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Abstract—Community identification in social networks is of
great interest and with dynamic changes to its graph repre-
sentation and content, the incremental maintenance of com-
munity poses significant challenges in computation. Moreover,
the intensity of community engagement can be distinguished
at multiple levels, resulting in a multi-resolution community
representation that has to be maintained over time. In this
paper, we first formalize this problem using the k-core metric
projected at multiple k values, so that multiple community
resolutions are represented with multiple k-core graphs. We
then present distributed algorithms to construct and maintain
a multi-k-core graph, implemented on the scalable big-data
platform Apache HBase. Our experimental evaluation results
demonstrate orders of magnitude speedup by maintaining
multi-k-core incrementally over complete reconstruction. Our
algorithms thus enable practitioners to create and maintain
communities at multiple resolutions on different topics in rich
social network content simultaneously.

Keywords-community identification; Big Data analytics; k-
core; dynamic social networks; distributed computing

I. INTRODUCTION

Community identification and evolution in a complex net-

work has applications spanning multiple disciplines ranging

from social science to physics. In recent years, the rise

of very large, rich social networks re-ignited interests to

the problem at the big data scale that poses computation

challenges to early work with algorithm complexity greater

than O(n). In addition, many observed interactions with the
community happen not just at one but multiple levels of in-

tensity, which reflects in reality active to passive participants

in a group.

In this paper, we propose a set of algorithms built

on the k-core metric to identify and maintain a content-
projected community at multiple resolutions on an open-

source big data platform, Apache HBase. We formulate

the community identification problem as first projecting

a subgraph by content topic of the social network inter-

action, such as microblog or message, and then locating

the “dense” areas in the subgraph which represent higher

inter-vertex connectivity (or interactions in the case of a

social network) at multiple resolutions. In the literature,

there is a long list of subgraph density measures that may

be suited in different application context. Examples include

cliques, quasi-cliques [1], k-core, k-edge-connectivity [2],
etc. Among these graph density measures, k-core stands out
to be the least computationally expensive one that is still

giving reasonable results. An O(n) algorithm is known to

compute k-core decomposition in a graph with n edges [3],
where other measures have complexity growing super-linear

or NP-hard.

The set of our proposed algorithms identify k-core sub-
graphs at multiple, fixed k values and maintain the identified
subgraphs incrementally over dynamic changes. These dis-

tributed algorithms run on a multi-server cluster with shared

nothing partitioned graph data, managed by Apache HBase.

The size of the social network graph and rich content is

only limited by storage space and not by main memory.

Furthermore, identified communities at multi-resolution are

also persisted and updated as changes come in. Our al-

gorithms thus enable practitioners to monitor changes in

communities on different topics and resolutions in rich social

network content simultaneously, which main-memory based

algorithms cannot achieve.

Our main contributions in this paper can be summarized

as follows:

• We formulated multi-resolution community identifica-
tion as a multi-k-core problem and developed a dis-

tributed multi-k-core construction algorithm that runs

in parallel on big data platform.

• We further developed a distributed multi-k-core main-
tenance algorithm to keep the previously materialized

multi-resolution community representation up to date

with incremental updates.

• We presented a robust implementation of our algo-
rithms on top of Apache HBase, a horizontally scaling

distributed storage platform through its Coprocessor

computing framework [4].

The rest of the paper is organized as follows. We first

review prior work on community identification and k-core
algorithms in Section II. Section III introduces the big

data platform and programming framework. We define and

introduce key k-core properties in Section IV. Section V de-
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scribes our distributed multi-k-core construction algorithms
in naïve implementation and pruning techniques. Section VI

details our incremental maintenance algorithms for edge

insertions and deletions. Experimental results are reported

and discussed in Section VII. Finally, Section VIII concludes

the paper and discusses future work.

II. RELATED WORK

A wide-range of applications from social science to

physics need to identify communities in complex networks

that share certain characteristics at various scales and reso-

lutions [5] [6] [7]. Challenges remain, however, to address

both intensity and dynamicity of communities at large scale.

We thus focus on metrics and algorithms whose complexity

is no greater than O(n).

The notion of k-core is first introduced in [8] for mea-
suring group cohesion in social networks. Subsequently,

Batagelj and Zaversnik (BZ) proposed a linear time algo-

rithm to compute k-core [3]. The BZ algorithm first sorts the
vertices in the increasing order of degrees and starts deleting

the vertices with degree less than k. At each iteration, it
needs to sort the vertices list to keep it ordered. Due to high

number of random accesses to the graph, the algorithm can

run efficiently only when the entire graph can fit into main

memory of a single machine.

To tackle this problem, Cheng et al. in [9] proposed an

external-memory solution which can spill into disk when the

graph is too large to fit into main memory. The proposed

algorithm, however, does not consider any distributed sce-

nario where the graph resides on a large cluster of machines.

A distributed k-core decomposition algorithm is introduced

in [10] targeting a different computing platform than ours.

They assume that each graph vertex can be located on a

different computing node, similar to the nodes of a P2P

network or a sensor network, which are good examples for

distributed graph representations.

The k-core decomposition problem in a dynamic graph

was first studied in [11], and an improved alternative was

introduced by Li et al. in [12]. In [11], Miorandi et al.

provide a statistical model for contacts among vertices and

compute k-core decomposition as a tool to understand the
influence of a spreader in diffusion of epidemics. k-core
decomposition was recomputed at given time intervals using

the BZ algorithm. The largest graph in those experiments,

however, had only 300 vertices and 20K edges. We work

with graphs of much bigger size. In [12], on the other

hand, when a dynamic graph is updated, instead of re-

computing k-core decomposition over the whole graph,

the proposed algorithm tries to determine a minimal sub-

graph for which k-core decomposition might need to be re-
computed. This approach, however, was reported for single

server in-memory processing only, whose straightforward

extension for distributed processing is far more costly.

Parallel graph algorithms have a long history with high

performance computing. Most early studies, however, tar-

geted static graphs [13], [14]. More recent work imple-

mented graph algorithms on MapReduce framework [15]

and its open source implementation Apache Hadoop [16].

However, the iterative nature of many graph algorithms soon

prompted many to realize that static data is needlessly shuf-

fled between MapReduce tasks [17], [18], [19]. Pregel [20]

thus proposed a new parallel graph programming framework

following the bulk synchronous parallel (BSP) model and

message passing constructs. Two Apache incubator projects,

Giraph [21] and Hama [22], inspired by Pregel, are looking

to implement BSP on top of Hadoop infrastructure.

Our work learned from the strength and limitation of these

algorithms and platforms to make progress in the areas of

distributed big graph data processing and incremental multi-

resolution maintenance. We implemented, tested and ana-

lyzed our algorithms on an open-source big-data processing

framework. Therefore, before getting to the details of our

proposed algorithms, we first would like to briefly introduce

in the next section the big data programming framework

where our distributed k-core algorithms are implemented.

III. BIG GRAPH DATA ANALYTICS ON

APACHE HBASE

We model interactions between pairs of objects, including
structured metadata and rich, unstructured textual content,

in a graph representation materialized as an adjacency list

known as edge table. An edge table is stored and managed

as an ordered collection of row records in an HTable by
Apache HBase [4]. Since Apache HBase is relatively new

to the research community, we first describe its architectural

foundation briefly to lay the context of its latest feature

known as Coprocessor, which our algorithms make use of
for graph query processing.

A. HBase and Coprocessors

Apache HBase is a non-relational, distributed data man-

agement system modeled after Google’s BigTable [23].

HBase is developed as a part of the Apache Hadoop project

and runs on top of Hadoop Distributed File System (HDFS).

Unlike conventional Hadoop whose saved data becomes

read-only, HBase supports random, fast insert, update and

delete (IUD) access.

Fig. 1(a) depicts a simplified diagram of HBase with

several key components relevant to this paper. An HBase

cluster consists of master servers, which maintain HBase

metadata, and region servers, which perform data operations.

An HBase table, or HTable, may grow large and get split into

multiple HRegions to be distributed across region servers.

HTable split operations are managed by HBase by default

and can be controlled via API also. In the example of

Fig. 1(a), HTable 1 has four regions managed by region

servers 4, 7 and 10 respectively, while HTable 2 has three
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Figure 1. An HBase cluster consists of one or multiple master servers
and region servers, each of which manages range partitioned regions of
HBase tables. Coprocessors are user-deployed programs running in the
region servers. They read and process data from local HRegion and can
access remote data by remote calls to other region servers.

regions stored in region servers 4 and 10. An HBase client

can directly communicate with region servers to read and

write data. An HRegion is a single logical block of record

data, in which row records are stored starting with a row

key, followed by column families and their column values.

HBase’s Coprocessor feature was introduced to selectively

push computation to the server where user deployed code

can operate on the data directly without communication

overheads for performance benefit. The Endpoint Coproces-

sor (CP) is a user-deployed program, resembling database

stored procedures, that runs natively in region servers. It can

be invoked by an HBase client to execute at one or multiple

target regions in parallel. Results from the remote executions

can be returned directly to the client, or inserted into other

HTables in HBase, as exemplified in our algorithms.

Fig. 1(a) depicts common deployment scenarios for End-

point CP to access data. A CP may scan every row from

the start to the end keys in the HRegion or it may impose

filters to retrieve a subset in selected rows and/or selected

columns. Note that the row keys are sorted alphanumerically

in ascending order in the HRegion and the scan results

preserve the order of sorted keys. In addition to reading local

data, a CP may be implemented to behave like an HBase

client. Through the Scan, Get, Put and Delete methods and

their bulk processing variants, a CP can access other HTables

hosted in the HBase cluster.

B. Graph Processing on HBase

We map the rich graph representation G = {V,E,M,C}
defined in Section IV to an HTable. We first format the

vertex identifier v ∈ V into a fixed length string pad(v).
Extra bytes are padded to make up for identifiers whose

length is shorter than the fixed length format. The row key

of a vertex v is its padded id pad(v). The row key of an

edge e = {s, t} ∈ E is encoded as the concatenation of the

fixed length formatted strings of the source vertex pad(s),
and the target vertex pad(t). The encoded row key thus will
also be a fixed length string pad(s)+pad(t). This encoding
convention guarantees a vertex’s row always immediately

proceeds the rows of its outbound edges in an HTable. Our

graph algorithms exploit the strict ordering to join ranges of

two tables. Fig. 1(b) includes a simple example of encoded

graph table, whose partitioned HRegions are shown across

three servers. In this table, a vertex is encoded as a string

of three characters such as ’A10’, ’B13’, ’B25’, ’A21’, etc.

A row key encoded like ’A10B13’ represents a graph edge

from vertex ’A10’ to ’B13’.

k-core algorithms in Sections V and VI are implemented

in several HBase Coprocessors to achieve maximal paral-

lelism. Take degree computation as an example. Multiple

instances of Coprocessors scan the graph data table’s local

partitions in parallel and then insert vertices’ degrees into

another HBase table. When a non-local edge is to be deleted,

a Coprocessor instance issues the row delete message to

the remote HBase region server, which deletes the edge.

Our algorithms are optimized to minimize the message

exchanges by achieving as much processing in the local

partition as possible.

IV. PRELIMINARIES

We define a rich graph representation G

G = {V,E,M [V,E], C[V,E]} (1)

where V is the set of vertices, E is the set of edges,M [V,E]
and C[V,E] are the structured metadata and unstructured
content respectively. The paper simplified its description by

including all vertices in the k-core computation while in
practice, our system can be used to construct and maintain

multiple k-core subgraphs on different metadata topics and
context simultaneously.

The problem of k-core subgraph identification is formally
defined as follows:

Definition 1: A subgraph Gk = {Vk, Ek} induced from
G where Vk ⊂ V , Ek ⊂ E, is a k-core if and only if
∀v ∈ Vk, its degree, DGk

(v) to the other vertices in Gk is

greater than or equal to k. Gk is the maximum subgraph in

G with this property.
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Definition 2: The core number of a vertex, v, is the
maximum k where v ∈ Vk and v /∈ Vk+1.

From the definitions, we can deduce the following lem-

mas, which are used extensively in our algorithms to prune

the search space.

Lemma 1: ∀v ∈ Vk, DG(v) ≥ k
We further define Nk

G(v) as the number of neighbors of
the vertex v in G, whose degree is greater than or equal
to k, i.e. Nk

G(v) = |{w|(w, v) ∈ E,DG(w) ≥ k}|. In
later sections, we sometimes refer to Nk

G(v) as Qualifying
Neighbor Count (QNC) or shorthand as qnck(v).

Lemma 2: ∀v ∈ Vk, N
k
G(v) ≥ k

V. DISTRIBUTED MULTI k-CORE CONSTRUCTION

In this section, we first describe a naïve distributed al-

gorithm that constructs a k-core subgraph, then we propose
a novel algorithm to compute k-core graph for multiple k
values simultaneously. Table I summarizes notations used in

our pseudocode.

Table I
NOTATIONS USED IN ALGORITHMS

G Dynamic graph partitioned into regions
stored in multiple server nodes

Gk k-core materialized view graph of G
Gki

Subgraph of Gk holding k-core for core value ki

k1...n Target core values in ascending order

Ri i’th region of graph stored on
and processed by node i

Ni i’th node storing region i
(X)← RCf (Ri, S) Remote call to function f on region i takes

parameter S and returns value X to client

{u, v} Graph edge from vertex u to vertex v
Ri(GA) Region of graph GA processed by node Ni

TA(CX , CY ) Lookup table A with column CX and CY

d(u), dGki
(u) Degree of vertex u in G and Gki

qncki
(u) Qualified Neighbor Count for vertex u

in Gki
with respect to next core value ki+1

A. Base algorithm

The base algorithm is an adaptation of the BZ algorithm

to distributed processing for a fixed k value. As described
in Algorithms 1 and 2, the server side algorithm executes in

parallel as HBase coprocessors to scan partitioned graph data

in the local regions and delete those vertices with degrees

less than k. The client side program monitors parallel

execution and issues iterations until k-core is found. To
compute k-core graph for multiple k values, this algorithm
is called for each k value separately.

B. Multi k-core construction

Our proposed algorithm computes k-core subgraphs for a
list of distinct k values. As stated in the notation, k values are
ordered and ki is the i’th k value, e.g. k1...3 = {15, 20, 30}.
In the degenerate case, k0 = 0, Gk0 = G. The algorithm
starts with computing k-core graph for k1 and progressively
moves up the index by reusing previously found k-core
subgraph.

Algorithm 1 Base k-core construction- Client Side
Input: Graph G = (V,E),

k: target core value
Output: Gk the k-core graph

1: Gk ← clone graph G
2: doIterate← true
3: while doIterate do
4: for each region i in regions(Gk) do
5: anyEdgeDeletedi ← RCFilter Out Edges(Ri, Gk, k)

6: Wait RCs to complete
7: doIterate← false
8: for each region i in regions(Gk) do
9: doIterate← doIterate||anyEdgeDeletedi

10: return Gk

Algorithm 2 Base k-core construction- Node Ni Side

1: Upon receiving (anyEdgeDeleted)← RCFilter Out Edges(Gk, k)
2: anyEdgeDeleted← false
3: for each edge {u, v} ∈ Ri(Gk) do
4: if d(u) < k then
5: delete {u, v} and {v, u} from Gk

6: anyEdgeDeleted← true

7: Return anyEdgeDeleted

The algorithms are described in Algorithms 3 and 4 for

the client and server side, respectively. It first computes k-
core graph for k1 using the Base algorithm. Next, the client
invokes distributed parallel processing Compute Core at
the server side to compute core values for vertices with

degree greater than or equal to ki and less than ki+1. On the

server side, it checks a vertex’s degree count and decrements

its neighbors’ if their degree counts are greater than ki+1.

Iterations continue until all the parallel execution reported

vertices in Gki+1 have been identified.

Algorithm 3 Multi k-core construction- Client Side
Input: Graph G = (V,E),

k1...n: target core values
Output: Gk the k-core graph

1: Gk ← Base k-core construction( G, k1)

2: Create new table TL(Cdegree)
3: for each region i in regions(Gk) do
4: RCCompute Degrees(Ri, Gk, TL)

5: Wait RCs to complete

6: kn+1 ← infinity
7: next← k1

8: for each ki in k1...n do
9: while next ≥ ki and next < ki+1 do
10: next← infinity
11: for each region j in regions(Gk) do
12: nextj ← RCCompute Core(Rj , ki, ki+1)

13: Wait RCs to complete
14: for each region j in regions(Gk) do
15: next← min(next, nextj)

VI. INCREMENTAL MULTI k-CORE MAINTENANCE

A. Edge insertion

With graph G = {V,E} and its materialized multi k-
core subgraph Gk = ∪i=1..nGki where Gki = {Vki , Eki},
we give the following edge insertion theorem without proof

due to space limitation.
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Algorithm 4 Multi k-core construction- Node Ni Side

1: Upon receiving RCCompute Degrees(Gk, TL)
2: for each vertex u ∈ Ri(Gk) do
3: compute dGk

(u) and put it into TL(Cdegree)

4: return
5: Upon receiving Compute Core(ki, ki+1)
6: next← infinity
7: for each vertex u ∈ Ri do
8: if dGk

(u) ≥ ki and dGk
(u) < ki+1 then

9: core[{u}]← ki

10: for each vertex v adjacent to u do
11: if dGk

(v) ≥ ki+1 then
12: dGk

(v)← dGk
(v)− 1

13: if dGk
(v) < ki+1 then

14: next← dGk
(v)

15: if dGk
(u) ≥ ki+1 then

16: next← min(next, dGk
(u))

17: return next

Theorem 1: Given a graph G = {V,E} and its k-core
subgraph Gk = ∪i=1..nGki

, and an edge {u, v} is inserted
to G,

• If both u, v ∈ Vkn , then Gkn stays the same.

• If u or v or both ∈ Vki
and i is maximal, i.e.

�(j, k)|j > i, k > i, u ∈ Vkj
and v ∈ Vkk

,

then the subgraph consisting of vertices in {w|w ∈
Vki , dGki

(w) ≥ ki+1, qncGki
(w) ≥ ki+1}, where

every vertex is reachable from u or v, may need to
be updated to include additional vertices into Gki+1

.

The intuition behind the theorem is that an edge insertion

can at most increase core number by one. An edge inserted

to the highest k-core Gkn
does not change the subgraph.

However, an edge inserted to vertices in Gki
may push some

vertices to Gki+1
but not further up in the hierarchy. Figure 2

depicts this scenario, where a new edge and its update

is always sandwiched between two rings of k-core graph.
Bounding by the two rings implies that our maintenance

algorithm can exploit this property to minimize traversal.

Algorithms 5, 6 and 7 present the algorithms in detail.

There are several auxiliary counts maintained for all vertices,

∀v ∈ V , its degree dGki
(v) and its qualifying neighbor

count qncGki
(v) for each maintained ki. For each insert,

the algorithm first looks for the maximal subgraph Gki
in

which u or v is found. If any such Gki
graph is found for

i > 0, new edge is inserted and auxiliary information is

updated. When i is equal to n, which means both vertices
are in the inner most core graph, no update is required so the

algorithm terminates. If qnc value for either vertex is no less
than the next target ki+1 value, then there is a possibility

that Gki+1
will be updated because of the new edge. In this

case, the algorithm searches the graph and marks a tightly

bounded subgraph of vertices which needs to be updated.

Find Candidate Graph subroutine in Algorithm 6 traverses

Gki
subgraph and returns the Gcandidate subgraph which

covers the set of candidate edges that may be part of the

ki+1-core. The edges whose vertex w satisfy the condition

d(w) ≥ ki+1 and qncki+1
(w) ≥ ki+1 are considered as
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Figure 2. Upon an edge {u, v, } insertion where u or v resides
in ki-core Gki

, first tightly bounded Gcandidate graph is discovered
exploiting maintained auxiliary information, then it is processed to compute
Gqualified subgraph qualifying for ki+1-core.

candidate edges for Gki+1
. Partial KCore in Algorithm 7

then processes Gcandidate subgraph and returns the graph

qualified for ki+1 core into Gqualified.

Algorithm 5 Edge Insertion- Node Ni Side

Input: Graph G = (V,E),
Gk: the multi k-core graph,
{u, v}: new edge,
k1...n: maintained core values

Output: the updated k-core graph

1: Auxiliary Update(G, u, v, k1...n) � Update the auxiliary values
2: i = min{i|u ∈ Gki

or v ∈ Gki
}

3: if i > 0 then � both vertices are in core graph
4: insert edge {u, v} and {v, u} into Gki
5: Auxiliary Update(Gk , u, v, k1...n)

6: if i == n then
7: return
8: if d(u) < ki+1 or d(v) < ki+1 then
9: return
10: Gcandidate ← ∅
11: if qncki+1

(u) ≥ ki+1 or qncki+1
(v) ≥ ki+1 then

12: Gcandidate ←Find Candidate Graph(Gki
, Gki+1

,C,ki+1, u)

13: if Gcandidate �= ∅ then
14: Gqualified ← Partial KCore (Gcandidate, ki+1)
15: Gki+1

← Gki+1
∪Gqualified

B. Edge deletion

We begin with the following edge deletion theorem, which

mirrors the edge insertion theorem.

Theorem 2: Given a graph G = {V,E} and its k-core
subgraph Gk = ∪i=1..nGki

, and an edge {u, v} is deleted
from G,

• If {u, v} /∈ Eki , then Gki does not change.

• If {u, v} ∈ Eki
and i is maximal, then the subgraph

consisting of vertices in {w|w ∈ Vki
}, where every

vertex is reachable from u or v, may need to be updated
to maintain edge deletion from Gki

.
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Algorithm 6 Find Candidate Graph
Input: Gki

: base k-core graph,
Gki+1

: target k-core graph,

C: set of candidate edges,
kj : target core value,
u: start vertex

Output: C: set of candidate edges

1: Q← new queue
2: Q.enqueue(u)
3: mark(u)
4: while Q �= ∅ do
5: v ← Q.dequeue()
6: if v is not local then remote request for edges of v
7: for each vertex w adjacent to v in Gki

do
8: if {v, w} /∈ C then
9: if d(w) ≥ kj and qnckj

(w) ≥ kj then
10: C ← C ∪ {v, w}
11: if w /∈ Gki+1

then
12: C ← C ∪ {w, v}
13: if w is not marked then
14: Q.enqueue(w)
15: mark(w)

16: return C

Algorithm 7 Partial KCore
Input: C: set of candidate edges,

kj : target core value,
Output: C: the updated set of edges qualifying for k-core

1: changed← true
2: while changed do
3: changed← false
4: for each {u, v} ∈ C do
5: if dC(u) < kj then
6: delete {u, v} and {v, u} from C
7: changed← true

8: return C

The intuition behind this theorem is that an edge deletion

can at most decrease core number by one and thus an edge

deleted from Gki
may push some vertices from Gki

to Gki−1

but not further down in the hierarchy. Again, our algorithm

exploits the property to minimize traversal.

Algorithm 8 implements the theorem on the server side.

Edge deletion logic is similar to edge insertion case. Upon

receiving an edge deletion, it first finds out in which k-core
graph this edges resides, say Gki

. If it does not reside in any

k-core, then the algorithm terminates. Otherwise, Update
Coreness Cascaded algorithm described in Algorithm 9

starts with the vertex with dGki
less than ki, moves it to

the lower k-core graph Gki−1
. Then it recursively traverses

the neighbors whose degrees in Gki
are now below ki. The

algorithm accelerates k-core re-computing by knowing, at
each iteration, which vertices have changed their degrees.

For the majority of cases where an edge deletion impacts a

small fraction of vertices in the k-core, we have found this
improved algorithm to be very effective.

VII. PERFORMANCE EVALUATION

We ran experiments to demonstrate the performance of

our proposed multi k-core construction algorithm and the

performance of our proposed k-core maintenance algorithms
on dynamic graphs. We show that recomputing the k-core

Algorithm 8 Edge Deletion- Node Ni Side

Input: Graph G = (V,E),
Gk: the multi k-core graph,
{u, v}: the edge to be deleted,
k1...n: maintained core values

Output: the updated k-core graph

1: Auxiliary Update(G, u, v, k1...n) � Update the auxiliary values
2: i = min{i|u ∈ Gki

or v ∈ Gki
}

3: if i == 0 then � when edge is not in Gk , no change occurs
4: return
5: delete {u, v} and {v, u} from Gki
6: Auxiliary Update(Gk , u, v, k1...n)

7: if dGki
(u) ≥ ki and dGki

(v) ≥ ki then
8: return
9: if dGki

(u) < ki then
10: Update Coreness Cascaded(Gk ,i,u)

11: if dGki
(v) < ki then

12: Update Coreness Cascaded(Gk ,i,v)

Algorithm 9 Update Coreness Cascaded
Input: Gk: the multi k-core graph,

k1...n: maintained core values,
u: start vertex

Output: the updated Gk

1: Q← new queue
2: Q.enqueue(u)
3: mark(u)
4: while Q �= ∅ do
5: v ← Q.dequeue()
6: core[v]← ki−1 � decrease vertex core value.
7: for each vertex w adjacent to v in Gki

do
8: if ki−1 == 0 then
9: delete {v, w} and {w, v} from Gki

10: if dGki
(w) < ki then

11: if w is not marked then
12: Q.enqueue(w)
13: mark(w)

subgraphs is much costlier than incrementally maintaining

it in dynamic graphs where edges are inserted and deleted.

A. System Setup and Datasets

Graph data is stored in HBase and the algorithms are

implemented as HBase Coprocessors where distributed par-

allelism is applicable. Table II shows how notations in

algorithms are interpreted in HBase implementation. Our

cluster consists of one master server and 13 slave servers,

each of which is an Intel CPU based blade running Linux

connected by a 10-gigabit Ethernet. We use vanilla HBase

environment running Hadoop 1.0.3 and HBase 0.94 with

data nodes and region servers co-located on the slave servers.

We configured HBase with maximum 16 GB Java heap

space and Hadoop with 16 GB heap to avoid long garbage

collection in the Java virtual machine. The HDFS (Hadoop

File System) replication factor is set at the default three

replicas. There was no significant interference from other

workloads on the cluster during the experiments.

The datasets we used in the experiments were made

available by Milove et al. [24] and the Stanford Network

Analysis Project [25]. We appreciate their generous offer

to make the data openly available for research. For details,
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Table II
MAPPING OF GRAPH NOTATIONS IN TABLE I TO IMPLEMENTATION IN

HBASE

G HBase table holding graph edges partitioned
into regions over multiple region servers

Gk HBase table holding k-core graph edges
Ri i’th region processed by coprocessor Ni

Ni i’th coprocessor running on region i
(X)← RCf (Ri, S) Coprocessor function f on region i takes

parameter S and returns value X to client

Ri(GA) Region of GA processed by coprocessor Ni

TA(CX , CY ) Table A created on HBase with column CX and CY

Table III
KEY CHARACTERISTICS OF DATASETS IN THE EXPERIMENTS

Name Vertex Count Bidirectional Edge Count Ref

Orkut 3.1 M 234 M [24]
LiveJournal 5.2 M 144 M [24]
Flickr 1.8 M 44 M [24]
Patents 3.8 M 33 M [25]
Skitter 1.7 M 22.2 M [25]
BerkStan 685 K 13.2 M [25]
YouTube 1.1 M 9.8 M [24]
WikiTalk 2.4 M 9.3 M [25]
Dblp 317 K 2.10 M [25]

please see the references and we only briefly recap the key

characteristics of the data in Table III.

B. Experiments

We use multiple k values to represent a community at
multiple resolutions. For each social network dataset, we

select three distinct k values so that 4, 8 and 16 percent of the
vertices in that dataset have a degree of at least k. The higher
the k value, the stronger or tightly knit the communities are.
Conversely, the lower the k value, the weaker or loosely
connected the communities are. Table IV lists the chosen

k values. We first run Base k-core construction algorithm
to measure the baseline k-core construction time for each
dataset and k value. Then we run Multi k-core construction
algorithm, which is described in Algorithms 3 and 4, for

each dataset with all chosen k values at once to measure k-
core construction for multiple k values. Figure 3 shows the
construction times for both algorithms. Speedup achieved

by Multi k-core construction algorithm is upper bounded

by the number of distinct values which is 3 in this case.

We observe that, for larger datasets the algorithm achieved

higher speedup due to the redundant computation saved.

To evaluate the performance of maintenance Algo-

rithms 5 and 6, we first construct and materialize k-core
graph for selected multiple k values and under three scenar-
ios explained below we measure average maintenance times.

1) In Insertion scenario, 1000 randomly chosen edges are
inserted into the graph. Those random edges are se-

lected from the graph and deleted before materialized

k-core graph is constructed.
2) In Deletion scenario, 1000 randomly chosen edges are
deleted from the graph.

3) In Mix scenario, Insertion and Deletion scenarios are
run simultaneously where one insertion is followed by

one deletion.
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Figure 3. k-core construction times for Base and Multi k-core construction
algorithms are shown for each dataset with three chosen k values. Relative
speedup achievement of Multi algorithm over Base algorithm is provided
above each bar.

We repeated these three scenarios with each dataset and

measured their execution times. Fig. 4 plots the speedup

through our incremental maintenance algorithms over re-

computing k-core from scratch, for 9 different datasets.

The y-axis shows the speedup in log-scale. For insertion,
deletion, mix scenarios and each dataset, the figure gives

the speedup of incremental update approach with respect to

from-scratch construction using the multi k-core construc-
tion algorithm. As the figure shows, three to five orders

of magnitude speedup can be expected for edge insertion

workload. Similar speedup factors are also observed for

mixed edge insertions and deletions with one to one ratio.

Higher speedup, more then five orders of magnitude was

achieved for edge deletion only workload. Note that storing

a new edge in HBase without maintenance algorithm took

3 ms on the average.

VIII. CONCLUSIONS

To the best of our knowledge, this paper is the first

to propose a horizontally scaling solution on the big data

platform for multi-resolution social network community

identification and maintenance. By using k-core as the
measure of community intensity, we proposed multi-k-core
construction and incremental maintenance algorithms and

Table IV
k VALUES USED IN THE EXPERIMENTS AND THE RATIO OF VERTICES

WITH DEGREE AT LEAST k IN THE CORRESPONDING GRAPHS

Datase - k values 4% 8% 16%

Orkut 263 183 123
LiveJournal 80 50 28
Flickr 65 24 9
Patents 28 21 15
Skitter 42 26 15
BerkStan 57 38 24
WikiTalk 5 3 2
YouTube 18 10 5
Dblp 25 16 10
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Figure 4. k-core maintenance speedups under a) Insertion b) Deletion c)
Mix workloads.

ran experiments to demonstrate orders of magnitude speedup

with the aggressive pruning and fairly low maintenance

overhead in the majority of graph updates at relatively high

k-valued cores.

For the simplicity of the presentation, we left out the

metadata and content associated with graph vertices and

edges. In practice, a k-core subgraph is often associated
with application context and semantic meaning. Our efficient

maintenance algorithms now enable many practical applica-

tions to keep many k-core materialized views up to date and
ready for user exploration.

We provided a distributed implementation of the algo-

rithms on top of Apache HBase, leveraging its horizontal

scaling, range-based data partitioning, and the newly intro-

duced Coprocessor framework. Our implementation fully

took advantage of distributed, parallel processing of the

HBase Coprocessors. Building the graph data store and

processing on HBase also benefits from the robustness of

the platform and its future improvements.
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