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Abstract— In this paper, we offer an alternative look at
channels with deletion errors by considering equivalent models
for deletion channels by “fragmenting” the input sequence
where different subsequences travel through different channels.
The resulting output symbols are combined appropriately to
come up with an equivalent input-output representation of
the original channel which allows for derivation of new up-
per bounds on the channel capacity. Considering a random
fragmentation processes applied to binary deletion channels, we
prove an inequality relation among the capacities of the original
binary deletion channel and the introduced binary deletion sub-
channels. This inequality enables us to provide an improved
upper bound on the capacity of the i.i.d. deletion channels,
i.e., C(d) ≤ 0.4143(1 − d) for d ≥ 0.65. We also consider
a deterministic fragmentation process suitable for the study of
non-binary deletion channels which results in improved capacity
upper bounds.

I. INTRODUCTION

Channels with synchronization errors can be well modeled

using symbol drop-outs and/or symbol insertions as well

as random errors. There are many models adopted in the

literature to describe the resulting channels in different ap-

plications. In [1], memoryless channels with synchronization

errors are described by a channel matrix allowing for the

channel outputs to be of different lengths for different uses

of the channel. As proved in the same paper, for such

channels, information stability holds and Shannon capacity

exists. However, the determination of the capacity remains

elusive as the mutual information term to be maximized does

not admit a single letter or finite letter form.

In the existing literature, several specific instances of this

model are more widely studied, e.g., [2]–[8]. For instance, by

a proper selection of the stochastic channel transition matrix,

one obtains the i.i.d. deletion channel which represents one

of the simplest models allowing for symbol drop-outs which

is also the main focus of this paper. In an i.i.d. deletion

channel, the transmitted symbols are either received correctly

and in the right order, or they are deleted from the transmitted
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sequence altogether with a certain probability d independent

of each other. Neither the receiver nor the transmitter knows

the positions of the deleted symbols. Despite the simplicity

of the model, the capacity for this channel is still unknown

and only a few upper and lower bounds are available in the

literature [2]–[8].

In this paper, for both binary and non-binary input i.i.d.

deletion channels, it is observed that if we define a new

channel in which the input sequence is fragmented into subse-

quences of smaller lengths where the resulting subsequences

travel through independent i.i.d. deletion channels and the

surviving symbols of the deletion channels are combined

without changing their order in the original input sequence,

then the resulting channel is an i.i.d. deletion channel with

parameters which depend on the parameters of the considered

subchannels.

This new formulation enables us to prove that the capacity

of an i.i.d. binary deletion channel with deletion probability

d can be upper bounded in terms of the capacities of

i.i.d. binary deletion channels with deletion probabilities d1
and d2 where d is a weighted average of d1 and d2, i.e.,

d = λd1+(1−λ)d2 for any λ ∈ [0, 1]. Thanks to the derived

inequality relation among the deletion channel capacities, we

are able to improve upon the existing upper bounds on the

capacity of the binary deletion channel for d ≥ 0.65. The

improvement is the result of the fact that the currently known

best upper bounds [5] are not convex for some range of dele-

tion probabilities. More precisely, we are able to prove that

for any 0 ≤ λ ≤ 1, C2(λd+1−λ) ≤ λC2(d) (where C2(d)
stands for the binary deletion channel capacity), resulting in

C2(d) ≤ 0.4143(1 − d) for d ≥ 0.65. This result is also a

generalization of the one obtained in [9] which only holds

asymptotically as d → 1.

A different fragmentation idea is employed by the authors

in [10] to derive the first non-trivial capacity upper bound

for the i.i.d. 2K-ary input deletion channel, and reduce the

gap with the existing achievable rates in [10]. In this case,

the fragmentation process used is a deterministic one where

different subsets of channel inputs travel through different

channels. Specifically, it is proved that C2K(d) ≤ C2(d) +
(1−d) log(K) where C2K(d) denotes the capacity of a 2K-

ary deletion channel with deletion probability d.
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The paper is organized as follows. In Section II, we

prove a result on the binary deletion channel capacity which

relates the capacity of the three different binary deletion

channels through an inequality, and generalize it to the case

of deletion/substitution channels. In Section III, we provide a

discussion on applying a similar fragmentation idea to obtain

upper bounds on the capacity of non-binary input deletion

channels. In Section IV, we present tighter upper bounds

on the capacity of the deletion channel based on previously

known best upper bounds, and comment on the limit of the

capacity bounds as the deletion probability approaches unity.

We conclude the paper in Section V.

II. A NOVEL UPPER BOUND ON C2(d)

In this section, we consider a “random” fragmentation for

the binary input i.i.d. deletion channel. That is, we show a

simple result that the parallel concatenation of two different

independent deletion channels with deletion probabilities d1
and d2, in which every input bit is either transmitted over the

first channel with probability of λ or over the second one with

probability of λ̄ = 1 − λ, independently of each other, and

the surviving output bits are combined without changing the

order, is nothing but another deletion channel with deletion

probability of d = λd1 + λ̄d2. This formulation allows us

to provide an upper bound on the concatenated deletion

channel capacity C2(d) in terms of a weighted average of

C2(d1), C2(d2) and the parameters of the three channels.

Furthermore, we argue that for the special case with d2 = 1,

i.e., C2(λd1+ λ̄) ≤ λC2(d1), and generalize the result to the

case of a binary input deletion/substitution channel.

This new look at the deletion channel and the resulting

formulation allows us to prove the main result of this paper

which is stated in the following theorem.

Theorem 1. Let C2(d) denote the capacity of the i.i.d.

deletion channel with deletion probability d, λ ∈ [0, 1] and

d = λd1 + λ̄d2, then by defining d̄ = 1− d, we have

C2(d) ≤ λC2(d1) + λ̄C2(d2) + d̄ log(d̄)− λd̄1 log(λd̄1)

− λ̄d̄2 log(λ̄d̄2). (1)

Proof: Let us consider two different deletion channels,

C1 and C2, with deletion probabilities d1 and d2, input

sequences of bits X1 and X2, and output sequences of bits

Y 1 and Y 2, respectively. Denote their Shannon capacities by

C2(d1) and C2(d2), respectively. Given a specific λ ∈ [0, 1],
define a new binary input channel C′ (as illustrated in Fig. 1)

with input sequence of bits X and output sequence of bits Y

as follows: each channel input symbol is transmitted through

C1 with probability λ, and through C2 with probability 1−λ,

independently of each other. Neither the transmitter nor the

receiver knows the specific realization of the “individual

channel selection events,” i.e., they do not know which

specific subchannel a symbol is transmitted through, or which

specific subchannel each output symbol is received from.

Lemmas 1 and 2 (given below) demonstrate that 1) the new

channel is an i.i.d. deletion channel with deletion probability

d = λd1 + λ̄d2, 2) the capacity of the i.i.d. deletion channel

with deletion probability d is upper bounded by

λC2(d1)+ λ̄C2(d2)+ d̄ log d̄−λd̄1 log(λd̄1)− λ̄d̄2 log(λ̄d̄2).

Combining these two results, the proof of the theorem

follows.

The following two lemmas are employed in the proof of

the above theorem.

Lemma 1. C′ as defined in the proof of the theorem above

is nothing but a deletion channel with deletion probability

d = λd1 + λ̄d2.

Proof: For each use of the channel C′, for any input

symbol x ∈ X and channel output y ∈ Y , the transition prob-

ability is given by P{C1 is used}d1 + P{C2 is used}d2 =
λd1 + λ̄d2. Noting that the subchannels are memoryless and

the channel selection events are independent of each other,

this transition matrix precisely defines a deletion channel with

deletion probability d = λd1 + λ̄d2.

Lemma 2. The capacity of the channel C′ as defined in the

proof of the theorem above is upper bounded by

λC2(d1)+ λ̄C2(d2)+ d̄ log d̄−λd̄1 log(λd̄1)− λ̄d̄2 log(λ̄d̄2).

Proof: Define the fragmentation process F x as an

N -tuple F x = (fx[1], · · · , fx[N ]), with fx[i] ∈ {1, 2}
where the elements of the vector denotes the index of

the channel that ith transmitted bit is going through, and

similarly the fragmentation process F x as an M -tuple F y =
(fy[1], · · · , fy[M ]), where M denotes the length of the

received sequence Y , i.e., M = |Y |, and fy[i] ∈ {1, 2}
denotes the index of the channel the i-th received bit is

coming from. With this definition, clearly by knowing F x,

X1 and X2, one can retrieve X , and by knowing F y , Y 1

and Y 2, one can retrieve Y .

Since X → (X1,X2,F x) → (Y 1,Y 2,F y) → Y form

a Markov chain, we can write

I(X;Y ) ≤ I(X1,X2,F x;Y 1,Y 2,F y) = I1 + I2 + I3,

(2)

where

I1 = I(X1,X2,F x;Y 1),

I2 = I(X1,X2,F x;Y 2|Y 1),

and I3 = I(X1,X2,F x;F y|Y 1,Y 2).
For I1, we have

I1 = I(X1;Y 1) + I(X2,F x;Y 1|X1) = I(X1;Y 1), (3)

where we used the fact that P (Y 1|X1,X2,F x) =
P (Y 1|X1), i.e., Y 1 is independent of X2 and F x condi-

tioned on X1.

Furthermore, by using the facts that P (Y 2|X2,Y 1) =
P (Y 2|X2) and P (Y 2|X1,X2,F x,Y 1) = P (Y 2|X2), we

obtain

I2 =I(X2;Y 2|Y 1) + I(X1,F x;Y 2|Y 1,X2)

=H(Y 2|Y 1)−H(Y 2|X2) ≤ I(X2;Y 2). (4)
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Fig. 1. Illustration of the new channel C′.

On the other hand, for I(Xi;Y i) (i ∈ {1, 2}), we obtain

(see [11] for details)

I(Xi;Y i)≤λiNC2(di)+log(λiN+1)+ log(N+1). (5)

We are not able to derive the exact value of I3, therefore

we resort to an upper bound which results in an upper bound

on I(X,Y ). Namely, we can prove that (see [11] for details)

I3 ≤ N(λd̄1 + λ̄d̄2) log(λd̄1 + λ̄d̄2)−Nλd̄1 log(λd̄1)

−Nλ̄d̄2 log(λ̄d̄2). (6)

Finally, by substituting (5), (6), (4) and (3) into (2), we

obtain

I(X;Y ) ≤ NλC2(d1) +Nλ̄C2(d2)−Nλd̄1 log(λd̄1)

−Nλ̄d̄2 log(λ̄d̄2) +Nd̄ log d̄+ log(λ̄N + 1)

+2 log(N + 1) + log(λN + 1).

Dividing both sides of the above inequality by N , letting N

go to infinity, and noting that the inequality is valid for any

input distribution P (X), the proof follows.

A. Generalization to the Case of Deletion/Substitution Chan-

nels

In a deletion/substitution channel (special case of the

Gallager channel model [12] without any insertions) with

parameters (d,f ), any transmitted bit is either deleted with

probability of d or flipped with probability of f or received

correctly with probability of 1 − d − f , where neither the

transmitter nor the receiver have any information about the

position of the deleted and flipped bits. Another look at the

deletion/substitution channel can be as a series concatenation

of two independent channels such that the first one is a

deletion-only channel with deletion probability of d and the

second one is binary symmetric channel with cross error

probability of s = f

1−d
. It is easy to show that the result of

Theorem 1 can also be extended to the deletion/substitution

channel as given in the following corollary.

Corollary 1. Let C2(d, f) denote the capacity of the dele-

tion/substitution channel with deletion probability d and

flipping probability f , λ ∈ [0, 1], d = λd1 + λ̄d2 and

f = λf1 + λ̄f2, then we have

C2(d, f) ≤ λC2(d1, f1) + λ̄C2(d2, f2) + d̄ log d̄

−λd̄1 log(λd̄1)− λ̄d̄2 log(λ̄d̄2). (7)

Proof: See [11] for details.

Similar to the case of deletion-only channels, this expression

provides a tighter upper bound on the deletion/substitution

channel capacity compared to the existing bounds in the

literature for a wide range of channel parameters (which is

discussed further in the numerical examples section).

III. NON-BINARY DELETION CHANNELS

In this section, we review a recent result reported in [10]

where we have considered non-binary input deletion channels

using a different fragmentation approach. Loosely speaking,

instead of using a random fragmentation, a deterministic

fragmentation is used and an arbitrary Q-ary channel is

decomposed into parallel deletion channels with smaller al-

phabets. For the Q-ary input deletion channel, by choosing an

appropriate deterministic fragmentation of the input symbol

set it is possible to derive a new upper bound on the Q-ary

input deletion channel capacity in terms of the lower order

deletion channels.

As a special case, when Q is an even number, i.e., for

a 2K-ary input deletion channel, it is proved in [10] that

C2K(d) ≤ C2(d)+(1−d) log(K). The main idea is that any

2K-ary input deletion channel with deletion probability d can

be considered as a parallel concatenation of K independent

binary deletion channels Ck (k ∈ {1, . . . ,K}) all with the

same deletion probability d, in which the input symbols 2k−1
and 2k travel through Ck and the surviving output symbols

of the subchannels are combined based on the order in which

they go through the subchannels. This is a useful result to

come up with improved upper bounds on the capacity of

non-binary deletion channels by exploiting already existing

results for the binary case. Examples of improved bounds for

this setting are provided in [10].

IV. EXAMPLES OF THE NEWLY DERIVED CAPACITY

UPPER BOUNDS

In this section, we provide several implications of the

results presented in the paper on the binary deletion channel

capacity. Namely, we explicitly demonstrate the tightest

upper bound on the binary input deletion channel capacity

for d ≥ 0.65.

An interesting application of the result (1) on the capacity

of the binary deletion and deletion/substitution channels is in

obtaining improved capacity upper bounds. For instance, the

best known upper bound on the deletion channel capacity is
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Fig. 2. Previously best known upper bound on the i.i.d. deletion channel
capacity.
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Fig. 3. Improved upper bound on the deletion channel capacity employing
C(λd + λ̄) ≤ λC(d).

not convex for d ≥ 0.65 as shown in Fig. 2 (with values

taken from the boldfaced values in Table IV of [5]). As

clarified in the table, the best known values for small d are

due to [13], for a wide range (up to d ∼ .8) are due to

the “fourth version” of the upper bound (named C4 in [5]),

and for large values of d are due to the “second version”

named C∗

2
in the same paper. Therefore, the deletion channel

capacity upper bound can be improved for d ∈ (0.65, 1) as

C2(1 − 0.35λ) ≤ λC2(0.65) with 0 ≤ λ ≤ 1. That is, we

have C2(d) ≤ 0.4143(1−d) for d ∈ (0.65, 1) as illustrated in

Fig. 3. Clearly, this new version of the i.i.d. deletion channel

upper bound is tighter than the previous version, as we are

able to “convexify” the existing upper bound.

We note that our result is a generalization of the one in [9]

where it was shown that C2(d) ≤ 0.4143(1− d) as d → 1.

We also note an earlier asymptotic result on a lower bound

derived in [2] which states that C2(d) as d → 1 is larger than

0.1185(1− d).

As another application of the approach proposed in this pa-
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s = 0.03

Fig. 4. Previously best known upper bound on the deletion/substitution
channel capacity for s = 0.03.
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Fig. 5. Improved upper bound on the deletion/substitution channel capacity
for s = 0.03.

per, we can consider the capacity of the deletion/substitution

channel. The best known capacity upper bound for this case

is given in [7], e.g., Fig. 1 of [7] presents several upper

bounds for fixed s = 0.03 (see Fig. 4). It is clear that this

bound is not a convex function of the deletion probability

for d ≥ 0.6, hence it can be improved. That is, applying the

result in our paper, we obtain, for instance for s = 0.03,

Cs(d, 0.03) ≤ 0.3621(1− d) for d ≥ 0.6 which is a tighter

bound than the existing one as illustrated in Fig. 5.

We conclude this section by noting that examples of

improved channel capacity bounds can be given for the

case of non-binary deletion channels as well. In particular,

it can be shown that for moderate channel alphabet sizes,

the bound presented in the previous section exploits the

available bounds on the binary deletion channels effectively,

and provides significant improvements over the only other

alternative bound, namely, the one based on the erasure

channel assumption. We omit details of these results here

and refer the reader to [10].
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V. CONCLUSIONS

In this paper, we considered an alternative look at the i.i.d.

deletion channels. Specifically, we assumed that the input of

the channel is fragmented into smaller sequences traveling

through different (independent) deletion channels, and the

outputs are combined without changing their order in the

transmitted sequence. We showed that this new look provides

a different way to study the capacity of deletion channels.

For the binary deletion channel by considering a random

fragmentation process, an inequality relating the capacity

of a binary deletion channel to two other binary deletion

channels is found. For non-binary input deletion channels,

considering a deterministic fragmentation of the input and

output sequences provides us with a way to upper bound

the channel capacity with deletion channel capacities with

smaller alphabets. An immediate application of the result for

the binary input case is in obtaining improved upper bounds

on the capacity of the deletion channel. For instance, for an

i.i.d. deletion channel, we proved that C2(d) ≤ 0.4143(1−d)
for all d ≥ 0.65. This is a stronger result than the earlier

characterization in [9] which is valid only asymptotically as

d → 1.
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