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ABSTRACT 

We investigate the problem of sequential piecewise linear regression 
from a competitive framework. For an arbitrary and unknown data 
length n, we first introduce a method to partition the regressor space. 
Particularly, we present a recursive method that divides the regres­
sor space into O(n) disjoint regions that can result in approximately 
1.5n different piecewise linear models on the regressor space. For 
each region, we introduce a universal linear regressor whose perfor­
mance is nearly as well as the best linear regressor whose parame­
ters are set non-causally. We then use an infinite depth context tree 
to represent all piecewise linear models and introduce a universal 
algorithm to achieve the performance of the best piecewise linear 
model that can be selected in hindsight. In this sense, the introduced 
algorithm is twice-universal such that it sequentially achieves the 
performance of the best model that uses the optimal regression pa­
rameters. Our algorithm achieves this performance only with a com­
putational complexity upper bounded by O(n) in the worst-case and 
O(log(n)) under certain regularity conditions. We provide the ex­
plicit description of the algorithm as well as the upper bounds on the 
regret with respect to the best nonlinear and piecewise linear models, 
and demonstrate the performance of the algorithm through simula­
tions. 

Index Terms- Sequential, nonlinear, piecewise linear, regres­
sion, infinite depth context tree. 

1. INTRODUCTION 

Nonlinear regression methods based on piecewise linear and locally 
linear approximations are extensively studied in order to capture the 
salient characteristics of a signal, where linear modeling yields un­
satisfactory results [1-8]. Although nonlinear models are more pow­
erful than the linear ones, their usage is generally limited due to the 
overfitting and convergence problems [1-3,5,7]. Therefore, in order 
to obtain a satisfactory performance while mitigating these issues, 
usually, tree based piecewise linear regressors are introduced instead 
of linear models [6-8]. 

In this paper, we consider the problem of sequential regression, 
where the aim is to estimate an unknown desired sequence {d[t]} t>l 
by using a sequence of regressor vectors {x[t]} t>l' We refrain from 

any statistical assumptions on the unknown desired signal {d[t]} t>l 
and the regressor vectors {x[t]} t>l' where the desired sequence and 

the regressor vectors are real valued and bounded, i.e., d[t] E JR, 
x[t] � [Xl [t], ... , Xp [t]f E JRP for an arbitrary integer p and 
Id[t]l, Ix;[t] I < A < 00 for all t and i = 1, ... ,po We call the 
regressors as "sequential " if in order to estimate the desired data at 
time t, i.e., d[t], they only use the past information d[l], ... , d[t -1] 
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and the observed regressor vectors, x[I], ... , x[t]. That is, say we 

havel a sequential regressor d[t] = f(x[t]), then the regressor func­
tion fO can be constructed using only di-l and xi. 

A simple and widely used regressor function is the linear regres­
sor f(x[t]) = w; Xt, where the weighting parameter Wt is updated 
at each time t according to an update rule, e.g., the recursive least 
squares (RLS) algorithm [9]. However, since the performance of a 
linear regressor may be unsatisfactory in many cases [1-8], instead 
of committing to a linear model, we partition the regressor space into 
disjoint regions and fit a separate linear model in each region. Fur­
thermore, in order to efficiently manage the partitions defined on the 
regressor space, we use "context trees " [10,11]. 

Although partitioning the regressor space to introduce nonlin­
earity and using a tree structure to manage these partitions can be 
an efficient modeling method, the performance of the regressor is 
heavily affected by the construction of the tree [6-8]. Particularly, 
the "accurate " partitioning of the regressor space mainly defines the 
performance of the regressor. As an example, selection of the depth 
of the tree (i.e., the number of partitions) and the region boundaries 
of these partitions mainly define the performance of the regressor. 
While arbitrarily increasing the depth of the tree improves the mod­
eling power of a regressor, such an increase usually results in overfit­
ting [6]. Furthermore, although there exist methods that rely on held 
out data for such decisions, these methods usually do not have the 
theoretical justification or hard to implement in a sequential man­
ner [7]. 

To overcome these issues, we do not directly commit to a fixed 
depth (and fixed power) tree, but introduce a method to construct a 
context tree [11], whose depth is adaptively incremented according 
to the unknown data length n. In this sense, the depth of the context 
tree goes to infinity as n, the data length, increases, hence we call 
such a tree as the "infinite depth context tree " [11]. Clearly, by defin­
ing such a partitioning method, we increase the number of disjoint 
regions on the regressor space as n increases. Therefore, the non­
linear modeling power of the regressor will increase sequentially as 
n increases, where the computational complexity of the introduced 
algorithm, in the worst-case scenario, is linear in the data length n, 
i.e.,O(n). 

Hence, the main contributions of this paper are as follows. We 
introduce a sequential piecewise linear regression algorithm i) that 
provides a significantly improved modeling power by adaptively in­
creasing the depth of the tree according to the arbitrary and unknown 
data length n, ii) that is highly efficient in terms of the computa­
tional complexity as well as the error performance, and iii) whose 

1 All vectors are column vectors and denoted by boldface lower case let­
ters. Matrices are denoted by boldface upper case letters. For a vector x, xT 
is the ordinary transpose. We denote d� � {d[t]}�=a' 
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Fig. 1. The partitioning of a one dimensional regressor space, i.e., 
[-A, A], using a depth-2 full context tree. 

performance converges to the best piecewise linear model defined on 
the infinite depth context tree, with guaranteed upper bounds with­
out any statistical assumptions on the desired data. Hence, unlike 
the state of the art approaches whose performances usually depend 
on the initial construction of the tree, the introduced algorithm in­
creases its nonlinear modeling power as the data length n increases, 
which results in a significantly superior performance. Furthermore, 
our algorithm achieves this performance only with a computational 
complexity O(log( n)) under certain regularity conditions. 

2. PROBLEM DESCRIPTION 

In the aforementioned framework, a piecewise linear model is con­
structed by dividing the regressor space into a union of disjoint re­
gions, where in each region a linear model holds. As an example, 
suppose that the regressor space is parsed into K disjoint regions 
RI, ... , RK such that U�=1 Rk = [-A, A]P. Given such a model, 

say model m, at each time t, the sequential linear2 regressor predicts 

d[t] as dm[t] = v;:',dt]x[t] when x[t] E Rk, where vm,k[t] E lR,P 
for all k = 1, ... ,K. 

However, by directly partitioning the regressor space as U�=l 
Rk = [-A, A]P before the processing starts and optimizing only the 
weighting parameters of the piecewise linear model, i.e., Vm,k [t], 
one significantly limits the performance of the regressor since we 
do not have any prior knowledge on the underlying desired signal. 
Therefore, instead of committing to a single piecewise linear model 
and performing optimization only over the regression parameters of 
this regressor, one can use a context tree to partition the regressor 
space, by which seeking to achieve the performance of the best parti­
tioning over the whole doubly exponential number of different mod­
els represented by the context tree [12]. 

As an example, in Fig. 1, we partition the one dimensional re­
gressor space using a depth-2 tree, where the regions RI, ... , R4 
correspond to the respective intervals on the real line and the inter­
nal nodes are constructed using these regions. In the generic case, 
for a depth-d full context tree, there exist 2d leaf nodes and 2d - 1 
internal nodes. Each node of the tree represents a portion of the re­
gressor space such that the union of the regions represented by the 
leaf nodes is equal to the entire regressor space [-A, A]P More­
over, the region corresponding to each internal node is constructed 
by the union of the regions of its children. In this sense, we obtain 
2d+ 1 - 1 different regions on the regressor space and approximately 

d 
1.52 different models that can be represented by depth-d tree [12]. 
We denote the set of all different piecewise linear models defined 

2Note that affine models can also be represented as linear models by ap­
pending a 1 to x[t], where the dimension of the regressor space increases by 
one. 

o 

Fig. 2. All different piecewise linear models that can be obtained 
using a depth-2 full context tree, where the regressor space is one 
dimensional. These models are based on the partitioning shown in 
Fig. 1. 

on a depth-d context tree as Md. As an example, we consider the 
same scenario as in Fig. 1, where we partition the one dimensional 
real space using a depth-2 context tree. Then, as shown in Fig. 2, 
a depth-2 tree defines IMdl = 5 different piecewise linear models, 
where each of these models is constructed using the nodes of the full 
depth context tree. 

We emphasize that given a context tree of depth-d, the nonlin­
ear modeling power of this tree is fixed and finite since there are 

d 
only 2d+ 1 - 1 different regions and approximately 1.52 different 
nonlinear models defined on this tree. Instead of introducing such 
a limitation, we recursively increment the depth of the context tree 
as the data length increases. As previously mentioned, we call such 
a tree the "infinite depth context tree " [11], since the depth of the 
context tree goes to infinity as the data length n increases, hence in a 
certain sense, we can achieve an infinite nonlinear modeling power. 
That is, as n increases, the piecewise nonlinear models defined on 
the tree will converge to any unknown underlying nonlinear model 
under certain regularity conditions. 

To this end, we try to minimize the following regret 

t (d[t]-ds[t])2 - inf { in
.
f 

P
t (d[t]-db[t])2 } , 

mEM V m .kEIR t=1 k=i, ... ,K t=1 
(1) 

for any n, where M denotes the set of all different piecewise lin­
ear models defined on the infinite depth context tree, Vm,k is the 
regression parameter of the kth partition of the mth piecewise linear 

model such that db[t] = V;:',kX[t] is the prediction of a batch re­
gressor (when x[t] E Rk), whose parameters can be set in hindsight 
after observing the entire data before processing starts. The term in 
(1) represents the difference in the performance of our algorithm and 
the optimal batch piecewise linear regressor embedded with the op­
timal regression parameters in hindsight. Therefore, an upper bound 
on (1) shows the convergence performance of the introduced algo­
rithm. 

3. NONLINEAR REGRESSION VIA INFINITE DEPTH 

CONTEXT TREES 

In this section, we introduce a sequential piecewise linear regression 
algorithm that asymptotically achieves the performance of the best 
piecewise linear model defined on the infinite depth context tree and 
embedded with the optimum regression parameters. We provide the 
algorithmic details in the proof of Theorem 1. 

Theorem 1: Let {d[t]} t>1 and {x[t]} t>1 be arbitrary, bounded, 

and real-valued sequences of data and regressor vectors, respec­

tively. Then the algorithm d[t] given in Section 3.1 when applied to 
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these data sequences yields 

t (d[tJ-d[tJ)2 - inf [ inf { t (d[tJ-db[tJr 
t=1 mEM' V=,kEIRP t=1 k=l , ... ,Krn 

+81IvmI12 } ] �0(plog2 (n»), 

for any n, with a computational complexity upper bounded by 

O(n), where M' � {m EM: Km � O(log(n»} , Vm � 
[ Vm,I; ... ; Vm,K=J, and Km represents the number of disjoint 

regions in model m. 
This theorem implies that our algorithm given in Section 3.1, 

asymptotically achieves the performance of the best piecewise lin­
ear model (having O(log(n» partitions), whose regression parame­
ters are optimally set in hindsight, defined on the infinite depth con­
text tree. Note that the number of different piecewise linear mod­
els defined on the infinite depth context tree can be in the order of 
1.5n 

[12]. This result indicates that as n increases, the performance 
of the introduced algorithm sequentially converges to the perfor­
mance of more powerful piecewise linear regressors. Hence, as n 
increases, the difference in the performances of the introduced algo­
rithm and the piecewise linear model that optimally partitions the re­
gressor space will decrease. Such a powerful regression technique is 
achieved with a computational complexity upper bounded by O(n), 
i.e., only linear in the data length. 

3.1. Outline of the Proof of Theorem 1 and Construction of the 

Algorithm 

In order to prove Theorem 1, we first consider the parameter regret 
that results while learning the true regression parameters for a given 
piecewise linear model. We then introduce a method to partition 
the regressor space so that we obtain an infinite depth context tree. 
Finally, we consider the structural regret that results while learning 
the true partitioning of the regressor space for the introduced infinite 
depth context tree. 

For the first part of the proof, consider that a piecewise linear 
model, say the mth model, having Km disjoint regions RI, ... , RKm 
such that U�;'i Rk = [-A, AJP is given. Then, a piecewise linear 
regressor can be constructed using the universal linear predictor 

of [13] in each region as dm[tJ = V�,k[tJ x[t], when x[tJ E Rk, 
with the corresponding regression parameters [13]. The upper bound 
on the performance of this regressor can be calculated following 
similar lines to [13] and it is obtained as follows 

t (d[tJ-dm[tJr
.
Vm�i�IRP{ t (d[tJ-db[tJ)� 811vm112 } 
k=l , ... ,Km, 

� A2 Kmpln (n/ Km) + 0(1). (2) 

This concludes the first part of the proof. 
Before we introduce the partitioning method to generate the in­

finite depth context tree, we first introduce a labeling for the tree 
nodes following [10]. The root node is labeled with an empty binary 
string)., and assuming that a node has a label "', where ", = VI ... Vl 
is a binary string of length I formed from letters VI, ... , VI, we la­
bel its upper and lower children as ", 1 and ",0, respectively. Here, 
we emphasize that a string can only take its letters from the binary 
alphabet, i.e., V E {a, I} , where ° refers to the lower child, and 1 
refers to the upper child of a node. We also introduce another con­
cept, i.e., the definition of the prefix of a string. We say that a string 

A A A A 

• 0 < � 
-A -A -A -A 

t=O t=l t=2 t=3 

A A A 

-A -A -A 
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Fig. 3. A sample evolution of the infinite depth context tree, where 
the regressor space is one dimensional. The "x" marks on the re­
gressor space represents the value of the regressor vector at that spe­
cific time instant. Light nodes are the ones having an index of 1, 
whereas the index of the dark nodes is 0. 

",' = v� . . .  vI, is a prefix to string'" = VI • • •  VI if I' � I and 
v; = Vi for all i = 1, ... , l', and the empty string)., is a prefix to 
all strings. Finally, we let P( "') represent all prefixes to the string 
"', i.e., P(",) � {"'D, ... , ",z} , where l � l(",) is the length of the 
string "', "'i is the string with l("'i) = i, and "'0 = )., is the empty 
string, such that the first i letters of the string ", forms the string "'i 
fori=O, ... ,I. 

Letting L denote the set of leaf nodes for a given context tree, we 
consider each leaf node of the tree ", E L, and define a specific index 
ex" E {a, I} for these leaf nodes such that ex" represents whether a 
regressor vector has fallen into R". That is, ex" = ° represents 
that no regressor vector has fallen into region R", whereas ex" = 1 
means that there was one. We also store the set of regressor vectors 
at each leaf node, which we denote by x",n � {x[t], Vt E {1, n} : 
x[tJ ER,,} . 

We then present the algorithm to construct the infinite depth con­
text tree as follows. At time t = 0, we begin with a single node, i.e., 
the root node )." having index ex" = 0. Then, we recursively con­
struct the context tree according to the following principle. For every 
time instant t > 0, we find the leaf node of the tree ", E L such that 
x[tJ ER". For this node if we have 

• ex" = 1, then we generate two children nodes ",0, ", 1 for 
this node by dividing the region R" into two disjoint regions 
R"D, R"l using the plane Xi = c, where i -I == 1(",) 
(mod p) and c is the midpoint of the region R" along the 

ith dimension. Then, we divide the information stored in 
x",n into X"D,n, X"I,n and assign these sets to the nodes 
",0, ", 1, respectively. Using this information, we calculate 
Vm,,,D [tJ, Vm,,,1 [tJ and finally set ex"v = 1 for the node "'v, 
where V E {a, I} , such that x[tJ E R"v, and set ex"vc = 0, 
where VC represents the complementary letter of V in the bi­
nary alphabet {a, I}. 

• ex" = 0, then we only increment this number by 1 and per­
form the algorithmic updates without any modification on the 
context tree. 

2053 



As an example, in Fig. 3, we consider that the regressor space 
is one dimensional and present a sample evolution of the tree, where 
in the figure, the nodes having an index of 0 are shown as dark 
nodes, whereas the others are light nodes, and the regressor vectors 
are marked with x's in the one dimensional regressor space. For 
instance at time t = 2, we have a depth-1 context tree, where we 
have two nodes 0 and 1 with corresponding regions Ro = [-A, 0], 
RI = [0 , A], and ao = 1, aI = O. Then, at time t = 3, we ob­
serve a regressor vector x[3] E Ro and divide this region into two 
disjoint regions using Xl = -A/2 line. We then find that in fact 
x[3] E ROl, hence set aOl = 1, whereas aoo = O. This concludes 
the second part of the proof, i.e. , the construction of the infinite depth 
context tree. 

In the final part of the proof, we consider the structural regret of 
our algorithm. We first assign a weight based on the performance 
[10] for each leaf node K, E £ as follows 

where dm,k[t] is constructed using the regressor introduced in [13] 
and discussed in the first part of the proof. Then, we define the 
probability of an inner node K, if- £ as follows 

P,,(n) £ 4P,,0(n)P"I(n) 

+ 4exp {-2
1
a L (d[t]-dm,k[t])2 } . 

t�n, XltJERK 

After some algebra [10,11], it can be shown that 

-2aln (P.\(n)) ::;; �i� {� (d[t]-dm[t]f } 

+ 2a In(2) log(n) + 4A2 Km log(n), (3) 

where the first term follows due to the mixture-of-experts approach 
and the second term follows due to the adaptive construction of the 
infinite depth context tree. Using these node weights, we can con­
struct a sequential algorithm [6], hence this concludes the proof of 

fuefuwrem. D 
Remark 1: By limiting the maximum depth of the tree by 

O(log(t» at each time t, we can achieve a low complexity imple­
mentation. With this limitation and according to the update rule of 
the tree, we can observe that while dividing a region into two disjoint 
regions, we may be forced to perform O( n) computations due to the 
accumulated regressor vectors. However, since a regressor vector 
is processed by at most O(Iog( n» nodes for any n, the average 
computational complexity of the update rule of the tree remains 
O(log(n)). Furthermore, the performance of this low complexity 
implementation will be asymptotically the same as the exact imple­
mentation provided that the regressor vectors are evenly distributed 
in the regressor space. This result follows when we multiply the 
tree construction regret in (3) by the total number of accumulated 
regressor vectors, whose order, according to the above condition, is 
upper bounded by o(n/ log(n». 

4. SIMULATIONS 

In this section, we illustrate the performance of the introduced algo­
rithm for the chaotic signal generated from the Duffing map. The 
Duffing map is generated by the following discrete time equation 

Normalized Accumulated Squared Error Performance of the Proposed AlgOrithms 
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Fig. 4. Normalized cumulative squared error performances for the 
chaotic data generated by the Duffing map. 

X[t + 1] = ax[t] - (X[t])3 - bx[t - 1], where we set a = 2.75 
and b = 0. 2 to produce the chaotic behavior. We denote the infi­
nite depth context tree algorithm of Theorem 1 by "lOT ", the con­
text tree weighting algorithm of [6] by "CTW ", the linear regressor 
by "LR ", the Volterra series regressor by "VSR " [14], and the slid­
ing window Multivariate Adaptive Regression Splines of [15, 16] by 
"MARS ".The combination weights of the LR and VSR are updated 
using the recursive least squares (RLS) algorithm [9]. The CTW 
algorithm has depth 2, the VSR and MARS algorithms are second 
order, and the MARS algorithm uses 21 knots with a window length 
of 500 that shifts in every 200 samples. 

Fig. 4 shows the normalized cumulative squared error perfor­
mances of the proposed algorithms. Since the conventional non­
linear and piecewise linear regression algorithms commit to a pri­
ori partitioning and/or basis functions, their performances are lim­
ited by the performances of the optimal batch regressors using these 
prior partitioning and/or basis functions as can be observed in Fig. 4. 
Hence, such prior selections result in fundamental performance lim­
itations for these algorithms. For example, in the CTW algorithm, 
the partitioning of the regressor space is set before the processing 
starts. If this partitioning does not match with the underlying par­
titioning of the regressor space, then the performance of the CTW 
algorithm becomes highly unsatisfactory as seen in Fig. 4. Unlike 
such nonlinear models, the introduced algorithm does not commit 
to any prior structure and basis functions, instead it increments the 
number of disjoint regions to increase its nonlinear modeling power 
as the observed data length increases. 

5. CONCLUDING REMARKS 

We study nonlinear regression of deterministic signals using an infi­
nite depth context tree, where the regressor space is partitioned using 
a nested structure and independent regressors are assigned to each 
region. In this framework, we introduce a tree based algorithm that 
sequentially increases its nonlinear modeling power and achieves the 
performance of the best piecewise linear model defined on the infi­
nite depth context tree. Furthermore, this performance is achieved 
only with a computational complexity o (log ( n» under certain reg­
ularity conditions. We demonstrate performance gains of the intro­
duced algorithm over a prediction scenario of a chaotic signal. 
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