
Evaluation Framework for
Software Architecture Viewpoint Languages

Bedir Tekinerdogan
Bilkent University

Department of Computer Engineering
06800 Bilkent Ankara, Turkey

bedir@cs.bilkent.edu.tr

Elif Demirli
Bilkent University

Department of Computer Engineering
06800 Bilkent Ankara, Turkey

demirli@cs.bilkent.edu.tr

ABSTRACT
In general, software architecture is documented using software
architecture views to address the different stakeholder concerns.
The current trend recognizes that the set of viewpoints should not
be fixed but multiple viewpoints might be introduced instead to
design and document the software architecture. To ensure the
quality of the software architecture various software architecture
evaluation approaches have been introduced. In addition several
documentation guidelines have been provided to ensure the
quality of the software architecture document. Unfortunately, the
evaluation of the adopted viewpoints that are used to design and
document the software architecture has not been considered
explicitly. If the architectural viewpoints are not well-defined then
implicitly this will have an impact on the quality of the design and
the documentation of the software architecture. We present an
evaluation framework for assessing existing or newly defined
software architecture viewpoint languages. The approach is based
on software language engineering techniques, and considers each
viewpoint as a metamodel. The approach does not assume a
particular architecture framework and can be applied to existing
or newly defined viewpoint languages. We illustrate our approach
for modeling and reviewing the first and second editions of the
viewpoint languages of the Views and Beyond approach.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain Specific
Architectures, Languages.

General Terms
Documentation, Design.

Keywords
Software Architecture Evaluation, Architectural Viewpoints,
Software Language Engineering, Metamodeling, Tool Support

1. INTRODUCTION
Architectural drivers define the concerns of the stakeholders
which shape the architecture [3]. A stakeholder is defined as an
individual, team, or organization with interests in, or concerns
relative to, a system [15][3][23]. Each of the stakeholders’

concerns impacts the early design decisions that the architect
makes. A common practice is to model different architectural
views for describing the architecture according to the
stakeholders’ concerns. An architectural view is a representation
of a set of system elements and relations associated with them to
support a particular concern [5][19]. Having multiple views helps
to separate the concerns and as such support the modeling,
understanding, communication and analysis of the software
architecture for different stakeholders. Architectural views
conform to viewpoints that represent the conventions for
constructing and using a view. An architectural framework
organizes and structures the proposed architectural viewpoints
[18].

In the literature, initially a fixed set of viewpoints have been
proposed to document the architecture. For example, the
Rational’s Unified Process [22] which is based on Kruchten’s 4+1
view approach [21] utilizes the logical view, development view,
process view and physical view. Another example is the Siemens
Four Views model [16] that uses conceptual view, module view,
execution view and code view to document the architecture.
Because of the different concerns that need to be addressed for
different systems, the current trend recognizes that the set of
views should not be fixed but multiple viewpoints might be
introduced instead.

To ensure the quality of the software architecture various software
architecture evaluation approaches have been introduced
[2][9][13][15][6][33][34]. In addition, several documentation
guidelines have been provided to ensure the quality of the
software architecture document. Unfortunately, the evaluation of
the adopted viewpoint languages that are used to design and
document the software architecture has not been considered
explicitly. If the architectural viewpoint languages are not well-
defined then implicitly this will have an impact on the quality of
the design and the documentation of the software architecture.

We provide an evaluation framework for evaluating existing or
newly defined architectural viewpoints. Our basic premise is that
viewpoints can be considered as domain specific languages [7]
and likewise the evaluation of the viewpoint also considers the
language aspects of the viewpoint. The approach does not assume
a particular architecture framework and can be applied to existing
viewpoints or newly defined viewpoints. We illustrate our
approach for reviewing the first and second edition of the
viewpoints (i.e. styles), of the Views and Beyond (V&B)
approach [4][5].

The remainder of the paper is organized as follows. In Section 2
we provide the background for architectural evaluation and define
the context of this paper. In Section 3 we discuss software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
QoSA’13, June 17–21, 2013, Vancouver, BC, Canada.
Copyright © ACM 978-1-4503-2126-6/13/06...$15.00.

89

language engineering and the application of this perspective on
architectural viewpoints. In Section 4, we present the approach for
evaluating the architectural viewpoints. In Section 5 we discuss
the modeling of viewpoints as DSLs, for the V&B approach.
Section 6 provides the overall summary of the evaluation of the
two editions of the V&B approach. Section 7 describes the tool
support that is used for the modeling and analysis of the
viewpoints. Section 8 provides the related work and finally
section 9 concludes the paper.

2. BACKGROUND AND CONTEXT
Since software architecture is critical for the success of a project,
different architectural evaluation approaches have been introduced
to evaluate the stakeholders’ concerns. From a cost perspective
architectural evaluation is also a strategic decision because the
earlier the problems in a software project are detected, the better.
Problems that are detected later on in the software life cycle will
be more difficult to fix and as such require higher costs.
Evaluating or reviewing the software architecture can have
different meanings in different contexts. We distinguish the
following three evaluation processes:

2.1 Architecture Evaluation
Architecture Evaluation process aims to analyze the software
architecture design with respect to the stakeholder concerns. This
is typically carried out by software architects and the
corresponding stakeholders. A comprehensive overview of these
architecture analysis methods is given in [9]. To compare the
architectural evaluation approaches a number of frameworks have
been proposed. The Software Architecture Review and
Assessment (SARA) report, for example, provides a conceptual
framework for conducting architectural reviews [13]. The
evaluation frameworks usually compare the methods based on the
criteria of context and goals of the method, required content for
applying the method, the process adopted in the method, and the
validation of the method. Based on the results of the frameworks
we can state that the architecture evaluation approaches are useful
in making design decisions explicit and supporting the refactoring
of the architecture to enhance its quality.

2.2 Architecture Documentation Evaluation
In addition to evaluating the architecture, recently also approaches
have been defined for evaluating the documentation of an
architecture [4][15][28]. This is because the architectural
documentation provides the tangible means for communication
about the architecture. A poorly documented architecture will
impede the communication and analysis of the architecture and
likewise the architecture will fail to meet its goals. The
documentation for an architecture consists primarily of the
documentation of the different architectural views and
documentation that describes the relation among the views.
Likewise evaluation of the architecture document implies the
review of the different architectural views and their fitness to the
purposes of the stakeholder concerns. For example, in their book
on the Views and Beyond approach [4][5] Clements et al. define
seven rules for sound documentation including (1) Write
documentation from the Reader’s point of view (2) Avoid
unnecessary repetition (3) Avoid ambiguity (4) Use a standard
organization (5) Record rationale (6) Keep documentation current
but not too current, and (7) Review documentation for fitness of
purpose. A more detailed and structured evaluation approach is
given by Nord. et al. [27] who provide a framework to build a set
of review questions to analyze the document. Hämäläinen and
Markkula [15] have proposed a question framework for assessing

the quality of architectural descriptions. The framework was
developed together with the industry and validated by the
industry.

2.3 Architecture Viewpoint Evaluation
Both evaluation processes, i.e. evaluation of the architecture and
the evaluation of the documentation, are important to ensure the
effectiveness of the architecture. Ensuring that the architecture is
properly designed is important to meet the quality concerns.
Ensuring that the architectural documentation indeed describes the
architecture as it should be described is important to support the
communication among the stakeholders. Yet, the architectural
views are defined based on existing viewpoints for a given
architectural viewpoint framework. If the selected set of
viewpoints is not properly designed, then this will have both an
impact on the design and impede the key motivations for
architecture description, that is, communication, guidance and
analysis. Hence, complementary to the existing architecture
design analysis and architecture documentation analysis
approaches we believe that it is very important to analyze the
quality of viewpoints. In this paper we focus on the language
aspects of the viewpoints. Likewise in this paper our key concern
is the evaluation of the architectural viewpoint languages.

3. SOFTWARE LANGUAGE
ENGINEERING
Architecture design is basically about modeling the system from
different perspectives. Historically, models have had a long
tradition in software engineering and have been widely used in
software projects. The primary reason for modeling is usually
defined as a means for communication, analysis or guiding the
production process. Models are different in nature and quality and
different classifications of models have been provided in the
literature. Mellor et al. [26] make a distinction between three
kinds of models, depending on their level of precision. A model
can be considered as a Sketch, as a Blueprint, or as an Executable.
According to [26] an executable model is a model that has
everything required to produce the desired functionality of a
single domain. Executable models are more precise than sketches
or blueprints, and can be interpreted by model compilers. A
similar classification of models is defined by Fowler [14] who
suggests a distinction based on three levels of models, namely
Conceptual Models, Specification Models and Implementation
Models.

In model-driven software development the concept of models can
be considered as executable models as defined by the above
characterization of Mellor et al. [26]. In model-driven software
development models are not mere documentation but become
“code” that are executable and that can be used to generate even
more refined models or code. This is in contrast to model-based
software development in which models are used as blueprints at
the most [31].

The language in which models are expressed is defined by meta-
models. As such, a model is said to be an instance of a meta-
model, or a model conforms to a meta-model. A meta-model itself
is a model that conforms to a meta-meta-model, the language for
defining meta-models. Given the different levels in which the
models reside in model-driven development, models are usually
organized in a four-layered architecture. The top (M3) level in this
model is the so called meta-metamodel, and defines the basic
concepts from which specific meta-models are created at the meta
(M2) level. Normal user models are regarded as residing at the
M1 level, whereas real world concepts reside at level M0.

90

3.1 Architectural Description from a Model-
Driven Development Perspective
In fact we can state that the current architectural modeling
practices can be categorized as model-based development, rather
than model-driven development. In the last two to three decades
architectural modeling and the corresponding notations have
evolved from simple sketches to more precise models as defined
by architectural view concept. However, the view models can
usually not be considered as executable models yet. Moreover, the
link between architectural models, and the link from architectural
models are merely implicit and not formal.

The concepts related to architectural description are formalized
and standardized in ISO/IEC 42010:2007, a fast-track adoption by
ISO of IEEE-Std 1471-2000, Recommended Practice for
Architecture Description of Software-Intensive Systems [19][24].
On one hand, it appears that in the architecture modeling
literature, the notion of meta-model is not explicitly used. Yet, a
closer look at the standard shows that we can identify the concepts
related to the notions of metamodel and model. The standard
holds that an architecture description consists of a set of views,
each of which conforms to a viewpoint, but it has deliberately
chosen not to define a particular viewpoint. Here the concept of
view appears to be at the same level of the concept of model in the
model-driven development approach. The concept of viewpoint,
representing the language for expressing views, appears to be on
the level of meta-model.

Figure 1. Architectural Description Concepts from a meta-
modeling perspective

As such, although the ISO/IEC 42010 standard does not really use
the terminology of model-driven development, the concepts as
described in the standard seem to align with the concepts in the
meta-modeling framework. In Figure 1, we provide a partial view
of the standard that has been organized around the meta-modeling
framework. An Architecture Description is a concrete artifact that
documents the Architecture of a System of Interest. The concepts
System-of-Interest and Architecture reside at layer M0. System-of-
Interest defines a system for which an Architecture is defined.
Architecture is described using Architectural Description that
resides at level M1. Architectural Description includes one or
more Architectural Views that represent the system from
particular stakeholder concern’s perspective. Architectural views
are described based on Architectural Viewpoint, the language for
the corresponding view. Architectural Viewpoints are organized in
Architectural Framework. The latter two reside at level M2. The
standard does not provide a concept that we could consider at
level M3, and as such we have omitted this in Figure 1. The left
part of Figure 1 shows the corresponding stakeholders that focus

on reviewing the architecture. Based on the discussion in the
previous section we can identify three types of evaluators, that is,
Architecture Viewpoint Evaluator, Architecture Document
Evaluator, and Software Architect. The Architecture Viewpoint
Evaluator is responsible for evaluating the viewpoints of selected
the architecture framework, or the viewpoints that have been
newly added. The Architecture Document Evaluator evaluates
whether the architecture documentation fits the proper
documentation standards. Finally, the Software Architect is the
actor who designs the architecture by using the selected
viewpoints. As stated before, in this paper, we focus on the
architecture viewpoint evaluation process.

3.2 Elements of Domain Specific Languages
In the previous sub-section we have made the link between
viewpoints and meta-models. Likewise, for understanding how to
evaluate viewpoints we have to know how meta-models are
evaluated in practice. In fact, meta-models define the language for
the models. The application of a systematic, disciplined,
quantifiable approach to the development, use, and maintenance
of these languages is usually called software language
engineering [20]. A proper definition of meta-models is important
to enable valid and sound models. As described in both the
software language engineering [20] and model-driven
development domains [31] a meta-model should include the
following elements:

 Abstract Syntax: describes the vocabulary of concepts
provided by the language and how they may be combined to
create models. It consists of a definition of the concepts and
the relationships that exist between concepts.

 Concrete Syntax: defines the syntax, the notation that
facilitates the presentation and construction of models or
programs in the language. Typically two basic types of
concrete syntax are used by languages: textual syntax and
visual syntax. A textual syntax enables models to be
described in a structured textual form. A visual syntax
enables a model to be described in a diagrammatical form.

 Well-formedness rules (Static Semantics): provides
definitions of additional constraint rules on abstract syntax
that are hard or impossible to express in standard syntactic
formalisms of the abstract syntax.

 Semantics – The description of the meaning of the concepts
and relation in the abstract syntax. Semantics can be defined
in natural language or using other more formal specification
languages.

4. APPROACH FOR EVALUATING
VIEWPOINTS
Evaluating architecture viewpoints can be carried out from
various perspectives including the appropriateness for
stakeholders, the consistency among viewpoints, and the fitness of
the language. Likewise, the overall process for evaluating an
architectural framework consisting of different viewpoints is
shown in Figure 2. The activity Select Viewpoint selects a
viewpoint that is provided either by a given architecture
framework, or that has been newly introduced by viewpoint
designers. After selecting the viewpoint it is evaluated with
respect its language precision. Here, a coarse-grained evaluation
would be to check whether the language elements of abstract
syntax, static semantics and concrete semantics, are defined for
the viewpoints. This does not really provide much information

91

since all the viewpoints seem to somehow describe the above
elements albeit in a different degree, and as such the architectural
viewpoint evaluation would not be of less practical value. To be
able to refine the degree to which each element is addressed we
propose to model each viewpoint explicitly as a domain specific
language (DSL). After selecting an architectural viewpoint, the
viewpoint is modeled and in parallel the evaluation of the
corresponding viewpoint takes place.

After the evaluation of the viewpoint with respect to the language
formalism perspective, the viewpoint is assessed for fitness with
the stakeholder concerns. This activity is carried out in close
interaction with the stakeholder. The feedback of the stakeholder
is taken into account to enhance the viewpoint accordingly.

The subsequent step is the evaluation of the consistency between
the viewpoints. This implies the coverage of the viewpoints for
the stakeholders as well as the mapping of the elements between
the viewpoints. After all the viewpoints have been modeled and
evaluated, the overall evaluation for the architectural framework
is provided. Based on the overall evaluation of the viewpoint(s) it
is decided on what actions to take.

Figure 2. Overall Process for Evaluation of Architectural
Framework

The activity Model Viewpoints defines the DSL for the selected
viewpoint and the detailed steps for this are shown in Figure 3.
For modeling the viewpoint, the description of the viewpoint in
the literature (e.g. textbook) is analyzed. The first step in the
activity Model Viewpoints is the identification and definition of
the architectural element and relation types. This is necessary to
define the abstract syntax of the viewpoint. As stated before, the
abstract syntax defines both the concepts (architectural element
and relation types) of the language and the relations among these
concepts. To represent the abstract syntax either a model-based
approach or a grammar-based approach is adopted [20][31]. In the
model-based approach, typically a UML model is provided
defining the language concepts and their relations. In the
grammar-based approach a grammar (e.g. EBNF grammar) is
defined. In our approach we provide both a UML model and an

EBNF-based grammar of the viewpoint. The composition rules
are identified in the activity Identify and Model Composition
Rules. After the abstract syntax and the corresponding
grammar/model have been defined the topology constraints (i.e.
static semantics) are identified and modeled. The next activity is
to Identify and Define the Notation (Concrete Syntax). Finally, the
activity Validate using Example aims to define example models
using the modeled viewpoint. The outcome of this activity might
require iterating to the previous activities.

Figure 3. Activity Diagram for Activity Model Viewpoint

In parallel with the execution of the activity Model Viewpoints,
also an evaluation of the viewpoint is carried out (activity Assess
Viewpoint as shown in Figure 2). For evaluating the viewpoint we
focus in particular on the elements of abstract syntax, concrete
syntax and static semantics. We adopt the evaluation framework
as defined in Table 1.

Table 1. Evaluation framework for

evaluating Architectural Viewpoints

Evaluation Level Description
L0 Not defined
L1 Incomplete, Informally defined
L2 Complete, Informally defined
L3 Incomplete, Formally defined
L4 Complete, Formally defined

The table distinguishes among four levels L0 to L4 indicating the
quality and completeness of the corresponding element. As it can
be seen in the table, a lower quality indicates that the
corresponding element is incomplete or informally defined;
whereas a higher value indicates that the given element is more
complete and formally defined. The activity Provide Overall
Evaluation in Figure 2 defines the summary of the overall
evaluations of the viewpoints for the given architecture
framework or set of viewpoints. The final activity Decide in
Figure 2 describes the recommendations and decisions on the
usage of the selected viewpoints. In case the selected viewpoint is
well-defined typically no action will be undertaken and the
viewpoint can be used as is. If the viewpoint is not well-defined
one may decide to enhance the viewpoint of the original

92

viewpoint description after the evaluation process. In that case,
the evaluation level (L0 to L4) will increase as well.

5. EVALUATING V&B APPROACH
In this section we provide, as an example, the evaluation of the
V&B approach using the viewpoint evaluation framework as
defined in the previous sections. The V&B approach consists of
many predefined viewpoint descriptions, which we have all
evaluated with our approach. In the V&B approach rather than
viewpoints, the notion of style is adopted. The V&B approach
distinguishes among three different categories of styles, module
styles, component & connector styles, and allocation styles [5].
For each category of styles, several styles have been predefined.
In the following we will illustrate the evaluation for two different
styles in the V&B approach.

5.1 Decomposition Style
Based on the descriptions and the defined meta-model we provide
the grammar which defines syntactic rules of the language
together with textual concrete syntax. The Decomposition style [6]
is used to show how system responsibilities are partitioned across
modules and how these modules are decomposed into sub-
modules. The decomposition view of the architecture depicts the
overall structure of the architecture which is reasonably
decomposed into modular implementation units. It is regarded as a
fundamental view of the architecture since it serves as an input for
other views (e.g. work allocation view) and helps to communicate
and learn the structure of the software. We have defined a DSL
for decomposition style based on the textual specification given in
[6]. The meta-model elements of this style are provided below.

5.1.1 Abstract Syntax
A model of the abstract syntax for the decomposition style is
given in the left part of Figure 4. The root element is
DecompositionModel. A valid decomposition model consists of
Elements. An element can either be a Module or Subsystem.
Module denotes principal unit of implementation. Subsystem
differs semantically from the module in the way that it can be
developed, executed and deployed independent of other system
parts. The decomposition relation between elements is established
via the aggregation relation indicating that an element consists of
other sub-elements. Element can have two types of properties:
Interface and Simple property. The element’s interface is
documented with interface property. An element’s interface can
be declared as a reference to one of its children’s interface. Simple
property is a generic property which allows specifying new
properties in view document.

5.1.2 Grammar and Concrete Syntax
The grammar for decomposition style is given in the right part of
Figure 4. An example decomposition view implemented using our
DSL is shown in Figure 5. The textual concrete syntax is defined
for both elements and properties of the elements. The visual
concrete syntax is defined only for elements. No explicit relation
is modeled in order to express decomposition. Sub-elements are
directly placed into the parent element.

5.1.3 Static Semantics
In addition to extracting the abstract syntax and the grammar we
can also derive the well-formedness rules of views, the static
semantics, from the viewpoint descriptions. In the original
decomposition style description, two constraints have been
defined: no loops are allowed in decomposition graph and a
module can have only one parent. From the language perspective,
those constraints are too high level to implement. We have

merged these constraints and shortly defined that no element can
have the same name. Doing so we prevented both the constraints
for avoiding loops (<A contains B, B contains A> case) and
ensuring that a module can have only one parent (<A contains B,
C contains B> case). We have implemented this constraint in Java
as a validation rule that applies on the language model.

Abstract Syntax Grammar

Figure 4. Abstract Syntax and Grammar for Decomposition
Style

Textual Decomposition View Visual

Decomposition View

Figure 5. Example decomposition view with textual and visual
concrete syntax

5.1.4 Evaluation
The above results show that we could map a viewpoint to a
domain specific language that can be used to define executable
models or views. However, the overall effort also provides us
insight in the degree of formal precision of the current viewpoint
description. When we apply our evaluation framework on
decomposition style specification of the V&B framework, we get
the following results. The abstract syntax definition falls into L2
of our evaluation framework. The concepts to be used in the
language are defined textually. The textual description is clear; it
can be easily translated to a formal model. However, no meta-
model or grammar is provided to describe the concepts. Since
both informal and semiformal notations are provided the concrete
syntax definition can be considered at level L3. The well-
formedness rules on the concepts of the language are properly
specified in natural language. However, they are too informal and
cannot be directly implemented as executable well-formedness
rules. Therefore, we consider these at level L3. Finally, regarding

93

the semantics of the language elements we consider the viewpoint
description at level L2. The concepts for module is sufficiently
explained in natural language but not formally defined. It should
be noted that with the domain specific language engineering
approach we have lifted the precision degree to level L4 for the
elements of abstract syntax, concrete syntax and static semantics.

5.2 Deployment Style
The deployment style is a style that is used to show how the
software elements are allocated to hardware of a computing
platform. This style is useful for analyzing and tuning certain
quality attributes of the system such as performance, reliability
and security.

5.2.1 Abstract Syntax
The abstract syntax defined for the deployment style is shown in
Figure 6. The abstract syntax describes the elements of the
language, which are software elements and hardware elements.
The software elements are statically allocated to hardware
elements by allocated to relation. In abstract syntax definition, we
do not explicitly show this relation. It is implicit in the
aggregation relation between hardware element and software
element. The allocation of software to hardware does not have to
be static. Migration relations are defined to support dynamic
allocation schemes. There are three types of migration relations:
migrates to, copy migrates to, execution migrates to. In addition to
these style specific elements and relations, in order to reflect the
topology of the platform connection links between hardware
elements are required.

DeploymentModel:
 (hardwareElements+=HardwareElement)*
 ('Connections' '{' (connections+=Connection)* '}')?
 ('Migrations' '{' (migrations+=Migration)* '}')?;
SoftwareElement:
 'software' name=ID ':' type=ID ('{' (prop+=Property)* '}')?;
HardwareElement: 'HardwareElement' name=ID ':' type=ID
 ('{'((prop+=Property)* (software+=SoftwareElement) ';')*'}')?;
Migration: Migrates_To | Copy_Migrates_To | Execution_Migrates_To;
MigratesTo:
 hardware=[HardwareElement]'.'software=[SoftwareElement]
 'migrates_to'
 hardware2=[HardwareElement]'.'software2=[SoftwareElement]';';
Copy_Migrates_To:
 hardware=[HardwareElement]'.'software=[SoftwareElement]
 'copy_migrates_to'
 hardware2=[HardwareElement]'.'software2=[SoftwareElement]';';
Execution_Migrates_To:
 hardware=[HardwareElement] 'execution_migrates_to'
 hardware2=[HardwareElement] ';';
Connection:
 src=[HardwareElement] 'connected to' target=[HardwareElement]
 ('info' ':' connectionInfo=STRING)? ';';
Property: 'property' field=ID ':' value=STRING ';';

Figure 6. Abstract syntax and grammar for deployment style

5.2.2 Grammar and Concrete Syntax
The grammar for the deployment style follows the abstract syntax
but due to space limitations we could not include it in this paper.
An example deployment view specified using both textual and
visual concrete syntax is provided in Figure 7. The visual concrete
syntax defined for deployment view models software and
hardware elements as elements, migrations and connections as
relations. The properties of software and hardware elements are
also modeled in visual concrete syntax.

5.2.3 Static Semantics
We have identified four well-formedness rules for deployment
style and implemented these as validation code. These rules are:
(1) Every hardware element must be connected to at least one
other hardware element. (2) An element cannot connect to itself
(3) All types of migration relations have to be between two
distinct hardware elements. (4) The source and target software
element names referenced in migrates to and copy migrates to
relations must be the same (i.e. the same software migrates from
one hardware element to another).

Figure 7. Example deployment view with textual concrete

syntax

5.2.4 Evaluation
Although this style is a bit more complex than the previous two
styles it was possible to define a DSL. The abstract syntax
definition falls into L2 of our evaluation framework. The concepts
to be used in the language are defined textually. The textual
description is clear; it can be easily translated to a formal model.
However, no models are provided. Informal and semiformal
notations are provided. AADL and SysML are mentioned as

94

formal notations. However, no guidelines for mapping
deployment style constructs to those languages’ constructs are
specified. No example is provided. The concrete syntax definition
is in L3.
Regarding the static semantics, in the constraints section of
deployment style, it is stated that allocated topology is
unrestricted. No further constraints are specified. However, some
well-formedness rule definitions are still required. Those
constraints are not explicitly described in the V&B deployment
style definition. Probably this is omitted since the rules are
obvious (for human architect) and there is no need to define them
explicitly. However, when we look from the meta-modeling
perspective in which models need to be processed by tools, we
have to specify the rules explicitly and more precisely. Based on
this observation we can state that the static semantics definition of
deployment style is in L1.

6. OVERALL SUMMARY FOR V&B
APPROACH
Throughout section 5, we have provided an evaluation for two
different styles of the Views and Beyond approach. In this
section, we present an overall summary of our experience in
mapping V&B architectural styles to domain specific languages.
For this we will use again our meta-model evaluation framework
as we have defined in section 5. We have applied the framework
on each style defined by V&B. In fact, we have implemented all
architectural styles of V&B framework as domain specific
languages and we can state that the mapping of each viewpoint
and its discussion is interesting by itself. Unfortunately, we cannot
present all of these due to space limitations. The adopted approach
was similar as defined in the previous section. We have applied
our approach to the first [4] and second version [5] of the Views
and Beyond approach. We will discuss the language elements
including abstract syntax, concrete syntax, static semantics and
semantics separately.

6.1 Evaluation of Abstract Syntax
Figure 8 shows a dot chart that compares the precision of the
abstract syntax of viewpoints in both editions of the V&B
approach. With respect to the abstract syntax we can conclude that
there is not much deviation between two editions of the book.
Aspects, Data Model and SOA style values are under L1 for the
first edition of the book, because those styles are later introduced
in the second edition. The same situation also applies to the
communicating processes style for the second edition of the book,
since it is excluded in the second edition. For most of the
remaining styles, abstract syntax definition levels overlap for both
editions of the book. For generalization and publish-subscribe
styles a more clear textual description is provided in the second
edition.

Figure 8. Abstract syntax definition levels for V&B
(both editions of the book)

6.2 Evaluation of Concrete Syntax
When we consider the concrete syntax definitions the deviation
between two editions of the book is higher. For the module styles
(i.e. the first 6 styles of the chart in Figure 9), the concrete syntax
definitions are mostly in level L3, indicating that there is semi-
formal concrete syntax definition for those styles in both editions
of the book. Mostly, UML is recommended as modeling notation
explicitly showing how to use UML while realizing views for
module styles. For component-and-connector styles (i.e. from 7th
style to 13th style), the second edition of the book is still at L3.
However, in the first edition of the book most of the C&C styles
are in L2-informal concrete syntax level. In the first edition, UML
is mentioned roughly for the overall C&C styles, however, it is
not depicted how to use them for the specific styles. In the second
book, UML discussion for C&C styles is again done for all styles
together, however, this time the discussion is detailed enough to
specify how to use UML notations required for each style. For
none of the styles of the two editions, L4-formal concrete syntax
level is reached. Although some formal modeling techniques such
as ADLs are mentioned, it is not described how to use those
ADLs for modeling with specific styles.

Figure 9. Concrete syntax definition levels for V&B (both
editions of the book)

6.3 Evaluation of Static Semantics
The static semantics definition for no style exceeds level 3-
complete constraints in natural language. The constraints are
always defined in natural language. There is some refinement of
the constraint definitions in the second edition compared to those
described in the first edition. In the first edition, 11 styles are in
L1 and L2 meaning that no constraints are specified or they are
incomplete. In the second edition, four of those moves to L3
(uses, generalization, pipes&filters and publish-subscribe)
meaning that they are still in natural language form however the
constraints on language constructs are completely specified.

Figure 10. Static semantics definition levels for V&B
(both editions of the book)

95

6.4 Evaluation of Semantics
The semantics of the styles in both editions of the V&B approach
does not exceed level L2. None of the styles are formally defined.
Some styles provide sufficient explanation in natural language and
likewise can be considered at level L2, however many styles are
also incomplete regarding the explanation of the component and
connector types.

Figure 11. Semantics definition levels for V&B
(both editions of the book)

6.5 Overall Evaluation
We can conclude from this analysis that abstract syntax definition
for V&B styles are mostly in L2 and that these can be easily
mapped to validated models as we do while defining DSLs. The
concrete syntax definitions are mostly in L3. Informal and semi-
formal notations are introduced and their usage is properly
explained. However, no formal notations are provided. The
constraints on style elements and relations are always provided in
natural language form. Regarding the semantics of the viewpoints
we have seen that none of the styles are above level L2. This is
because semantics of the styles is provided through natural
language and no formal specifications have been provided. By
defining DSLs for V&B approach, we have made the style
definitions in L4 for each category: abstract syntax, concrete
syntax and static semantics. The semantics of each style could be
formally enhanced by adopting a common formal model, based on
which the elements of the styles can be explained. It should be
noted that the evaluation framework is general and can be applied
to other architecture frameworks, than the V&B approach. In
addition the evaluation framework can also be applied to evaluate
newly defined viewpoints.

7. TOOL SUPPORT
In this section we discuss the tool SAVE-BENCH [8] that we
have developed in the Eclipse environment to model architecture
viewpoints as DSLs. As stated before, the evaluation of the
viewpoints takes place during the effort for modeling the
viewpoints as DSLs. Various tools such as Xtext [36], GMF [11],
EuGENia [12] and EMFatic [10] are used in the language
definition process. Firstly, the viewpoint definer creates the
grammar definition of the viewpoint using the Xtext editor and
following the rules of Xtext’s EBNF like grammar definition
language. Xtext is a part of Eclipse TMF (Textual Modeling
Framework) project and it enables creation of domain specific
languages from grammar definitions. After writing the grammar,
the Xtext language generator is run which builds the full
implementation of the domain specific language for the written
grammar. Subsequently, the Xtext language generator extracts the
metamodel from the grammar and outputs it as an Ecore
metamodel. We use this Ecore metamodel as the abstract syntax
definition while defining the visual concrete syntax of the
corresponding DSL. Traditionally, GMF (Graphical Modeling

Framework) tools are used in order to define the visual concrete
syntax based on an Ecore metamodel. GMF tools provide also a
set of generative components for generating diagram editors in
Eclipse. To support the easy development we have used the tool
EuGENia [12] for generating the required models for GMF
diagram generation from a single annotated Ecore metamodel.
For annotating the Ecore metamodel with visual concrete syntax
information, we have utilized EMFatic [10]. That is, using
specific annotations the viewpoint definer states for each
metamodel (viewpoint) element the corresponding graphical
notations. The resulting Ecore metamodel is given as an input to
EuGENia generator, which generates the required models for
GMF diagram editor generation. Lastly, both textual and visual
editors defined for viewpoint are exported as plug-ins to Eclipse.
A view modeler can use those editors to model architecture views
based on the viewpoint.

Figure 12 shows a sample screenshot from the SAVE-BENCH
tool. SAVE-BENCH provides a user interface with 5 different
panes to define the different elements of the DSL. For the
evaluation of the viewpoint we have used Excell sheets that
resulted in the dot graphs as shown in section 6.

Figure 12. Snapshot of the SAVE-BENCH tool for modeling

architectural views

8. RELATED WORK
Organizing the system as a set of viewpoints has also been
addressed in enterprise application system using so-called
enterprise architecture frameworks. Examples include the early
Zachman’s Framework for Enterprise Architecture [37], The
Open Group Architecture Framework (TOGAF) [35], and the ISO
(ISO/IEC 10746) Reference Model of Open Distributed
Processing (RM-ODP) [18].

Architecture description languages (ADLs) have been proposed to
model architectures. For a long time there have been little
consensus on the key characteristics of an ADL. Different types of
ADLs have also been introduced. Some ADLs have been defined
to model a particular application domain, others are more general-
purpose. Also the formal precision of the ADLs differ; some have
a clear formal foundation while others have been less formal.
Several researchers have attempted to provide clear guidelines for
characterizing and distinguishing ADLs, by providing comparison
and evaluation frameworks. Medvidovic and Taylor [25] have
proposed a definition and a classification framework for ADL
which states that an ADL must explicitly model components,

96

connectors, and their configurations. Furthermore, they state that
tool support for architecture-based development and evolution is
needed. These four elements of an ADL include other sub-
elements to characterize and compare ADLs. The focus in the
framework is thus on architectural modeling features and tool
support. In adopting a software language engineering approach we
have focused on the three language elements of abstract syntax,
concrete syntax and static semantics. In fact we could analyze also
existing ADLs based on the approach in this paper. That could be
complementary to earlier evaluations of ADLs.

xADL has been introduced to support modularity and extensibility
of architectural modeling [8]. Despite earlier ADLs xADL is not a
single fixed ADL but encapsulates various ADL features in
modules that can be composed to form new ADLs. This is
achieved by using the extension mechanisms provided by XML
and XML schemas. xADL forms the basis for the ArchStudio 4
[17], an open-source software and systems architecture
development environment including tools for modeling,
visualizing, analyzing and implementing software and systems
architectures. It is based on the Eclipse open development
platform. Similar to our tool it is an architecture meta-modeling
environment that can be used to define new views. In ArchStudio,
new viewpoints could be defined by extending the core language.
In our approach we focus on the software language engineering
elements of abstract syntax, concrete syntax and static semantics.
In addition viewpoints can be defined from scratch using Xtext
[36] or extended.

In the enterprise architecture design community several authors
have focused on the formalization of architectural viewpoints.
Different attempts have been made before to model viewpoints as
domain specific languages. ArchiMate [1] is an EA modeling
language that is specified by concepts that focus on business,
applications and technology domains. Those concepts form the
base metamodel of ArchiMate language. A set of viewpoint
languages are defined by composing the concepts available in the
metamodel. Contrary to their approach, our viewpoint languages
do not depend on a predefined set of concepts. Each viewpoint has
an independent language that defines its own concepts. This
design choice makes it easy to introduce new viewpoints to the
framework. However, it is difficult to define new viewpoints in
ArchiMate if the required concepts are not available at the base
metamodel. An additional extension mechanism is needed for this
purpose [29].

Romero et al. tackle the viewpoint formalization problem from
model-driven development perspective and defined UML profile
for viewpoints of RM-ODP [30]. The main difference of their
approach and our study is the level of formality of the targeted
viewpoint specifications. RM-ODP is specified by a standard [18]
that precisely defines the syntax and semantics of the language.
So, the task of formalizing RM-ODP viewpoint specifications is
transforming the present languages to executable languages and
defining notations for using the language. However, in our work,
we also address viewpoint specifications those are not specified
precisely as languages. We offer software language engineering as
a method for lifting existing viewpoint specifications to formal
language level and provide a complete description of the method

9. CONCLUSION
The discipline of software architecture description has
substantially evolved in the last decades. We can characterize the
evolution from the following two perspectives. First of all, there
seems now a common awareness that architecture should be

modeled using multiple views. Having multiple views of the
architecture helps to separate the concerns and as such support the
modeling, understanding, communication and analysis of the
software architecture for different stakeholders. In the literature,
initially views were not explicit, later a fixed set of viewpoints has
been proposed to model and document the architecture. Because
of the different concerns that need to be addressed for various
systems, the current trend recognizes that the set of views should
not be fixed but open-ended. The second dimension of evolution
considers the formal precision of the architectural descriptions.
Initially software architecture was represented using arbitrary
box-and-lines notations leading to ambiguous interpretations.
Later on, it was acknowledged to provide more formal support for
architectural modeling, both visually and textually.

In this context, the definition of properly defined architectural
viewpoints has become important. Unfortunately, it appears that
the current literature does not provide yet a review process for
architectural viewpoint languages. In this paper we have provided
an evaluation framework for evaluating existing or newly defined
architectural viewpoint languages based on software language
engineering. The approach does not assume a particular
architecture framework and can be applied to existing viewpoints
or newly defined viewpoints. One of the recent architectural
frameworks that includes a broad set of viewpoints is the Views
and Beyond approach. We have been able to review the first and
second edition of the viewpoints of the Views and Beyond
approach [4][5]. To validate our statement we have analyzed the
viewpoints in the Views and Beyond approach, and defined all
these viewpoints as domain specific languages. We have
compared both the first edition and second edition of the Views
and Beyond approach and illustrated the differences in formal
precision. We believe that by adopting a software language
engineering approach for architectural viewpoints we have also
shown the connection with software architecture design modeling
and the fields of software language engineering and model-driven
software development in general. We hope that this work has
paved the way for further research in this direction.

In our future work we will apply the same approach to other
architecture viewpoint frameworks. The V&B approach was a
case study for us but we do not foresee serious obstacles in
applying the same approach for other software architecture
viewpoints and enterprise architecture viewpoints. We will
elaborate on the tool and consider the integration of viewpoints
for nonfunctional concerns. Further, we plan to enhance the tool
for supporting architectural analysis. Finally, we will extend our
evaluation framework and in addition to the language formality
aspect we will also consider other aspects of viewpoints such as
coverage of stakeholder concerns, orthogonality and consistency
among viewpoints.

10. REFERENCES
[1] Archimate 1.0 Specification, The Open Group, Tech. Rep.

C091, Feb. 2009.

[2] M.A. Babar & I. Gorton. Comparison of Scenario-Based
Software Architecture Evaluation Methods, Proceedings of
the 11th Asia-Pacific Software Engineering Conference.
NSW Australia, Nov-Dec. 2004. IEEE, 2004.

[3] L. Bass, P. Clements, & R. Kazman. Software Architecture
in Practice, 2nd ed., (Chapter 9). Addison-Wesley, 2003
(ISBN: 978-0-321-15495-8).

[4] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, R. Nord, J. Stafford. Documenting Software

97

Architectures: Views and Beyond. First Edition. Addison-
Wesley, October 2002.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, P. Merson, R. Nord, J. Stafford. Documenting
Software Architectures: Views and Beyond. Second Edition.
Addison-Wesley, 2010.

[6] P. Clements, R. Kazman, & M. Klein. Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley,
2002.http://www.sei.cmu.edu/library/abstracts/books/020170
482X.cfm

[7] E. Demirli & B. Tekinerdogan. Software Language
Engineering of Architectural Viewpoints, in Proc. of the 5th
European Conference on Software Architecture (ECSA
2011), LNCS 6903, pp. 336–343, 2011.

[8] E. Demirli & B. Tekinerdogan. SAVE: Software
Architecture Environment for Modeling Views, in proc. of
WICSA 2011: 9th Working IEEE/IFIP Conference on
Software Architecture, pp. 355-358, 20-24 June 2011.

[9] L. Dobrica and E. Niemela. A Survey on Software
Architecture Analysis Methods. IEEE Transactions on
Software Engineering, 28(7):638–654, 2002.

[10] Eclipse Modeling Framework Technology – EMFatic
Project,http://www.eclipse.org/modeling/emft/?project=emfa
tic, accessed February 2011.

[11] Eclipse Graphical Modeling Framework,
http://www.eclipse.org/gmf/, accessed February 2011.

[12] EuGENia, http://www.eclipse.org/gmt/epsilon/doc/eugenia/,
accessed February 2011.

[13] Final Report of the Software Architecture Review and
Assessment (SARA) Group, Version 1.0, 2002.
http://philippe.kruchten.com/architecture/SARAv1.pdf

[14] M. Fowler, S. Scott, G. Booch. UML distilled, Object
Oriented series, 179 p. Addison-Wesley, Reading, 1999.

[15] N. Hämäläinen & J. Markkula. Quality Evaluation Question
Framework for Assessing the Quality of Architecture
Documentation.� Proceedings of International BCS
Conference on Software Quality Management. University of
Tampere, SQM, 2007

[16] C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley, NJ, USA.

[17] ISR, Institute for Software Reseach. Archstudio 4.0 tool set
for the xadl language,
http://www.isr.uci.edu/projects/archstudio/

[18] [ISO/IEC 10746-2:1996] International Organization for
Standardization & International Electrotechnical
Commission. In-formation Technology - Open Distributed
Processing - Reference Model: Foundations (ISO/IEC
10746-2). 1996.

[19] [ISO/IEC 42010:2007] International Organization for
Standardization & International Electrotechnical
Commission. Systems and software engineering—
Recommended practice for architectural description of
software-intensive systems (ISO/IEC 42010), July 2007.

[20] A. Kleppe. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels. Addison-
Wesley Longman Publishing Co., Inc., Boston, 2009.

[21] P. Kruchten. The 4+1 View Model of Architecture. IEEE
Software, 12(6):42–50, 1995.

[22] P. Kruchten. The Rational Unified Process: An Introduction,
Second Edition. Addison-Wesley, Boston, MA, USA, 2000.

[23] A.J. Lattanze. Architecting Software Intensive Systems: A
Practitioner’s Guide, Auerbach Publications, 2009.

[24] M. W. Maier, D. Emery, and R. Hilliard. Software
Architecture: Introducing IEEE Standard 1471. IEEE
Computer, 34(4):107–109, 2001.

[25] N.Medvidovic & R.N. Taylor. A classification and
comparison framework for Software Architecture
Description Languages, IEEE Trans. on Software
Engineering, Vol. 26, No.1 pp. 70-93, 2000..

[26] S.J. Mellor, K. Scott, A. Uhl, D. Weise. MDA Distilled:
Principle of Model Driven Architecture, Addison Wesley,
Reading , 2004

[27] R.L. Nord, P.C. Clements, D. Emery, and R. Hilliard, A
Structured Approach for Reviewing Architecture
Documentation, TECHNICAL NOTE, CMU/SEI-2009-TN-
030, December 2009.

[28] D.L. Parnas & D.M. Weiss. Active Design Reviews:
Principles and Practices,� 215-222. Pro-ceedings of 8th
International Conference on Software Engineering, 1985.
Reprinted in Hoffman, D. and Weiss, D., Software
Fundamentals, 2001.

[29] C. Peña, J. Villalobos. An MDE Approach to Design
Enterprise Architecture Viewpoints, IEEE 12th Conference
on Commerce and Enterprise Computing (CEC), vol., no.,
pp.80-87, 10-12 Nov. 2010.

[30] J. R. Romero, J. M. Troya, A. Vallecillo. Modeling ODP
Computational Specifications Using UML,
The Computer Journal 2008 51: 435-450.

[31] T. Stahl, M. Voelter. Model-Driven Software Development,
Addison-Wesley, 2006.

[32] B. Tekinerdogan, A. Moreira, J. Araújo, and P. Clements.
Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design. In: Workshop Proceedings.
University of Twente, TR-CTIT-04-44, October, 2004.

[33] B. Tekinerdogan. ASAAM: Aspectual Software Architecture
Analysis Method, in Proc. of 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 5-14,
June, 2004.

[34] B. Tekinerdogan, A. Moreira, J. Araújo, P. Clements, “Early
aspects: aspect-oriented requirements engineering and
architecture design”, Report Early Aspects Workshop at
AOSD, Lancaster, UK, March, 2004.

[35] TOGAF 1995 -The Open Group Architecture Framework,
Version 8.1.1., 1995.
http://www.opengroup.org/architecture/togaf8-doc/arch/

[36] Xtext – Language Development Framework,
http://www.eclipse.org/Xtext/, accessed on February 2011.

[37] J.A. Zachman. A Framework for Information Systems
Architecture. IBM Systems Journal, Vol. 26. No 3, pp. 276-
292, 1987.

98

