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ABSTRACT 

In phased array antennas, by varying the complex element 
weights beam patterns with desired shapes can be synthesized 
and/or steered to desired directions. These complex weights 
can be implemented by using amplitude controllers and phase 
shifters at the system level. Since controlling the phase of an 
RF signal is much easier than controlling its power, many sys­
tems do not have an individual amplitude controller for each 
element. Hence, beam shaping and steering are to be achieved 
by varying only the element phases. In this work, a new ap­
proach is proposed for phase-only beam synthesis problem. 
In this approach, the phase-only beam synthesis is formulated 
as a non-convex quadratically constrained quadratic problem 
(QCQP). Then, it is relaxed to a convex semidefinite prob­
lem (SOP), which generally provides an undesired high rank 
solution. An iterative technique is developed to obtain a rank-
1 solution to the relaxed convex SDP. Conducted experiments 
show that, proposed method can successfully synthesize beam 
shapes with desired characteristics and steering directions by 
using only the element phases. 

Index Terms- phased array antenna, beam pattern, 
quadratically constraint quadratic problem, semidefinite 
problem, convex relaxation 

1. INTRODUCTION 

Phased array antennas are used in many applications such as 
airport surveillance, missile detection and tracking, magnetic 
resonance imaging, etc., because of their electronic scanning 
capabilities [1]. Operating frequency and positions of the ar­
ray elements define the main characteristics of the antenna 
pattern. By applying different complex weights to the array 
elements, the beam pattern can be steered to different direc­
tions. Moreover, its shape can also be modified, i.e., side­
lobe levels can be suppressed, mainlobe beamwidht can be 
reduced, etc. These complex weights are implemented as 
amplitude controllers and phase shifters at the system level. 
Since controlling the phase of an RF signal is much easier 
than controlling its power, many systems do not have an in­
dividual amplitude controller for each element. Hence, beam 
synthesis by only varying the element phases assuming that 

all the elements are operating at the same power level is de­
sired. 

Since the beam pattern is a non-linear function of the el­
ement phases, there is no previously proposed method for 
approaching the problem from the convex optimization per­
spective. Generally, ant colony based optimization methods 
(particle swarm optimization, genetic algorithm, vs.) are used 
to minimize a certain cost function of element phases [2, 3]. 
Null insertion to the undesired spatial directions by varying 
element phases are studied in [4, 5, 6, 7]. An iterative method 
based on generalized projections is proposed in [8], resulting 
in a common amplitude and various phases distributions for 
different steering directions. 

In this work, different from the previous approaches, 
we first constructed a non-convex quadratically constraint 
quadratic problem (QCQP) to model the problem. Then, we 
relaxed it to a convex semidefinite problem (SOP), which can 
be solved at the global optimum point in polynomial time. 
Although the resulting SDP is convex, its optimal solution 
is generally not a rank-l matrix [9]. To achieve a rank-I 
solution, we propose a novel iterative method, where in each 
step a SOP with additional convex constraints are solved. We 
show that, after a few iterations, the optimal solution of the 
constructed SDP has very fast decaying singular values, con­
verging to a rank-l solution. Conducted experiments show 
that, proposed method can successfully design beam patterns 
with desired characteristics and steering directions by using 
only element phases. 

In Section-2, mathematical definition of the problem is 
given. In Section-3, proposed method is detailed. Section-4 
is reserved for experimental results. Concluding remarks are 
provided in Section-5. Through out the paper, bold characters 
will denote vectors for minuscules and matrices for capitals. 
(.)T will denote the transposition operation and 11 .11 will de­
note the L2 norm of its argument. 

2. PROBLEM DEFINITION 

Let Pn, n = 1, ... , N denote the positions of antenna ele­
ments, where Pn = [Pn,x,Pn,y,Pn,zjT. The beam pattern is 



given by 

N 
B(8, ¢) = L anvn(8, ¢), (1) 

n=l 

where Vn (8, 7r ) = exp{j 2; p� a}. The directional cosines is 
defined as a = [sin 8 cos ¢, sin 8 sin ¢, cos 8] T, A is the wave­
length of transmission and an, n = 1, ... , N are the complex 
antenna weights. By changing the weights, antenna beam can 
be steered to different directions, its side lobe levels, main­
lobe power and beam width can be controlled. For phase­
only beam synthesis problem, all the antenna weights are 
constrained to have the same magnitude. Hence, phase-only 
beam synthesis problem can be described by the following 
feasibility problem: 

findal, ... ,aN 
s.t. IB(8m, ¢m)12 � om, 

IB(8s,k' ¢s,kW ::.; Os, \lk = 1, ... , K, 

2 lanl = Op, \In = 1, ... , N, 

IB(8m, ¢mW > IB(8m,h' ¢m,h)12, \lh = 1, ... , H. 
(2) 

Here, (8m, ¢m) is the steering direction, Om is the allowed 
minimum power level at the steering direction. (8s,k, ¢s,k), k = 

1, ... , K are the side lobe directions for which the maximum 
allowed power level is Os and op is the operating power level 
of the all antenna elements. The last constraint is to force 
the power pattern to have its highest peak at the steering 
direction, which is critical especially for direction finding ap­
plications. In Fig.l, these constraints are shown. The power 
pattern given in this figure belongs to a uniform linear array 
with 21 elements, where the antenna weights are chosen as 
an = v� (8m, ¢m) to maximize the power at the steering 
direction. The feasible set for constraints in (2) is generally 
empty. To ensure a non-empty feasible set, we transform the 
weight design problem in (2) to the following optimization 
problem: 

max IIal12 
OECN 

s.t. laT vml2 � om, 

T 2 la vs,kl ::.; Os, \lk = 1, ... , K, 

lanl2::.; Op, \In = 1, ... , N, 

laT vml2 > laT vm,hI2, \lh = 1, ... , H, (3) 

where Vm = [VI (8m, ¢m), v2(8m, ¢m),", vN(8m, ¢m)]T, 
Vs,k [vI(8s,k, ¢s,k), v2(8s,k, ¢s,k),", vN(8s,k, ¢s,k)]T, 
Vm,h = [vI(8m,h, ¢m,h), v2(8m,h, ¢m,h),", vN(8m,h, ¢m,h)jT 
and a = [aI, a2, .. , aN]T. In this formulation, sum of the 
energies of antenna weights is to be maximized, side lobe and 
mainlobe constraints of (2) are preserved and' =' constraints 
on the energy of the antenna weights are replaced with '::.;' 
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Fig. !. Design constraints in (2). om and Os define the min­
imum allowed mainlobe power and maximum allowed side­
lobe power, respectively. (8m, ¢m) is the steering direction. 
(8s,k,¢s,k),k = 1, 2, .. ,K define the sidelobe constraints. 
(8m,h, ¢m,h), h = 1, 2, .. , H define the 'highest peak at the 
steering direction' constraint (last constraint in (2)). 

constraints. Hence, the feasible set of (3) is guaranteed to 
be non-empty for reasonable choices of om, Os and op. If the 
feasibility problem in (2) has a solution, then it would also be 
an optimal solution for (3). 

The optimization problem in (3) has dimension N where 
the optimization variables are complex numbers. It can equiv­
alently be formulated as a 2N dimensional optimization prob­
lems in real variables: 

min _ j3T j3 
/3ER2N 

s.t. j3TV m V;,j3 � om, 

j3TVs,kV�kj3::'; Os, \lk = 1, ... ,K, 

j3TW�W nj3 ::.; op, \In = 1, ... , N, 

j3T (V m V;' - V m,h V;',h) j3 � f, \lh = 1, ... , H, 
(4) 

wherej3 = [�1�tl Vm = [�1:0t: -���l1}l Vs,k = 

[�{ v; k}' -'S{ v;
. 
,k}] V _ [�{ V;',

.
h}' -'S{ v;,

. 
,h}] 

'S{ vr,d, �{v�d ' m,h - 'S{ v;'.d, �{v;'.h} , 
W n is an 2 x 2N matrix composed of all zeros except 
W n(l, n) = 1 and W n(2, N + n) = 1, and f is a positive 
number very close to zero. Note that the maximization in (3) 
is converted to a minimization in (4). 

For notational simplicity, we further define the following 
matrices A = V m V;" Bk = V s,k V;'k' en = W�W n, 
Dh = V m V;' - V m,h V;' h and rewrite (4) as the follow­
ing quadratically constrained" quadratic problem (QCQP) with 



non-convex cost function and non-convex constraints, which 
can not be solved at the global optimum point in polynomial 
time: 

min - f3T 13 
,i3ER2N 

s.t. f3T Af3 :;0. 15m, 
f3TBkf3 -s: 58, \/k = 1, ... , K, 

f3TCnf3 -s: 5p, \/n = 1, ... , N, 
f3TDhf3 :;0. E, \/h = 1, ... , H. (5) 

In the next section proposed method for solving the optimiza­
tion problem in (5) will be detailed. 

3. PROPOSED METHOD: ITERATIVE 

SEMIDEFINITE RELAXATIONS WITH RANK 

REFINEMENT 

Since the matrices in (5) A, Bk, k = 1, ... , K, Cn, n = 

1, ... , N and Dh, h = 1, ... , H are all symmetric, the QCQP 
in (5) can be equivalently written as: 

min Tr{-A} 
AER2NX2N 

s.t. Tr{AA} :;0. 15m, 
Tr{BkA} -s: 58, \/k = 1, ... ,K, 

Tr{CnA} -s: 5p, \/n = 1, ... , N, 
Tr{DhA} :;0. E, \/h = 1, ... , H, 

A is symetric and positive-semidefinite, 
rank (A) = 1. (6) 

Note that the optimization variable in (6) is a matrix A E 
R2Nx2N. If 13 opt is an optimal solution for (5), then f3optf3op/ 
is an optimal solution for (6). However, (6) is still an NP hard 
problem because of the rank constraint. By removing the 
rank constraint, it can be relaxed to a convex SDP which can 
be solved efficiently in polynomial time [9]: 

min Tr{ -A} 
AER2Nx2N 

s.t. Tr{AA} :;0. 15m, 
Tr{BkA} -s: 58, \/k = 1, ... , K, 

Tr{CnA} -s: 5p, \/n = 1, ... , N, 
Tr{DhA} :;0. E, \/h = 1, ... , H, 

A is symetric and positive-semidefinite. (7) 

However, optimal solution Aopt of (7) is in general not rank­
I. A rank-I approximate of Aopt can be formed as 

(8) 

where Al is the largest singular value of Aopt and U1 is the 
corresponding left singular vector. Then a candidate solution 

3 

Algorithm 1 Iterative semidefinite relaxations with rank re­
finement: 

1: %Initializations 

2: i +- O. 
3: (i = 1. 
4: r(i) = 1. 
5: Find A�Pt by solving (7). 
6: Apply SVD to A�Pt and find its singular values 0"1 > 

O"� :;0. . •  :;0. O"�N and the corresponding left singular vec-
tors uL u2, .. , u:m· 

7: j3
i 

= yGTui. 
8: Compute r( i) by using (11). 
9: while i -s: Niter and rei) :;0. v do 

Attach 10: 
. T . T 1 2N . 

(uk) A(uk) -s: (i 2N Ln=l O"� \/k = 2, 3 ,  .. , 2N 

11: 
constraints to (7) and resolve it for finding A�tt1. 
Apply SVD to A�tl and find its singular values 
O"l+1 :;0. 0"�+1 :;0. .. :;0. 0"�t1 and the corresponding left 

12: 
13: 
14: 
15: 
16: 
17: 

. I t HI HI HI smgu ar vec ors u1 , u2 , .. , u2N . 
-HI G+1 HI 13 = V 0"1 u1 . 
Compute rei + 1) by using (11). 
if Tr{ -A�tt1} -s: Ot then 

(HI +- fL(i. 
end if 

i+-i + 1  
18: end while . ,,- i 
19: Form complex weights: a2 = Wf3 
20: Normalize complex weights: &� 

1, ... , N. 

for the QCQP in (5) can be constructed as 

j3 = J(71U1. (9) 

However, since optimal solution Aopt of (7) is not rank-I, 
the candidate solution j3 can be an infeasible point or a non­
optimal solution for (5). Since the QCQP in (5) and its equiv­
alent formulation in (7) are NP hard, the convex semidefinite 
relaxation in (7) can not be forced to have a strictly rank­
I optimal solution. However, it can iteratively be forced to 
have optimal solution matrix with fast decaying singular val­
ues, hence approximating to a rank-I solution. Let A�Pt be 
the optimal solution of (7) at the ith step of the iterative algo­
rithm. Assume 0"1 :;0. 0"2 :;0. ... :;0. 0"2N are the singular values 
and uL u�, ... , u2N are the corresponding left singular vec­
tors of A�Pt. Then, the following 2N - 1 convex quadratic 
constraints 

2N 
T T l " (uk) A(uk) -s: (i 2N �, \/k = 2, ... , 2N 

n=l 
(10) 

are attached to (7) and it is resolved. Here, (i is the prede­
fined multiplier which we initially choose as (i = 1. If the 
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Fig. 2. Unifonn linear array with N = 21 elements 

objective value -Tr{ A�tt1} is less than a predefined target 
objective value Ot, then the multiplier at iteration i + 1 is up­
dated as (H1 +--- IL(i, where 0 < fL < 1 is the parameter 
controlling the convergence rate of the algorithm. After finite 
number of iterations Niter or the difference between energy 
ratio of highest singular value of A�Pt between two consecu­
tive iterations, i.e., 

I 
2N 2N 

I r(i) = aU � a� - al-1 / � a�-l (11 ) 

is smaller than a certain threshold v, iterations are terminated 
and the final solution of (5) is obtained as: 

(12) 

Corresponding complex antenna weight vector is given by 

(13) 

where W is an N x 2N matrix composed of all zeros except 
W(n, n) = 1, W(n, N + n) = j, Vn = 1, ... , N. If the 
value of the cost function in (7) evaluated at the optimal so­
lution A�Pt at the final iteration is greater than -N, then the 
complex antenna weights a�, n = 1, ... , N do not satisfy the 
power constraint in (2). Hence, weights are finally normalized 
as: 

(14) 

In Algorithm-I, proposed iterative method is summarized. In 
the next section experimental results demonstrating the per­
formance of the proposed method will be provided. 

4. EXPERIMENTAL RESULTS 

To investigate the perfonnance of the proposed method, we 
used a uniform linear array with N = 21 elements shown in 
Fig.2. Element positions are Pn = [d(n - 1) , 0 , OlT, n = 

1, ... , N. Inter element spacing is d = 0.4'\, where ,\ is 
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Fig. 3. B = 0 degree cut of the power pattern for steering di­
rection (Bp = 0, rPp = 90)degree computed using the weights 
found after iteration i = 1 (solid) and i = 20(dashed-dotted) 

the wavelength, and operating frequency is chosen as f = 

2GHz. As design constraints, we allow 5dB power reduction 
in the steering direction (5m = 10 log N2 - 5 dB) and require 
23 dB side lobe suppression (5s = 10 log N2 - 23 dB). The 
beamwidth measured at 23 dB below the maximum power 
level (10 log N2) around the steering direction is constrained 
to be less than 15 degree in azimuth. All the antenna elements 
are required to operate at 1 Watt power level (5p = 1). The 
proposed method in Algorithm-l is initialized with parame­
ters Niter = 20, V = 0.01 for steering direction in azimuth 
rPp = 90 degree and in elevation Bp = 0 degree. For solving 
the SDP in (6), we used CVX, a package for specifying and 
solving convex programs [10]. 

After the first iteration, optimal value of the SDP in (7) is 
found to be -21. However, since the provided solution is not 
rank-I, the total power of the antenna elements is IIal112 = 8, 
much smaller than 21. Hence the normalized coefficients & 1 

differ from the computed ones a1 much. In Fig.3, elevation 
B = 0 cut of the power pattern generated by using the nor­
malized complex weight vector after iteration i = 1 (& 1) is 
plotted (solid). As observed, resulting beam pattern do not 
satisfy the design constraints. After 20 iterations, still the op­
timal value of the SDP in (7) is computed to be -21, the opti­
mal solution matrix A;gt is nearly rank-l and the total power 
of the antenna elements is IIa20112 = 20.88. Hence the nor­
malized coefficients &20 are nearly the same with a20. The 
resulting pattern after iteration 20 is plotted (dashed-dotted). 
As observed, all the design constraints are satisfied. 

In FigA, the ratio of the largest singular value of the opti­
mal solution matrix A�Pt of (7) to the sum of all its singular 
values as a function of iteration numberi, i.e., all L��l a�, 
is plotted. As observed, at iteration i = 20, the solution ma­
trix Ai is nearly rank one, since the largest singular value 
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Fig. 5. 10 largest singular values of A�Pt at iteration i = 1, 
i = 3, i = 10. 

occupies most of its energy. Note that, as the iteration num­
ber increases, this ratio increases, demonstrating the converge 
behaviour of the proposed iterations. In Fig.5, 10 largest sin­
gular values of A�Pt at iteration i = 1, i = 3, i = 10 are plot­
ted. In the first iteration, singular values A;pt have a small 
decay rate. After iteration 3, singular values have a faster de­
cay. At iteration 20, most of the energy is accumulated in the 
first singular value and the remaining ones are very close to 
O. Hence, the proposed iterations provided a rank. -1 solution 
to (7). 

5. CONCLUSIONS 

In this work, we proposed a novel iterative method for the 
phase-only beam synthesis problem. First, desired weights 
are formulated to be the solution of a non-convex QCQP. 
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Then, the QCQP is relaxed to a convex SDP. Proposed it­
erations constrain the optimal solution of the SDP to have 
fast decaying singular values. After a few iterations, ob­
tained solution is observed to be nearly rank-I. Conducted 
experiments indicate that, proposed method has a certain con­
vergence behaviour and can successfully design beam shapes 
with desired characteristics by only using element phases. 
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