θw = θ∞(ξ ,0)+2b1Kn

(

∂θ
∂η

)

w
−4b2Kn2

(

∂ 2θ
∂η2

)

w
· (19)

Fully-developed Nusselt number can be determined as,

Nu∞ = −2/

{

1
2

(

Br +
Tξ

16

)

−
Γ
8

+ Ωϒ−2b1Kn

−4b2Kn2
(

6Br +
3Tξ

8
−

Γ
4

)}

, (20)

whereϒ is defined as,

ϒ =
Tξ

8

(

χ2 + χTξ κ + κΓ+
1
8

)

−
5Γ
48

+Br

(

1
4
−

Γ
3Tξ

)

· (21)

For a macrochannel flow (i. e.Kn = Br = κ = 0, χ = 1), the
solution recovers well-known result of 48/11 [23].

RESULTS AND DISCUSSION
The fully-developed temperature profile and the fully-

developedNu is determined. Second-order boundary conditions
are implemented to include the rarefaction effects and thermal
creep. The viscous dissipation and the axial conduction are also
included. Coefficientb1 is taken as 1.667, andγ is taken as 1.4
in the calculation of coefficientb2, which are typical values for
air being the working fluid in many engineering problems.

Fully-developedNu is functions ofKn, Br and thermal creep
as seen from Eqn. (20). It is not function ofPe, which meansPe
number only effects the localNu in the thermal entrance region.
The fully-developed Nu for different Kn and Br numbers is also
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FIGURE 1. Variation of the fully-developed Nu as a function ofKn
for different Br with and without thermal creep effect(a) Br = 0, (b)
Br = 0.1, (c) Br = −0.1
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shown in Fig. (1). The results for first-order model are also in-
cluded in the figures.

For the case ofBr = 0, Fig. 1–(a), the second-order model
proposed by Karniadakis et al. [1] gives close results to first-
order model. The deviation from the first-order model increases
with increasing rarefaction (i.e. increasing Kn). On the other
hand, the second-order model proposed by Deissler [2] gives
appreciably deviation from first-order model. The deviation in-
creases first, but decreases as Kn reaches the edge of the slip-flow
regime. For the case ofBr = 0 the model with the inclusion of
the thermal creep is not included in the figure, sinceBr = 0 gives
infinite thermal creep. Physical explanation is that if there exist
a rarefaction effect, there also exists a viscous dissipation up to
certain extent. Although in these figures,Br andKn varying in-
dependent of each other, in many engineering applications this is
not the case. In the engineering application with microchannels,
the devices typically operates in the vicinity of the atmospheric
conditions, which means increase in theKn indicates the reduc-
tion in the size of the channel.Br has also size dependence.

Br number has an appreciable effect onNu value. Positive
Br means that the fluid is being heated, and negativeBr means
that the fluid is being cooled. Figures 1–(b) and 1–(c) illustrates
the cases forBr = 0.1 andBr = −0.1, respectively. In these
cases, both cases with and without thermal creep are included in
the figures. Likewise Fig. 1-(a), the deviation of the second-order
model proposed by Deissler [2] is higher that of the second-order
model proposed by Karniadakis et al. [1]. With the inclusion of
the thermal creep, fully-developedNu obtained by the second-
order model proposed by Karniadakis et al. [1] approaches the
results of the first-order slip model. However, for the second-
order model proposed by Deissler [2], fully-developedNu ob-
tained with the inclusion of the thermal creep is very close the
results of the cases without thermal creep.

Present analysis has some limitations. The thermo-physical
properties of the fluid is assumed to be constant which means the
variation of the temperature in the channel should not exceed cer-
tain limits. The flow is modeled as incompressible. This is very
restrictive, and actually incompressible approach is theoretically
inconsistent to model slip-boundary conditions [1]. Therefore,
the results of this study should be regarded qualitative rather than
quantitative. However, this kind of analytical solutions are useful
to reveal the fundamental aspects of the convective heat transfer
mechanism.

SUMMARY
In this study, Nusselt number for a flow in a microtube is

determined analytically with a constant wall heat flux thermal
boundary condition. The flow assumed to be incompressible,
laminar, hydrodynamically and thermally fully-developed. The
thermo-physical properties of the fluid are assumed to be con-
stant. The effect of rarefaction, viscous dissipation, axial con-

TABLE 3 . FULLY-DEVELOPED NU VALUES

Kn
1st–order 2nd–order Model [1] 2nd–order Model [2]

Br
Model w/o TC with TC w/o TC with TC

0.0 3.934 3.934 3.934 3.934 3.934

0.1

0.02 3.733 3.715 3.741 3.793 3.818

0.04 3.485 3.433 3.490 3.657 3.507

0.06 3.231 3.149 3.225 3.507 3.548

0.08 2.990 2.885 2.972 3.335 3.353

0.10 2.770 2.649 2.741 3.145 3.132

0.12 2.572 2.442 2.536 2.942 2.901

0.0 4.898 4.898 4.898 4.898 4.898

-0.1

0.02 4.475 4.471 4.452 4.484 4.467

0.04 4.056 4.052 4.001 4.047 4.015

0.06 3.674 3.682 3.616 3.605 3.567

0.08 3.340 3.367 3.283 3.178 3.164

0.10 3.050 3.102 3.001 2.785 2.789

0.12 2.780 2.880 2.758 2.434 2.452

duction are included in the analysis. For the implementation of
the rarefaction effect, two different second-order slip models are
used for the slip-flow and temperature-jump boundary conditions
together with the thermal creep at the wall. Closed form solutions
for Nusselt number are derived as a function ofKn andBr num-
ber. The results reveal that thermal creep has significant effect on
the heat transfer characteristics, and the effect of thermal creep
differs for two models. The limitations of the current model are
also discussed.
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