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Abstract: This paper deals with the H∞ optimal controller design for a magnetic suspension
system model derived in Knospe and Zhu [2011], with added input/output delay. The plant is
a fractional order system with time delay, i.e., the transfer function of the plant involves infinite
dimensional terms including a rational function of

√
s and e−hs, where h > 0 represents the

delay. The H∞ optimal controller is designed by using the recent formulation given in Özbay
[2012] for the mixed sensitivity minimization problem for unstable infinite dimensional plants
with low order weights. The effect of time delay on the achievable performance level is illustrated.

1. INTRODUCTION

Recently, in a series of papers Knospe and Zhu have
obtained a fractional order mathematical model for a non-
laminated electromagnetic suspension system, see Zhu and
Knospe [2010] and Knospe and Zhu [2011]. The present
paper considersH∞ controller design for this system where
actuator and/or sensor time delays may be present. For
the same plant a PI controller design has been proposed
in Özbay et al. [2012]. In general, for fractional systems
with time delays, stability windows can be determined by
using the numerical procedure outlined in Fioravanti et al.
[2011].

The plant under consideration has a transfer function
in the form of a rational function of

√
s followed by a

time delay term e−hs, where h > 0 represents the delay
amount. For such infinite dimensional systems a simple
design method was developed in Toker and Özbay [1995]

to compute H∞ controllers. Recently in Özbay [2012] the

formulae of Toker and Özbay [1995] has been simplified
for the case where the sensitivity weight is low-order. In
this paper mixed sensitivity minimizing controllers will be
designed for the unstable fractional model developed in
Zhu and Knospe [2010], Knospe and Zhu [2011] by using

the method of Özbay [2012], and this will be verified by

the old design procedure of Toker and Özbay [1995]

In Section 2 the plant model is defined and its special
structure is analyzed. Section 3 contains a detailed discus-
sion on the numerical steps for the computation of the H∞

controller for the plant studied here. Concluding remarks
are made in Section 4.

2. PROBLEM DEFINITION

This paper investigates the fractional order plant model
of a non-laminated electromagnetic suspension system ob-
tained in Knospe and Zhu [2011]. Possible delay effects
due to sensor-actuator signal flows (real time data acqui-

sion and transmission) are also considered; hence the plant
transfer function is

P (s) =
e−hs

((sα)5 + (sα)4 − c)
(1)

where s is the Laplace variable, α is a rational number
between 0 and 1 (in this particular case, α = 0.5) and
h > 0 is the time delay. A numerical stability test for
fractional order systems with time delays can be done
easily by using the method of Fioravanti et al. [2011].
For finding the locations of the poles of the system the
following transformation plays a crucial role:

ζ = sα .

With this transformation, stability region in the ζ-plane is
defined by

|∠ζ| > απ

2
.

Knospe and Zhu [2011] shows that for all c > 0 the plant
has one unstable real pole and 4 stable complex poles. For
example, taking c = 10 gives the following poles in the
ζ-plane.

Table 1. Locations and phases of the roots of
ζ5 + ζ4 − 10 = 0

Locations of the roots phases

p1 = −1.5258 + j0.8868 150◦

p2 = −1.5258 − j0.8868 −150◦

p3 = 0.3133 + j1.4680 78◦

p4 = 0.3133 − j1.4680 −78◦

p = 1.4250 0◦

Therefore, the plant transfer function can be re-written as

P (s) = e−hsG(sα)
1

(sα − p)

where

G(sα) =
1

(sα − p1)(sα − p2)(sα − p3)(sα − p4)

is the stable part of the system. Bode plots of the stable
part e−hsG(sα) are shown in Fig. 1.
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Fig. 1. Bode plots of e−hsG(sα) for h = 0.1, c = 10 and
α = 0.5

3. DESIGNING OPTIMAL H∞ CONTROLLER

In this section, the H∞ controller formula given in Toker
and Özbay [1995], and the new method suggested in

Özbay [2012] will be applied separately to design the
optimum H∞ controller. This section is divided into three
parts, first factorization of the plant will be given, then
in the following two subsections, optimum performance
level will be investigated by the above mentioned methods
separately.

3.1 Factorization of the Plant

For the system model given above the mixed sensitivity
minimization problem tries to find the optimum perfor-
mance level and the corresponding optimal controller:

γopt := min
C∈C(P )

∥

∥

∥

∥

[

W1(1 + PC)−1

W2PC(1 + PC)−1

]∥

∥

∥

∥

∞

=

∥

∥

∥

∥

[

W1(1 + PCopt)
−1

W2PCopt(1 + PCopt)
−1

]∥

∥

∥

∥

∞

.

(2)

In (2), C(P ) denotes the set of all of controllers stabilizing
the closed loop feedback system with the plant P ; the
filters W1(s) and W2(s) are rational weighting functions
shaping the desired sensitivity and the complementary
sensitivity, respectively. Recall that C ∈ C(P ) if and only
if (1+PC)−1, C(1+PC)−1 and P (1+PC)−1 are in H∞.
Typically,W1(s) is a low order, low pass filter representing
a reference signal generator and W2(s) is a high pass
filter representing an upper bound on the multiplicative
uncertainty of the plant. The plant in (1) can be written
in the form

P (s) =
Mn(s)No(s)

Md(s)
. (3)

where No(s) is an outer function, Mn(s) is an inner
function, and Md(s) is a rational inner function whose
zeroes α1, ..., αl ǫ C+ are the unstable poles of the system.

The formula in Toker and Özbay [1995] requires Md(s)
to be the rational function of s. To put the plant into
the framework of (3) we take advantage of the fact that
α = 0.5 and hence (sα − p)(sα + p) = (s− p2):

Mn(s) = e−hs

Md(s) =
(s− p2)

(s+ p2)

No(s) =
(sα + p)

(s+ p2)(sα − p1)(sα − p2)(sα − p3)(sα − p4)

Thus, in the specific example considered here l = 1 and
α1 = p2. In this study, for simplicity of the exposition low
order weights are chosen:

W1(s) =
1

s
W2(s) = ks k = 0.3

and the notationW1 = nW1/dW1 is used with nW1(s) = 1
and dW1(s) = s.

3.2 Toker-Özbay Formula

For the factorized plant, (3), the H∞ controller can be
written in the form

C = EγMd

N−1FγL

1 +MnFγL
(4)

where

Eγ(s) =
W1(−s)W1(s)

γ2
− 1

Fγ(s) =
dW1(−s)
nW1(s)

γGγ(s).

The stable function Gγ(s) is obtained from the spectral
factorization:

Gγ(s)Gγ(−s) =
(

1 +
W2(−s)W2(s)

W1(−s)W1(s)
− W2(−s)W2(s)

γ2

)−1

.

The controller, (4), will achieve the optimum level perfor-
mance if we put γ = γopt and find the corresponding L(s).
For finding these two missing items, γopt and L(s), the
following set of computations are performed. First, define

L(s) =

[

1 s ... sn−1
]

Ψ2
[

1 s ... sn−1
]

Ψ1

(5)

where n := n1 + l, with n1 = deg(dW1). The unknown
coefficients Ψ1 and Ψ2 are defined in the following way:

Ψ1 =
[

ψ10 ... ψ1(n−1)

]T
, Ψ2 =

[

ψ20 ... ψ2(n−1)

]T
. The

relationship between Ψ1 and Ψ2 is

Ψ1 = ±JnΨ2, JnΨ2 =: Φ,

where Jn is n × n diagonal matrix, whose ith diagonal
entry is equal to (−1)i+1. The function L(s) is determined
from Φ, the singular vector of Rγ corresponding to zero
singular value obtained by the largest feasible γ > 0:

RγΦ = 0 (6)

where the parameterized matrix Rγ is given by

Rγ =

[

Vα
l DαVα

n1

Vβ
l DβVβ

n1

]

±
[

Dl 0
0 Dn1

] [

Vα
l DαVα

n1

Vβ
l DβVβ

n1

]

Jn.

(7)
The above definition uses the following:

Dl = diag(Mn(α1)Fγ(α1), ...,Mn(αl)Fγ(αl))

Dn1
= diag(Mn(β1)Fγ(β1), ...,Mn(βn1

)Fγ(βn1
))
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Dn = blockdiag(Dl, Dn1
)

Vx
m denotes k × m dimensional Vandermonde matrix,

constructed from a given vector x = [x1 ... xk]
T ∈ Ck

and β1, ..., βn1 ∈ C+ are the zeros of Eγ(s). With the
above equations, it is possible to obtain the parameterized
matrix, Rγ . This will be used to find γopt and L(s). The
optimal performance level γopt is the largest value of γ
which makes Rγ singular. After finding γopt and the value
of Rγ , Ψ2 and Ψ1 can be found by (6).

3.3 Simplified Method Given by Özbay [2012]

In the previous subsection, to reach optimum performance
a parameterized matrix is used. On the other hand, as
shown in Özbay [2012], when W1(s) is first order, (7) can
be reduced to a scalar equation Pγ = 0, where

Pγ = b(I ±Mn(β1)Fγ(β1)Jl)(I ±Mn(Ad)Fγ(Ad)Jl)
−1

(I ±Mn(Ad)Fγ(Ad)(−1)l)a+ (I ±Mn(β1)Fγ(β1)(−1)l),
(8)

with

Ad =









0 · · · 0 − a0
1 · · · 0 − a1
. . .

...
0 1 − al









a = −[a0, a1, ..., al−1]
T

b = −β1−l
[

1, β1, ..., β1
l−1.

]

Since Md(s) is first order l = 1 and Ad = −ao = p2. Also,
since W1(s) is first order, b = −1/β1 and β1 = j/γ. The
largest γ value making Rγ singular is γopt, and this is also
the largest γ satisfying Pγ = 0. Therefore, both (7) and
(9) can be used to find γopt. Fig. 2 illustrates this point
for some particular choices of h and c.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

γ

 

 

min(svd(R
γ
))

P
γ

γ
opt

 =1.6047

Fig. 2. γ vs. min(svd(Rγ)) (solid line) and Pγ (dashed
line); consistency is verified, γopt = 1.6047 for h = 0.1
and c = 10

As seen from Fig. 2, γopt = 1.6047 value computed from
two different methods coincide. Corresponding first order
function L(s) can be computed as summarized above and
hence the optimal controller can be constructed from

Copt = Eγopt
Md

N−1
o Fγopt

L

1 +MnFγopt
L
. (9)

3.4 Optimal Controller

Once γopt is computed as above, corresponding Rγ is
determined as

Rγ =

[

1.7067 0.5956
1.5226 + j0.85 0.5313 + j0.3

]

whose singular vector gives

Ψ2 = [−0.3295 − 0.9442]

that leads to

L(s) =
0.9442s+ 0.3295

0.9442s− 0.3295
.

Now with the γopt value computed , numerical values of
the functions Eγopt

(s) and Fγopt
(s) can be obtained:

Eγopt
(s) =

1 + γopt
2s2

−γopt2s2

Fγopt
(s) =

−γopts
ks2 + kas+ 1

; where ka = 0.7517.

Now, with the above functions determined, the controller
defined by (9) can be constructed and its frequency re-
sponse plots can be easily obtained. In order to illustrate
the effect of time delay on the optimal controller, Bode
diagrams of Copt(s) for two different values of h (h = 0.1
and h = 0.2) are given in Fig. 3.

Also, in Fig. 4 the effect of time delay on the achievable
performance level is shown. Note that γopt increases expo-
nentially with h.
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Fig. 3. Magnitude and Phase Diagrams of Copt

As seen from Fig. 3 the optimal controller is improper.
A suboptimal proper controller is desired for many ob-
vious reasons. For this purpose, a low pass filter in the
form 1/(ǫs + 1)υ is connected in series with the optimal
controller. In the low pass filter, υ is defined to be 2
so that controller is strictly proper, and ǫ is defined to
be 0.005 to create a roll off in in the magnitude plot of
|Csubopt(jω)| = |Copt(jω)/(1+jǫω)

υ| for ω ≥ 200 rad/sec.
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Fig. 4. Performance level γopt versus time delay (c = 10).
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Fig. 5. Suboptimal Controller with Low Pass Filter.

By simple computations similar to the ones illustrated in
Fig. 7, it can be shown that the relationship between γopt
and γ(Csubopt) (actual performance level of the suboptimal
controller) satisfies γopt ≤ γ(Csubopt) ≤ 1.01γopt for all
h ≤ 0.2 sec and ǫ ≤ 0.005.

Fig. 6 illustrates the weighted sensitivity and complemen-
tary sensitivity W1S and W2T corresponding to Csubopt

for h = 0.1 and h = 0.2.
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Fig. 6. |W1S/γ| and |W2T/γ| for h = 0.2 and h = 0.1.
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|W1S|2 + |W2T |2 for h = 0.2 and h = 0.1.

4. CONCLUSIONS

In this paper, H∞ optimal controller is computed for
a fractional order model of a non-laminated magnetic
suspension system with time delay. In this design, a
recently developed computational method given in Özbay
[2012] is verified with the earlier proven technique of

Toker and Özbay [1995]. The weighting functions are
chosen arbitrarily. Since W2(s) is rational and G(sα) is
fractional order, Bode magnitude plot of Copt shows a
fractional order improper behavior as s = jω, ω → ∞. In
order to avoid such an undesirable behavior, a suboptimal
controller is obtained by adding a low pass filter whose
cut-off frequency is around 200 rad/sec.

As future work, time domain responses of the fractional
order system with the computed H∞ controller are to be
studied.
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