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Abstract—A new Smith predictor based controller is proposed
for systems with integral action and flexible modes under input-
output time-delay. The design uses controller parametrization
and aims to achieve a set of performance and robustness
objectives. Compared to existing Smith predictor based designs,
disturbance attenuation property is improved, with respect to
periodic disturbances at a known frequency. A two-degree of
freedom controller structure is shown to be helpful in shaping
the transient response under constant reference inputs. Stabil-
ity robustness properties of this system are also investigated.
Simulation results demonstrate the effectiveness of the proposed
controller.

I. INTRODUCTION

Time delay appears frequently in process control systems.

Typically, presence of time delay in processes makes it difficult

to design a control system. A feedback system with time

delay in the loop is a special case of infinite dimensional

systems having infinitely many poles. In 1957, O.J.Smith, [25],

introduced a special controller structure where the transfer

function from reference input to the output can be shaped

by designing a controller for the delay free part of the plant.

This is a model based structure which uses the advantage of a

mathematical model of the process in a minor feedback loop.

Over the last 50 years, many modifications to the Smith

predictor structure have been proposed to extend the idea to a

wider class of plants. For example, [26] proved that the Smith

predictor cannot reject the load disturbance for processes with

integration and also showed that there was a steady state error

for a load change if the process delay time deviated from

its nominal value. Since then, many other modifications have

been pointed out to overcome the problem of controlling a

process with integrator and dead time, e.g., [19], modified the

structure of [26] by adding a filter. Also, [2] proposed a new

structure for the control of integrator and dead time processes

which decouples the disturbance response from the set-point

response. The modifications of [16]–[17], include additional

feedback path from the difference of plant output and the

model output to the control input. Similarly, [14], proposed a

simple relay auto-tuning method for the Smith Predictor and

they computed a reduced order process model in terms of a

first- or second-order dynamics plus delay time (FOPDT and

SOPDT respectively). In the late of 1990’s, the limitations of

PID controllers controlling resonant, integrating and unstable

plants in a conventional feedback structure have been studied

[9], [21]. See [24] for the details of the most of the above

mentioned “modified Smith predictor-based controllers” and

further references.

In all afore mentioned works, the robustness issue was not

explicitly analyzed. In fact, even if the Smith predictor is

nominally stable, it is possible to destabilize the feedback

system by a minor change in the process dynamics. For

example, [11] defined a single multiplicative perturbation to

represent the uncertainty in several process parameters. A

geometric method is presented in [18] to describe the impacts

of the delay uncertainty on the stability of a standard Smith

predictor. Also, [8] used system identification method to find

out a nominal model and they determined uncertainty bound

of the nominal model in the frequency domain through the

uncertainty quantification method. A robust criterion for the

Smith predictor was also derived in [8]. Mismatch in time

delay is analyzed in [1]. Many other researchers also focused

on robustness of Smith predictor, see e.g., [10] and [13]. The

Smith predictor structure is used in many application areas

such as telecommunication [12], [15], [4], biological systems,

[23], and flexible-link robot manipulator [3].

In this paper, controller in the structure of Smith predictor

will be designed for a flexible robot arm including integrator

and time delay, with performance and robustness consider-

ations. Controller parametrization allows widest freedom in

choosing controller parameters and this results in improved

performance, both in set-point response and disturbance re-

jection. For the controller obtained in this manner, stability

robustness is also investigated. Simulation results show that

improved performance can be obtained in the presence of

unmodeled dynamics.

The paper is organized as follows. Structure of the plant

considered and proposed Smith predictor based controller

structure are defined in Section 2. Section 3 analyzes per-

formance with respect to set-point tracking and disturbance

rejection. Stability robustness analysis is done in Section 4.

Concluding remarks are made in Section 5.

II. PLANT STRUCTURE AND CONTROLLER DESIGN

A typical flexible robot arm can be represented as in Fig. 1.

Control input is the torque applied by the motor and the

angular velocity is taken to be the output. Hence, from the

physical laws, transfer function of this plant includes an
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integrator. Due to flexibility of the robot arm, high frequency

dynamics also enter into the plant transfer function. Time

delays in the system appear due to sampling, sensor/actuator

non-collocation, and signal transmission depending on the

physical distance between the controller and the plant.

Fig. 1. Representation of a Flexible Robot Arm

There are many approaches to modeling and system iden-

tification for flexible robot arm, see e.g. [6],[22] and their

references. We will assume that nominal parameters for the

flexible modes are obtained from parameter estimation, and

any non-minimum phase part is absorbed into the time delay.

Hence the plant transfer function from torque to angular

velocity is in the form

P0(s) =
K

s
R0(s)e

−Tds (1)

where the gain K > 0 is proportional to the inertia (mechan-

ical signal amplifiers and scaling factors in the actuator also

contribute to the gain), Td > 0 is the time delay, and R0(s)
is a minimum phase transfer function in the form

R0(s) =
ω2
0

s2 + 2ζ0ω0s+ ω2
0

n∏

k=1

(s2/ω̃2
k) + 2ζ̃k(s/ω̃k) + 1

(s2/ω2
k) + 2ζk(s/ωk) + 1

where 0 < ω0 < ω̃k < ωk are the resonant and anti-resonant

frequencies, and ζ̃, ζ, are the damping factors, taking values

between 0 and 1. It is assumed that the above parameters

are estimated from system identification, but when it comes

to stability robustness analysis uncertainty in R0(s) will be

considered. Note that R0(jω) ≈ 1 for all 0 ≤ ω ≪ ω0.

The structure of proposed Smith predictor based controller

for this model is shown in Fig. 2. As seen from Fig. 2, the

controller C1 is defined as

C1(s) =
R̂ε(s)

−1

K̂

(
C0(s)

1 + C0(s)
1−e−T̂ds

s

)
(2)

Here R̂−1
ε (s) = R̂−1

0 (s)/(1 + εs)2 is the approximate inverse

of the term due to flexible modes, with 0 < ε ≪ ω−1
n . R̂−1

0 is

in the same form of R0(s) except that its parameters are the

estimated values of ωi, ζi, ω̃i, ζ̃i for i = 0, 1...., n which are

not necessarily matching the exact values used in R0(s). The

free part of the controller is C0(s) and it is to be designed from

the non-delayed part of the plant as usual in Smith predictor

based design. Typically H(s) = 1 and does not play a role in

the feedback system stability analysis, nor in the disturbance

attenuation problem. When two-degree of freedom controller

scheme is considered, the stable filter H(s) is designed to

improve the tracking performance.

Fig. 2. Proposed Smith Predictor Based Controller Structure

For the plant given in (1), the controller C1(s) is required

to satisfy these three conditions:

1) C1(s) must be Type 1, for perfect steady state tracking

of constant reference input r(t).
2) Periodic disturbances d(t) with known frequency, ωd,

must be rejected in steady state.

3) The feedback system must be stable with “good” robust-

ness properties (in the sense to be discussed below).

To satisfy first condition, C1(s) is entailed to have a pole

at s = 0, which is important to avoid to steady state error and

reject load disturbance. This condition is translated to

lim
s→0

C1(s) = ∞ =⇒ lim
s→0

(
1 + C0(s)

(1 − e−T̂ds)

s

)
= 0

From the L’Hôpital Rule, we obtain 1 + T̂d C0(0) = 0 which

means

C0(0) = −
1

T̂d

. (3)

This is the first design criterion.

According to internal model principle, [5], to satisfy the

second condition, C1(s) must have poles at s = ±jωd

(since the system is real, only one interpolation condition is

sufficient):

lim
s→jωd

C1(s) = ∞ =⇒ lim
s→jωd

(
1 + C0(s)

(1− e−T̂ds)

s

)
= 0

which means

C0(jωd) =
−jωd

1− e−jT̂dωd

. (4)

In the same way, this is the second design criterion.

Keeping in mind the above conditions, stability of the

feedback system must be guaranteed. With the controller

structure C1(s), when the plant is known P (s) = P0(s), the

characteristic equation of closed-loop system is

1 + C0(s)
1

s
= 0 (5)

which means that C0(s) must be designed to stabilize 1
s

, the

integrator. If P1(s) =
1
s

, then the set of all controllers which

stabilizes P1 is found by using controller parametrization, [27].



To find this set, let P1(s) =
Np(s)
Dp(s)

, where Dp(s) =
s

s+a
and

Np(s) =
1

s+a
with a > 0 is a parameter to be chosen via pole

placement method as shown below.

All stabilizing controllers for P1(s) are parameterized as:

C0(s) =
X(s) +Dp(s)Q(s)

Y (s)−Np(s)Q(s)
(6)

where Q ∈ H∞ and Q 6= Y N−1
p . Here, X,Y ∈ H∞ are

functions satisfying

Np(s)X(s) +Dp(s)Y (s) = 1 (7)

It is clear from (7) that

Y (s) =
1−Np(s)X(s)

Dp(s)
(8)

Since Dp(0) = 0, X(0) must be equal to 1
Np(0)

which means

X(0) = a. Since X(s) should be stable, simply it can be

chosen as X(s) = a. Then, from (8), Y can be found as:

Y (s) =
1− 1

s+a
a

s
s+a

=
(s+ a)− a

s
= 1

If all functions are put into (6),

C0(s) =
a+ s

s+a
Q(s)

1− ( 1
s+a

)Q(s)
. (9)

Now, the problem is reduced to finding a stable Q(s) satisfying

the interpolation conditions (3)-(4). From (9) the interpolation

conditions are translated to

Q(0) = a(1 + aT̂d) (10)

Q(jωd) =
(jωd + a− ae−jωdT̂d))(jωd + a)

(jωd)e−jωdT̂d

. (11)

To satisfy (10) and (11), a second order transfer function in

the form

Q(s) =
bs2 + cs+ d

s2 + es+ f
(12)

will be postulated for Q(s). Here e, f > 0 are free parameters;

once these free parameters are chosen, b, c and d are deter-

mined from the interpolation conditions (10) and (11). As a

result, C0(s) turns into

C0(s) =
(a+ b)s3 + (l1a+ c)s2 + (l2a+ d)s+ al3

s3 + (l1 − b)s2 + (l2 − c)s+ (l3 − d)
(13)

where l1 = e+ a, l2 = f + ae, l3 = af .

With the above design, when P = P0, K̂ = K , T̂d = Td,

R̂0 = R0 and ε → 0, the closed-loop transfer function from r
to y in Fig. 2, is Try(s) = T0(s)H(s) where T0 = P0C1(1 +
P0C1)

−1, and it reduces to

T0(s) =
NT (s)

(s2 + es+ f)(s+ a)2
e−Tds (14)

NT (s) = a(s+ a)(s2 + es+ f) + s(bs2 + cs+ d) (15)

where a > 0, e > 0 and f > 0 are chosen to place the closed

loop system poles at the desired locations, and b, c, d ∈ R are

determined from the interpolation conditions (10) and (11).

The pre-filter H(s) can now be designed to cancel some

of the higher dynamics in T0(s) depending on the location of

the zeros of NT (s). Typically, we choose a stable and strictly

proper H(s) with H(0) = 1. One particular choice is

H(s) =
1

1 + τs
(16)

where τ > 0 is the free design parameter, typically it is

designed to cancel the fastest negative real axis zero of T0(s).
This idea can be extended to define a possibly higher order

H(s) to shape |T0(jω)|.

III. PERFORMANCE ANALYSIS

This section will be divided into two parts. Performance

will be analyzed in terms of set-point response and then

disturbance rejection. Proposed controller is compared with

the alternative Smith predictor based controller of Mataušek

and Micić, [17], which is proved to offer good performance

(many recent application oriented papers in this area consider

[17] as the baseline for comparison, see e.g. [7] and [24]). In

this section, it is assumed that P = P0, K̂ = K , T̂d = Td,

R̂0 = R0 and ε → 0 for nominal system performance analysis.

The effects of mismatch in these parameters will be discussed

in Section IV. The plant taken into consideration is

P0(s) =
20

s
R0(s)e

−0.2s (17)

where R0 includes flexible modes

R0(s) =
( s
ω̃1

)2 + 2 ζ̃1
ω̃1

s+ 1
(
( s
ω1

)2 + 2 ζ1
ω1

s+ 1
) (

( s
ω0

)2 + 2 ζ0
ω0

s+ 1
) (18)

with the values ω̃1 = 115, ζ̃1 = 0.22, ω1 = 125, ζ1 = 0.06,

ω0 = 95, ζ0 = 0.15.

For this plant the designed parameters are a = 1, e = 2,

f = 2 that leads to b = 3.88, c = 0.986, d = 2.4, and

C0(s) =
4.88 (s+ 0.355) (s2 + 0.44s+ 1.16)

(s− 0.14)(s2 − 0.74s+ 2.90)
.

Thus we have Try(s) = T0(s)H(s) where

T0(s) =
4.88(s+ 0.355)(s2 + 0.44s+ 1.16)

(s2 + 2s+ 2)(s+ 1)2
e−0.2s. (19)

We select H(s) = (1 + s/0.355)−1 in the setpoint analysis

given below. By a proper choice of H , it is also possible

to cancel the lightly damped zeros of T0(s); but this should

be avoided, because location of these zeros are very sensitive

to plant parameters used in the interpolation conditions (10)-

(11). Note that H(s) does not play a role in the disturbance

attenuation analysis; and it will be taken as H(s) = 1 for

robust stability analysis.

A. Setpoint Response Analysis

Responses of the proposed controller and the alternative

Smith Predictor-based controller design of [17] are given in

Fig. 3. The proposed controller results in a faster response:

2% settling time of 7.1 sec. versus 13.1 sec. Since proposed

controller has three free parameters, it is possible to further

optimize the setpoint response.
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Fig. 3. Setpoint Responses
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Fig. 4. Response to the constant disturbances under no reference input

B. Disturbance Rejection Analysis

The simulations are performed for two different disturbance

types: (i) constant signal and (ii) a periodic signal of frequency

ωd = 1.5 rd/sec. By using two degree of freedom controller

structure, Mataušek and Micić, [17], provide fast disturbance

rejection for constant load disturbances which is caused by

derivative action and fast estimation of the disturbance signal.

However, [17] fails to reject sinusoidal disturbances. Since

proposed controller has poles at s = 0 and s = ±jωd, where

ωd is the frequency of sinusoidal disturbance, Fig. 4 and Fig. 5

show that constant and sinusoidal disturbances are suppressed

in steady state as expected.

IV. STABILITY/ROBUSTNESS ANALYSIS

In order to determine the stability margins, open loop

transfer function G(jω) is analyzed:

G(s) = P0(s)C1(s) (20)

=
K

s
R0(s)e

−Tds


 C0(s)

1 + C0(s)
(1−e−T̂ds)

s


 1

K̂
R̂−1

ε (s)

=

(
K

K̂

)
(R0(s)R̂

−1
ε (s))

C0(s)e
−Tds

s+ C0(s)(1 − e−T̂ds)

Let T̂d = Td and define

G0(s) =
C0(s)e

−T̂ds

s+ Co(s)(1− e−T̂ds)
.
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Fig. 5. Response to the sinusoidal disturbances under no reference input
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Fig. 6. Frequency response of G0

The case R0(s)R̂
−1
ε (s) 6= 1 will be considered later at the end

of this section.

The gain and phase margins obtained from Bode Plot of

G0(jω) give the information on how much uncertainty in the

gain (K/K̂) and delay mismatch (Td − T̂d) can be tolerated,

[20]. Fig. 6 shows the stability margins on the Bode plots,

GM = 3 ≡ 9.5dB, PM = 47◦ and DM = 0.27 sec. It

should be noted that, stability margins can be improved by

changing free parameters. However, this may deteriorate the

setpoint tracking and disturbance rejection performances.

The best way to analyze the robustness in the presence of

both gain and phase perturbation is the vector margin (VM),

which is defined as the distance between the critical point, −1,

and G0(jω):

VM = min
ω

|1 +G0(jω)| (21)

For the system designed, VM = 0.625, which is relatively

large for good stability robustness. Robustness to variations in

the gain K and delay Td is analyzed by calculating the VM

when these parameters are fixed as K̂ = 20, T̂d = 0.2 sec in

the controller but they are modified in the plant, taking values

in the intervals K ∈ [1 , 60] and Td ∈ [0 , 0.55] sec, see

Fig. 7. This figure also shows the stability boundary (where

VM = 0) and the nominal operating point.



Fig. 7. Vector Margin for different K and Td
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Fig. 8. Setpoint Response for K̂ = 28 and T̂d = Td

In controller design, using Fig. 7 effectively can be very

useful to increase robustness. For example, Fig. 7 shows that

if the ratio (K/K̂) is decreased to 0.7 (i.e. K̂ is chosen as

28.5) vector margin becomes 0.715, assuming that T̂d = Td.

That leads to GM = 4.26, PM = 47◦, DM = 0.33 sec. With

this modification better stability margins are obtained with the

expense of slight performance loss: the corresponding setpoint

response and disturbance responses are given in Fig. 8 and

Fig. 9 respectively.

In order to analyze stability/robustness in the presence of

dynamic uncertainty, consider the plant

P (s) = P0(s)(1 + ∆m(s)) (22)

where ∆m(s) is multiplicative uncertainty, which is assumed

to be stable. The feedback system formed by the nominal

controller designed as above and the uncertain plant (22) is

robustly stable if and only if

|∆m(jω)| <
1

|T0(jω)|
∀ ω, (23)

where T0(s) is as in (19). Recall that there are 8 parameters in

the plant (17)–(18); varying each one of these will give a plant

in the form (22), with a corresponding ∆m(jω). Considering

20% variation in the nominal values of these 8 parameters
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Fig. 9. Disturbance Responses for K̂ = 28 and T̂d = Td

we obtain a family of ∆m. Fig. 10 shows that all of these

|∆m(jω)| (red lines) remain below the graph of 1/|T0(jω)|,
hence satisfying the robust stability inequality (23). Moreover,

the gap between the red and blue lines represent how much

additional uncertainty can be tolerated at each frequency.
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Fig. 10. Illustration of robust stability.

Let us now ignore the flexible modes in the controller

design, R̂ε(s) = 1, but include R0(s) in the plant. Also,

consider 25% uncertainty in the gain and time delay, i.e.,

K = 1.25 K̂ , Td = 1.25 T̂d. The setpoint response for this

case is as shown in Fig. 11. It is observed that the proposed

controller is robust to these perturbations. On the other hand,

the benchmark controller of [17] shows an unstable response

for combined perturbations in the delay and gain, with the

presence of the flexible modes Ro(s) in the plant. The reason

for this behavior can be explained by Fig. 12, where robustness

inequality (23) is satisfied with the present controller, but it is

violated with the controller of [17].

V. CONCLUSIONS

A Smith predictor based controller structure is considered.

Based on interpolation conditions imposed by constant refer-

ence tracking, and periodic disturbance rejection, the free part

of the controller, C0(s) is designed. The resulting C0(s) is

a third order transfer function. In this design there are three

free parameters a, e, and f ; they determine the closed loop
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Fig. 11. Setpoint Response for Mismatched Parameters.
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Fig. 12. Robust stability check under 25% uncertainty in Td and K; here
R0(s) have fixed parameters but it is treated as unmodeled dynamics.

system pole locations. Optimization of these parameters for

other performance and robustness measures is possible.

In the implementation of the overall controller C1(s), shown

in Fig. 2, the feedback loop around C0 is a filter whose impulse

response is finite duration 1−e−T̂ds

s
. So, this component can

be implemented easily in a numerically reliable manner. The

controller also uses the (approximate) inverse of the stable

minimum phase part of the plant, 1/(K Rε(s)). Robustness

to uncertainties in K , Td and the parameters of R0(s) is also

demonstrated. If an upper bound of multiplicative uncertainty

is given, then it is possible to use H∞ control techniques to

modify the design of C0 accordingly.
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