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Abstract—We consider the single hop broadcast packet erasure
channel (BPEC) with two multicast sessions (each of them
destined to a different group of N users) and regularly available
instantaneous receiver ACK/NACK feedback. Using the insight
gained from recent work on BPEC with unicast and degraded
messages [1], [2], we propose a virtual queue based session-mixing
algorithm, which does not require knowledge of channel statistics
and achieves capacity for N = 2 and iid erasures. Since the
extension of this algorithm to N > 2 is not straightforward,
we describe a simple algorithm which outperforms standard
timesharing for arbitrary N and is actually asymptotically better
than timesharing, for any finite N , as the erasure probability
goes to zero. We finally provide, through an information-theoretic
analysis, sufficient but not necessary asymptotic conditions be-
tween N and n (the number of transmissions) for which the
achieved sum rate, under any coding scheme, is essentially
identical to that of timesharing.

I. INTRODUCTION

This paper examines a scenario where a source must trans-
mit 2 distinct multicast messages to 2 groups (of N users
each), such that all users in each group decode the correspond-
ing multicast message. We consider broadcast transmissions
through a broadcast erasure packet erasure channel (BPEC)
and wish to investigate the potential benefits, in terms of
achieved rates, of using ACK/NACK feedback. The above
setting is motivated by increasingly popular applications such
as wireless delivery of subscription content, where multiple
users may ask for the same content (file, video, etc.) and
multiple distinct sessions may be simultaneously active.

Although, in the absence of feedback, timesharing between
capacity achieving schemes (say, via network coding [3]) for
each multicast group is rate-optimal, recent work on BPEC
under similar settings has shown that feedback can actually
increase the capacity region beyond what is achieved by
timesharing, at the cost of increased encoding complexity. The
latter is due to the fact that the transmitter must now keep
track of the entire erasure event history, as obtained through
feedback, and properly combine packets for transmission in
the spirit of network coding.

Apart from exploring the inherent performance/complexity
tradeoff of various feedback schemes, this paper also examines
the special case N → ∞ (which is motivated by the fact
that the number of subscribed users in a content delivery
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system may be more than 100) to determine whether feedback
still offers rate benefits in this asymptotic regime. A negative
answer to this question would indicate that timesharing is
asymptotically optimal, which would greatly simplify the
employed encoding algorithms.

Our contribution is as follows:
• for iid erasures, we show that a well-known feedback
capacity upper bound, which is tight for N = 1, is also
tight for N = 2 by proposing a virtual queue-based coding
algorithm that achieves it.
• since a direct extension of the algorithm for N = 2 to
higher N requires an exponential number of virtual queues, we
propose a simple (suboptimal) algorithm which only operates
on 3 queues, for arbitrary N , and still outperforms timesharing
for any finite N . The determination of capacity achieving
algorithms for N > 2 is an open problem.
• since the performance of the above algorithm (as well as any
other algorithm we have devised so far) becomes identical to
timesharing as N →∞, we conjecture that timesharing is, in
fact, asymptotically optimal as N →∞. We provide a partial
result to support this conjecture by computing an upper bound
on the sum rate, under a special relation between N and n
(number of transmissions), and showing that it matches the
timesharing sum rate.

Due to space restrictions, the proofs of some results are
omitted and presented in [4] instead.

A. Related work

The N -user broadcast packet erasure channel (BPEC) has
been traditionally used as a non-trivial abstract model for
lossy wireless networks. Although its general capacity remains
unknown, important special cases have been solved, including
the case of N unicast sessions with feedback [1], [5] (where
it is shown that feedback can increase the capacity region)
and the case of multiple sources/multiple destinations in a
directed acyclic graph [6], where each destination must decode
the messages from all sources and the destinations know the
exact erasure events in all links. For technical reasons, which
will be explained later, the problem examined in our paper
cannot be cast into the setting of [6]. Furthermore, the two
message sets in our paper are non-degraded, so that we cannot
invoke results from relevant literature on degraded messages
[7] (most of which does not take feedback into account in the
first place).



Nevertheless, the proposed token-based approach in [1], [2]
still provides some general insight and guidelines which can
be applied here as well. The key insight in these works is to
exploit the ACK/NACK feedback in an erasure channel to keep
track (via queues) of which user received which symbols and
then suitably combine multiple symbols for transmission, in
the spirit of network coding [3], to provide “useful” symbols
for multiple users. This is a general idea which has been
applied in [8] for two unicast sessions with distinct sources
and saturated traffic, where only one source can transmit in
each slot (and each source can overhear the other source’s
transmission), as well as in [9], which considers broadcast
messages with stochastic arrivals. The difference between the
last two works and the current paper lies in the fact that
the efficient processing of the various queues (i.e. the packet
combining), which is crucial towards achieving high rates,
greatly depends on the assumed message structure and is quite
different in each case.

II. SYSTEM MODEL

We consider a time-slotted system where a single
source/transmitter wants to transmit multicast messages to
2 groups, namely G1 and G2, consisting of N users each.
Hence, all users in G1

M
= {1, . . . , N} should receive mes-

sage W1 while all users in G2
M
= {N + 1, . . . , 2N} should

receive message W2, where W1,W2 are independent. Each
transmission is of a broadcast type, i.e. the source transmits
one symbol per slot, which may be received by any subset of
G M

= G1∪G2. Notice that this model cannot be directly handled
by [6], since each group has a distinct multicast session, and
cannot be converted into a setting compatible with [6] without
introducing cycles, thus invalidating the main assumption of
that work.

The channel between the source and each user is modeled
as memoryless erasure, i.e. either the transmitted symbol is
received unaltered by the user with probability 1 − ε, or
the symbol is “erased” by the user with probability ε. The
latter case is equivalent to considering that the user received
a special symbol E, which is distinct from any possible
broadcast symbol. At the end of each slot, each user sends
feedback information (through a separate error-free and zero
delay channel) to inform the transmitter whether the broadcast
symbol was successfully received, i.e. feedback consists of a
simple ACK/NACK reply.

In information theoretic terms, the above system is de-
scribed by the tuple (X , (Yi : i ∈ G), p(Y l, Xl)), where X
is the input symbol alphabet, Yi = X ∪ {E} is the output
symbol alphabet for user i (including the erasure symbol
E 6∈ X ) and p(Y l|Xl) is the probability of having, at slot
l, output Y l

M
= (Yi,l : i ∈ G) for a transmitted (input) symbol

Xl. At the end of slot l, each user i sends back a one bit
ACK/NACK Zi,l = I[Yi,l 6= E] indicating whether the packet
was successfully received or not.

A channel code (M1,M2, n) with feedback is defined for
this system as the aggregate of the following components (this

is a natural extension of the standard definitions in [10] and
is taken directly from [1]):
• message sets Wj , with |Wj | = Mj for j = 1, 2, intended

for all users in group Gj , respectively, where |·| denotes set
cardinality. We denote with W

M
= (W1,W2) the message

that needs to be transmitted and assume that this message is
uniformly distributed in W M

=W1×W2. Equivalently, we can
identify the message set Wj as a set of packets Kj that all
users in Gj should receive. We also denote Kj = |Kj |.
• an encoder that selects a symbol Xl = fl(W ,Y l−1) for

transmission at slot l, for 1 ≤ l ≤ n, based on message W

and all previously gathered feedback Y l−1 M
= (Y 1, . . . ,Y l).

X1 is obviously a function of W only. Notice that, although
the source only receives Zl = (Zi,l : i ∈ G) as feedback from
the users, it can always deduce Y l from Zl since it knows Xl.
This justifies the specific selection for the encoding function.
• 2N decoding functions (i.e. decoders), one for each user

i ∈ G, of the form gi : Yni → W1 for i ∈ G1 and gi : Yni →
W2 for i ∈ G2. Hence, the reconstructed symbol at user i is
Ŵi = gi(Y

n
i ), where Y ni

M
= (Yi,1, . . . , Yi,n) is the sequence

of symbols received by user i (including any erasures E) after
n slots.

The probability of error for message W is λn(W ) =
Pr(∪i∈G1{gi(Y ni ) 6= W1} ∪ ∪i∈G2{gi(Y ni ) 6= W2}|W ) while
the rate for this code, in information bits per transmitted
symbol, is R = (R1, R2), where Rj = (log2Mj)/n. Then, R
is achievable if there exists a sequence of (d2nR1e, d2nR2e, n)
codes such that P̄e = 1

|W|
∑

W∈W λn(W ) → 0 as n → ∞.
The capacity region C of the channel is the closure of the set
of achievable rates. We will also write C(N) to emphasize the
fact that the capacity region is an implicit function of N ; it
clearly holds C(N) ⊇ C(N + 1) for all N .

III. ACHIEVING CAPACITY FOR N = 2

Although the feedback capacity region of the above system
is not known in general, the property C(N) ⊇ C(N+1) implies
that a global outer bound Cout is equal to C(1), i.e. the capacity
region for a 2-user system with 2 unicast sessions. This has
been determined in [11] as follows

C(1) =

{
(R1, R2) : max

π∈P

(
Rπ(1)

1− ε
+
Rπ(2)

1− ε2

)
≤ log2|X |

}
,

(1)
where R1, R2 are measured in bits per information symbol,
P is the set of permutations π on {1, 2} and capacity is
achieved by an inter-session mixing algorithm. This bound is
independent of N , which raises the question of whether it is
tight for N ≥ 2. A direct extension of the optimal algorithm in
[11] to N ≥ 2 is non-trivial, since there is no obvious way for
determining the most “efficient” way of combining symbols
due to the exploding combinatorial nature of the problem.
However, we now show the following result (full proof is given
in [4]; only the algorithm and intuition are presented here).

Theorem 1: The capacity outer bound C(1) is also tight for
N = 2, i.e. C(2) = C(1), for all 0 < ε < 1 and this bound is
achieved by the algorithm OPT2 described below.
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Fig. 1. Queue structure for OPT2. Ovals denote queues, the sets inside
the ovals denote the S corresponding to QS and lines with arrows indicate
possible index transition under the proposed algorithm.

Capacity achieving algorithm OPT2: the transmitter main-
tains a group of virtual queues QS , indexed by the non-empty
set S, where S ⊆ G and exactly one of S ⊇ G1 , S ⊇ G2 is true
(see Fig. III for a graphical depiction). A non-negative integer
index Ki

S , for each i ∈ S, is associated to queue QS . Both
QS and Ki

S are dynamically updated during the algorithm’s
operation; the rationale for introducing these entities will be
explained later.

Initialization: the packets of set Kj are placed into queue
QGj , for j = 1, 2, as shown by the dashed arrowed lines of
Fig. III, while all other queues are empty. We also set K1

{1,2} =

K2
{1,2} = 0 and K3

{3,4} = K4
{3,4} = 0, while all other indices

Ki
S are set to zero. For nomenclature purposes, we define

“level l” as the group of queues QS with |S| = l.
Encoding: the source/transmitter sequentially processes the

queues in each level, in ascending level order (relative order
within a given level is unimportant). Hence, there are 3
encoding phases corresponding to the processing of levels 2-
4, respectively. A common feature to all phases is that the
source treats the packets stored in the queues as elements of a
finite field Fq with size q (i.e. X = Fq) and transmits a linear
combination s, over Fq , of all packets in the queue currently
being processed (potentially combining them with packets in
QG , in certain cases, as will be described). The concept of
token [1], [2] will be useful.

Definition 1: A transmitted packet s at slot t is a token for
user i ∈ G iff it can be written as s =

∑
u∈Di

b
(i)
s (u)u+ c

(i)
s ,

where Di is the set of packets intended for user i (i.e. Di = Kj
for i ∈ Gj), and the values of b(i)s (u), c(i)s are known to user
i at the beginning of slot t. We also define b(i)s

M
= (b

(i)
s (u) :

u ∈ Di).
Definition 2: A set T of tokens for user i is linearly

independent iff the corresponding set of coefficient vectors
{b(i)s : s ∈ T } is linearly independent over Fq .

In all cases, we denote with O the set of users which suc-
cessfully receive a packet. The exact value of O is conveyed
to the source through feedback from the users.

Phase 1: the source individually processes each queue
QS , where |S| = 2 (i.e. QG1 , QG2 ), and transmits a linear
combination s =

∑
p∈QS as(p)p, where as(p) are selected

randomly and uniformly in Fq (this rule for generating as(p)

TABLE I
DEMONSTRATION (PARTIAL) OF EXECUTING OPT2.

Phase 1. Processing QS : S = {1, 2}
Feedback Actions w.r.t. users 1, 2 if K1

{1,2} > 0, K2
{1,2} > 0

1, 2̄, 3̄, 4̄ K1
{1,2}−−; (S.1 for user 1)

1̄, 2, 3̄, 4̄ K2
{1,2}−−; (S.1 for user 2)

1̄, 2̄, 3, 4̄
K1
{1,2}−−, K1

{1,2,3}++; (S.2 for user 1)

K2
{1,2}−−, K2

{1,2,3}++; (S.2 for user 2)

1̄, 2, 3, 4
K1
{1,2}−−, K1

G++; (S.2 for user 1)

K2
{1,2}−−; (S.1 for user 2)

1̄, 2̄, 3̄, 4̄ retransmit (S.3)
Phase 2. Proc. QS with QG : S = {1, 2, 3} (G̃S = {1, 2}, α(S) = 3)

Feedback Action w.r.t. users 1, 2, 3

1, 2̄, 3, 4

if (K1
{1,2,3} > 0) then K1

{1,2,3}−−; (S.1a for user 1)

else if (K1
G > 0) then K1

G−−; (S.1b for user 1)
if (K3

G > 0) then K3
G−−; (S.3 for user 3)

if (K2
{1,2,3} > 0) then K2

{1,2,3}−−, K2
G++; (S.2 for user 1)

1̄, 2̄, 3, 4̄
if (K3

G > 0) then K3
G−−; (S.3 for user 3)

else retransmit; (S.4)

will also apply to all subsequent phases). The generator of
as(p) is also available at the users so that they always know
the values of as(p) for a transmitted packet s even if they
don’t successfully receive s. After getting user feedback, the
source takes the following actions, or steps (the actions are not
mutually exclusive so that all conditions should be checked
and steps 1,2 can both be performed in a single transmission):

1) for each i ∈ S ∩ O with Ki
S > 0, decrease Ki

S by one.
2) if s is erased by at least one user in S (i.e. S ∩Oc 6= ∅,

where c denotes set complement w.r.t. G) and received by
at least one user outside S (i.e. O∩Sc 6= ∅), then packet
s is added to queue QS∪O and for each i ∈ S ∩Oc with
Ki
S > 0 the source performs the following actions: Ki

S
is decreased by one while Ki

S∪O is increased by one.
3) if none of the above conditions are satisfied, s is retrans-

mitted without generating new coefficients as(p).
Queue QS is processed until it holds Ki

S = 0 for all i ∈ S.
Phase 1 is complete when both level 2 queues have been pro-
cessed as described above. Table I contains a (non-exhaustive)
list of examples of checking the previous conditions and
taking suitable actions. The feedback column contains the
erasure events (the presence/absence of a bar above a number
denotes a successful reception/erasure for that user) while the
action column lists the appropriate actions/steps (the number
after S. denotes the corresponding step of phase 1). Clearly,
different steps may be taken for different users.

Phase 2: each queue QS in level 3 is individually combined
with QG in level 4 (this is still considered as “processing QS”)
by transmitting a packet s =

∑
p∈QS∪QG as(p)p. Notice that,

by construction of the queues, for each index set S in a level 3
queue, exactly one of S ⊇ G1, S ⊇ G2 holds. Define G̃S to be
either G1 or G2, depending on which of the above conditions
is true for a given S and denote with α(S) the member of the
singleton set S∩G̃cS . The following actions are now performed
(again, all cases must be considered):



1) for each i ∈ G̃S ∩ O:
a) if Ki

S > 0, then Ki
S is decreased by one.

b) if Ki
S = 0 and Ki

G > 0, then Ki
G is decreased by one.

2) if s is erased by at least one user in G̃S and received
by user α(S), then s is added to QG and for each i ∈
G̃S ∩Oc with Ki

S > 0, Ki
S is decreased by one and Ki

G
is increased by one.

3) if user α(S) received s and K
α(S)
G > 0, then K

α(S)
G is

decreased by one.
4) if none of the previous conditions is satisfied, s is

retransmitted.
Table I also contains some examples of applying various steps
of phase 2. In contrast to phase 1, a queue need not be
processed in contiguous slots, i.e. it is possible to process
Q{1,2,3} for some slots, switch to processing Q{1,2,4} and then
revert to Q{1,2,3}. The switch from a queue QS1 to another
queue QS2 in level 3 is performed when, for some i ∈ S1,
both Ki

S1 and Ki
G are equal to zero. At this point, a queue

QS2 is selected such that i ∈ S2 and Ki
S2 > 0 (so that it is

possible to increase Ki
G due to step 2 of phase 2). No switch is

made if no such S2 exists. Each level 3 queue QS is processed
until it holds Ki

S = 0 for all i ∈ S, and phase 2 is complete
when all level 3 queues have been processed.

Phase 3: only QG is processed and the transmitted packet
s has the form s =

∑
p∈QG as(p)p. After the transmitter gets

feedback and learns O, it performs the following: for each
i ∈ O with Ki

G > 0, Ki
G is decreased by 1. This phase is

complete when it holds Ki
G = 0 for all i ∈ G.

Decoding: a standard random network coding argument
shows that, for a sufficiently large field size q (namely,
q > 2N ), the random coefficients as(p) for each transmission
can be selected such that each user i ∈ Gj has received, with
high probability, Kj linearly independent tokens s by the end
of the algorithm. Since b(i)s , c(i)s are known to i, each user
can solve the resulting linear system and decode its intended
packets.

A. Intuition behind the algorithm

Inspired by [2], the algorithm operates on the following
premise: the packets should be combined in such a way that
the transmitted packet s allows any user i that receives it
to either create, if possible, a new equation for its unknown
packets (which is linearly independent w.r.t. previously created
equations by i) or gain new side information which can be
exploited in the future.

The virtual queues are used to keep track of overhearing
(i.e. which user received which packets), which is helpful in
choosing which packets to combine. In fact, the following
property can be proved, via induction on time (similarly to
[1]), for any t: all packets stored in QS at the beginning of
slot t are tokens for all i ∈ S; hence, Ki

S should be interpreted
as the number of linearly independent equations that user i still
needs to create from packets in QS .

As user i ∈ S receives linear combinations from QS , Ki
S

is decreased until it becomes zero, at which point user i has

received all available useful information from QS . If some Ki
S

is zero when processing of QS begins, cross-level combining
should be used, as described in phase 2; this is necessary to
avoid inefficiency since, in case QS is processed by itself and
the transmitted packet is only received by a user i ∈ S which
already has Ki

S = 0 (e.g. user i = 3 for S = {1, 2, 3}), this
transmission offers no benefit to i. Cross-level combining and
step 3 of phase 2 imply that the latter case can still provide
a benefit to user i as long as Ki

G > 0. Hence, even with
cross-level combining, an efficient (in terms of rate) algorithm
should guarantee that not all Ki

G indices, for i ∈ G, become
zero while there is still some non-zero Kj

S index in level 3.
The reader is referred to [4] for more details on the intuition
behind each step in phases 1–3 as well as the corresponding
performance analysis leading to Theorem 1.

IV. A LOW COMPLEXITY ALGORITHM FOR N > 2

Generalizing the previous algorithm to higher N is not
straightforward since the number of virtual queues, as well as
the possible ways of efficiently selecting queues for cross-level
combining, increases exponentially. However, we provide next
a simple (suboptimal) algorithm, named ALG, that operates
on only 3 queues (for arbitrary N ) and outperforms a baseline
timesharing (TS) scheme. Obviously, if an unbounded number
of queues is allowed at the transmitter, better algorithms than
ALG can be constructed, as described in [4].
TS scheme: the source first communicates message W1 to

all users in group G1, using any code (say, a standard network
coding based scheme [3]) that achieves the multicast cut-set
bound for G1 only. The source then communicates message
W2 to all users in G2, using an identical approach to achieve
the cut-set bound for G2 only.

The achievable region RTS of the TS scheme is

RTS = {(R1, R2) ≥ 0 : R1 +R2 ≤ (1− ε) log2|X |} , (2)

so that we aim in constructing codes which achieve a rate
region that is a superset of RTS. We now propose ALG as a
low complexity generalization of the algorithm in Section III.

Basic data structures: the transmitter maintains three vir-
tual queues QG1 , QG2 , QG as well as non-negative integer
indices Ki

S for S ∈ {G1,G2,G} and all i ∈ S.
Initialization: the packets of set Kj are placed into queue

QGj for j = 1, 2, respectively, while QG is empty. We also
set Ki

Gj = |Kj | for each i ∈ Gj , while Ki
G = 0 for all i ∈ G.

Encoding: the transmitter sequentially processes queues
QS , for S ∈ {G1,G2,G}, in that order, by treating each
packet as an element of field Fq and transmitting a linear
combination s =

∑
p∈QS as(p)p, where as(p) are chosen

randomly and uniformly in Fq . Denote with O the set of
users that successfully received s. Once the transmitter learns
O through the received feedback, it performs the following
actions (the actions are not mutually exclusive so all conditions
should be checked):

1) for each i ∈ S ∩O with Ki
S > 0, index Ki

S is decreased
by 1.



2) if s is erased by at least one user in S and received by
all users in set G − S (i.e. O ⊇ (G − S)), then packet
s is added to queue QG and for each i ∈ S ∩ Oc with
Ki
S > 0, Ki

S is decreased by 1 while Ki
G is increased by

1.
3) if none of the above conditions are satisfied, then s is

retransmitted.
Queue QS is processed until it holds Ki

S = 0 for all i ∈ S,
at which point the algorithm moves to the next queue. The
following property can again be proved for any t: at the
beginning of slot t, all packets p ∈ QS are tokens for all
users i ∈ S. The interpretation of Ki

S and the feedback-based
actions is similar to that of Section III.

Decoding: repeating the argument for N = 2 in Section III
verbatim, it can be shown that each user i ∈ G has received
Kj linearly independent tokens, with high probability, by the
end of the algorithm and can solve for its unknown packets.

A. Performance analysis

Examining the 3 types of feedback-based actions in the
encoding of ALG, it is clear that ALG discards a lot of
side information (which explains its suboptimal nature), since,
during the processing of QG1 , it moves a packet to QG only
if it is seen by all users in G2. We now show that this crude
approach still leads to better performance than TS.

As in Section III, we compute the average number of slots
T ∗S required to process queue QS , for S ∈ {G1,G2,G}, so
that the achievable rate, in information bits per transmission, is
Rj = (Kj log2 q)/T

∗, where T ∗ = T ∗G1 +T ∗G2 +T ∗G . Denoting
with T ∗i,S the (average) number of slots required, under the
application of ALG, for Ki

S to become 0, it clearly follows
that T ∗S = maxi∈S T

∗
i,S .

Some thought reveals that, during the processing of QG1 ,
index Ki

G1 is not decreased if the transmitted packet s is
erased by i as well at least one user in G2. Similarly, s is
moved from QG1 to QG resulting in a decrease of Ki

G1 by 1
(and a corresponding increase of Ki

G) if s is erased by i but
successfully received by all users in G2. Hence,

T ∗Gj =
Kj

1− ε[1− (1− ε)N ]
, j = 1, 2, (3)

while the values of indices Ki
G at the beginning of processing

QG (denote this time instant as t̃G) are given by

Ki
G(t̃G) =

Kjε(1− ε)N

1− ε[1− (1− ε)N ]
, ∀ i ∈ Gj . (4)

Simple algebra now leads to the following achievable region
R̂ for ALG

R̂ =

{
(R1, R2) : max

π∈P

(
Rπ(1)

1− ε
+

Rπ(2)

α(ε)(1− ε2)

)
≤ log2|X |

}
,

(5)
where α(ε)

M
= 1− ε

1+ε [1−(1−ε)N−1] = 1−O(ε2). Comparing
with the achievable region in (2) of the timesharing scheme,
we see that RTS can also be written in the form of (5) by
setting αTS(ε) = 1

1+ε = 1− ε
1+ε .

Hence, ALG performs better than timesharing, in the sense
that R̂ ⊃ RTS (since it holds α(ε) > αTS(ε)), and in fact
is asymptotically better as ε → 0 since αTS(ε) = 1 − O(ε).
However, it is clear that the performance of ALG becomes
identical to that of TS as N →∞, i.e. α(ε)→ αTS(ε) for all
ε as N →∞. A natural question now is whether this property
is a result of selecting a “crude” algorithm in the first place, or
whether there is a deeper result behind this. This is examined
next and a partial answer is provided for a special relation
between N and n.

V. ASYMPTOTIC PERFORMANCE AS N →∞

For the reader’s convenience, we immediately state the main
asymptotic result of this Section, which will be proved after
some intermediate results have been established first.

Theorem 2: If N is allowed to increase as a function of
n such that N(n) = (1/ε)nw(n), where w(n) = ω(lnn)
(i.e. w(n)/ lnn→∞ as n→∞), then, for any ε′ > 0, there
exists a sufficiently large n0 such that for all rates (R1, R2) ∈
C(N(n0)) it holds R1 +R2 ≤ (1− ε) log2|X |+ 4ε′.

The Theorem essentially states that if N can grow with
n in a certain way, timesharing essentially provides the best
possible sum-rate, asymptotically as n→∞. However, it does
not assert that timesharing is optimal as N → ∞ regardless
of n.

The following notation will be useful in proving the results
that lead to Theorem 2. Let Zni

M
= (Zi,l : 1 ≤ l ≤ n)

be the feedback sequence of user i at the end of n time
slots, where Zi,l = 0 (Zi,l = 1) indicates that an erasure
(successful reception) occurred for user i at slot l, respec-
tively. We also denote Zn

I
M
= (Zni : i ∈ I), for any

I ⊆ G. For brevity, we write Zn instead of Zn
G and define

d(Zni , Z
n
j )

M
=
∑n
l=1 I[Zi,l = 0, Zj,l = 1] as the number of

slots where user j successfully received the transmitted packet
and user i erased it. Note that d(Zni , Z

n
j ) 6= d(Znj , Z

n
i ). For

any i ∈ G1, we further define d∗i
M
= minj∈G2 d(Zni , Z

n
j ) and

j∗(i)
M
= arg minj∈G2 d(Zni , Z

n
j ), so that d∗i , j

∗(i) are random
variables that depend only on Zni and Zn

G2 . We now pick an
arbitrary i ∈ G1, whence the following expression follows
for any achievable rates R1, R2 (under an arbitrary coding
scheme, according to the definitions in Section II).

n(R1 +R2) = H(W1,W2) = I(W1,W2;Y ni ,Z
n)

+H(W1,W2|Y ni ,Z
n).

(6)

Using the same argument as in the converse part of
Shannon’s theorem for feedback capacity of point-to-point
channels, we find [4]

I(W1,W2;Y ni ,Z
n) ≤ n(1− ε) log2|X |. (7)

Expanding the last entropy term in (6) and using Fano’s
inequality also yields

H(W1,W2|Y ni ,Z
n) ≤ H(W1|Y ni ) +H(W2|Y ni ,Z

n)

≤ 1 + P̄e,1nR1 +H(W2|Y ni ,Z
n),

(8)



where we used the decoding function Ŵi = gi(Y
n
i ) and

defined P̄e,1
M
= Pr(Ŵi 6= W1). An upper bound for the

last conditional entropy term in (8) is given in the following
Lemma.

Lemma 1: It holds

H(W2|Y ni ,Z
n) ≤ 1 + P̄e,N+1nR2 + E[d∗i ] log2|X |, (9)

where P̄e,N+1
M
= Pr(ŴN+1 6= W2).

Proof: It holds

H(W2|Y ni ,Z
n) = H(W2|Y ni ,Z

n, Y nj∗(i))

+ I(W2;Y nj∗(i)|Y
n
i ,Z

n).
(10)

Since knowledge of Zn implies knowledge of j∗(i) ∈ G2,
Fano’s inequality allows us to write (10) as

H(W2|Y ni ,Z
n) ≤ 1+P̄e,j∗(i)nR2+H(Y nj∗(i)|Y

n
i ,Z

n), (11)

where P̄e,j∗(i) = Pr(Ŵj∗(i) 6= W2|j∗(i)). Since erasures
among users are iid and the users cannot cooperate during
decoding, we can further assume, without loss of generality,
that all users in G2 have the same decoding function and
probability of error (i.e. no user has a benefit or disadvantage
over the others). This implies that P̄e,j∗(i) = P̄e,N+1 =

Pr(ŴN+1 6= W2) so that P̄e,N+1 can be used in (11). We
now apply the entropy chain rule to the last term in (11) and
expand it as follows:

H(Y nj∗(i)|Y
n
i ,Z

n)

=

n∑
t=0

∑
zn:d∗i =t

n∑
l=1

H(Yj∗(i),l|Y ni ,Z
n = zn) Pr(Zn = zn),

(12)

and make the following crucial observation: knowledge of
zn implies knowledge of j∗(i) and for any slot l such that
zj∗(i),l = 0 it holds Yj∗(i),l = E so that the conditional en-
tropy in (12) is 0 for this l. Additionally, if zi,l = zj∗(i),l = 1,
then Yj∗(i),l = Yi,l so that the conditional entropy is again 0.

Hence, the only uncertainty for Hj∗(i),l exists when zi,l = 0
and zj∗(i),l = 1, whence we conclude that, for all zn such that
d∗i = t, it holds

n∑
l=1

H(Yj∗(i),l|Y ni ,Z
n = zn)

≤ |{l : zi,l = 0, zj∗(i),l = 1}| · log2|X | = d∗i log2|X |.
(13)

Inserting (13) into (12) yields

H(Y nj∗(i)|Y
n
i ,Z

n) ≤
n∑
t=0

tPr(d∗i = t) log2|X |, (14)

which, combined with (11), immediately produces the desired
expression.

Lemma 2: It holds E[d∗i ] =
∑n
t=1 Pr(d∗i ≥ t) ≤ n(1 −

εn)N .
Proof: The equality for E[d∗i ] is a well-known identity

for non-negative random while the inequality follows from
manipulation of binomial expressions. See [4] for details.

We are finally in position to prove Theorem 2.

Proof of Theorem 2: We bound each term in the RHS of (6)
through (7) and (8), also applying Lemmas 1, 2, and divide
by n to get

R1 +R2 ≤(1− ε) log2|X |+
2

n
+ P̄e,1R1

+ P̄e,N+1R2 + e−Nε
n

log2(2N + 1),
(15)

for any R1, R2, where we used the fact that (1− ξ)N ≤ e−Nξ

(which follows from the well-known inequality lnx ≤ x− 1)
and it must hold |X | = q > 2N (hence, we set |X | = 2N+1)
for the random linear network coding scheme to allow correct
decoding with h.p. Due to the symmetry created by the iid
erasures, instead of P̄e,N+1, which is the probability of error
for user N + 1, we could use in its place P̄e,j , for any fixed
j ∈ G2, in (15). In this sense, we treat user N + 1 as the
“first” user in G2, which implies that P̄e,N+1 can be upper
bounded (say, assuming optimal MAP decoding) by a quantity
that depends on n but not N .

Hence, for any (R1, R2) ∈ Cout and any ε′ > 0, there exists
some n0(ε′) such that max(2/n, P̄e,1R1, P̄e,N+1R2) < ε′

for all n > n0(ε′) and all N . Since Cout ⊇ C(N(n0(ε′))),
the statement in the previous sentence also holds for
all (R1, R2) ∈ C(N(n0(ε′))). It now suffices to prove
that, for this ε′, and for any N > N(n0(ε′)) it holds
e−Nε

n

log2(2N +1) < ε′, which is equivalent to showing that
limn→∞

[
e−N(n)εn log2N(n)

] ?
= 0. The last condition can

be easily proved from the assumption N(n) = (1/εn)ω(lnn)
through standard calculus.
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