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Abstract— Due to the existence of various sources of delays,
the dynamical model of HDD (Hard Disk Drive) servo systems
is actually infinite dimensional, although most of the control
algorithms simplified the model with Padé expansions or other
finite dimensional approximations. In this paper, a robust loop
shaping algorithm is developed for the HDD model with delays
by using an H∞ synthesis approach for infinite dimensional
systems. The H∞ controller is derived with a structure of
an internal feedback loop including an FIR (Finite Impulse
Response) filter and an IIR (Infinite Impulse Response) filter,
which facilitates non-fragile implementations. Comparisons to
other robust control methods are given and the advantages
of this approach are demonstrated in terms of improvement
of TMR (track misregistration) and tracking TPI (Track-per-
Inch) capability.

I. INTRODUCTION

The rapid growth of research on nano-precision mecha-
tronics and the immense demands of HDD storage with
various application have imposed many new challenges on
servo technologies. There have been considerable research
works that address important control issues inherited in this
area, see [1], [3], and [4]. In [22] a robust µ-synthesis
approach is introduced for the head positioning of a VCM
(Voice Coil Motor) actuator in HDD. The robust loop shape
problem is also discussed in [8], where a dual stage actuation
architecture is adopted. Track-seeking is also an important
topic inviting considerable studies, for example, the well-
known PTOS (Proximate Time Optimal Seek) control ap-
proach discussed in [16], [17], and more recent result on the
use of variable structure observer in seeking control [15].
Advanced control algorithms are not only used in servo
operations for data access, but also in the process of writing
servo patterns during HDD manufacturing, see for example
[20], [5], [14].

Among the abundant research results on HDD servo algo-
rithms, one of the central topics is the robust loop shaping for
HDD servo systems, which determines the servo bandwidth,
attenuations of disturbance, and transient behaviors during
seek settling. Robust control theory has been widely inves-
tigated for HDD [22], [8], as well as other nano-positioning
applications [9], [18], [10], [25], where standard H∞ con-
trol algorithms and µ-synthesis [24] have been successfully
developed. It is worth noting that the dynamical model of
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HDD servo systems is actually infinite dimensional due to
the existence of various sources of delays [21], although
most of the control algorithms simplified the model with
Padé expansion or other finite dimensional approximations.
Therefore two important questions remain open in this area:
1) is it possible to synthesize robust H∞ controllers for the
infinite dimensional HDD model directly, and 2) what are the
advantages of the direct approach, compared to the existing
approximation methods?

In this paper, the time delay model of HDD servo systems
is analyzed with uncertainties and formulated to a mixed
sensitivity optimization problem for robust control. By using
the H∞ control theory for infinite dimensional systems [6],
the optimal H∞ performance can be numerically computed
and an explicit form of the optimal H∞ controller can
be developed. Based on coprime-inner/outer factorization,
we can eliminate the unstable pole-zero cancelations in the
H∞ controller and generate the controller structure with
an internal feedback loop including an FIR (Finite Impulse
Response) filter and an IIR (Infinite Impulse Response) filter,
[7], [12], [23], which facilitates a non-fragile implementation
of the robust servo controller. Another important contribution
of the present paper is the comparisons to existing robust
control methods, which demonstrate significant improvement
of TMR and tracking TPI (Track-per-Inch) capability.

The rest of the paper is organized as follows: in Section II,
we describe the HDD servo model with time delays and
uncertainties. In Section III, we discuss the mixed sensitivity
optimization problem for the SISO time delay systems, and
the non-fragile structure for controller implementations. A
design case is studied in details in IV, where comparisons are
also provided with existing robust control approaches of Padé
approximations. Tracking TPI capabilities and TMR analysis
are discussed in Section V to illustrate the advantages of the
proposed design, followed by conclusions in Section VI.

II. MODELING OF HDD SERVO SYSTEMS

A modern HDD can be considered as an ultra-high pre-
cision mechatronics device. The dynamics of a single stage
HDD with a VCM actuator can be modeled as:

P (s) =
KDCe

−hs

s2
Ts(s)Th(s), (1)

where KDC is the actuator DC gain, h the total time
delay from various sources such as PWM filters, power
amplifiers, actuator delays, and Ts(s) the first translational
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Fig. 1. Nominal plant and actual plants with uncertainties.

mode (system mode):

Ts(s) =
As(s)

Bs(s)
=

s2 + 2ξz,0ωnz,0s+ ω2
nz,0

s2 + 2ξp,0ωnp,0s+ ω2
np,0

, (2)

where ξz,0 and ωnz,0 are the damping ratio and natural
frequency of the zeros of the system mode, and ξp,0 and
ωnp,0 the damping ratio and natural frequency of the poles.
Note that Ts(s) is stable, biproper and minimum phase, i.e.,
Ts(s) ∈ H∞ and T−1

s (s) ∈ H∞, which is usually guaran-
teed by the mechanical design of HSA (Head Suspension
Assembly). All the high frequency resonant modes can be
modeled by Th(s):

Tm(s) =
N∏
i=1

1
ω2

nz,i

s2 + 2
ξz,i
ωnz,i

s+ 1

1
ω2

np,i

s2 + 2
ξp,i
ωnp,i

s+ 1
, (3)

where ξz,i, ξp,i, ωnz,i and ωnp,i are the damping ratios and
natural frequencies of the ith resonant mode.

We define the nominal model of (1) as:

P0(s) =
K0e

−hs

s2
T̄s(s), (4)

where

T̄s(s) =
Ās(s)

B̄s(s)
=

s2 + 2ξ̄z,0ω̄nz,0s+ ω̄2
nz,0

s2 + 2ξ̄p,0ω̄np,0s+ ω̄2
np,0

. (5)

As depicted in Figure 1, the nominal plant P0(s) is illustrated
by the thick blue line and the actual plant with various
uncertainties can be illustrated by the thin magenta lines.
Now that the multiplicative uncertainties can be written as:

∆Pm(s) =
P (s)− P0(s)

P0(s)
=

As(s)B̄s(s)

Ās(s)Bs(s)
Tm(s)− 1. (6)

We denote the multiplicative uncertainty bound W2(s) with
|∆Pm(s)|s=jω ≤ |W2(s)|s=jω , which can be used to de-
scribe the the upper and lower bounds of the plant variations
by |P0(jω)| ± |P0(jω)W2(jω)| (see the the dash lines in
Figure 2).
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Fig. 2. Plant model and uncertainty bounds.

III. MIXED SENSITIVITY OPTIMIZATION FOR
INFINITE DIMENSIONAL SYSTEMS

Various robust control algorithms has been widely dis-
cussed for HDD servo design (see [11], [13], [8], [21], to cite
just a few contributions). An applicable H∞ control method
in servo loop shaping is mixed sensitivity optimization,
where the nominal performance (determined by performance
weighting W1(s)) and robust stability (determined by uncer-
tainty weighting W2(s)) can be optimized simultaneously:

inf
Cstab.P0

∥∥∥∥[ W1(s)(1 + P0(s)C(s))−1

W2(s)P0(s)C(s)(1 + P0(s)C(s))−1

]∥∥∥∥
∞

(7)

Note that standard H∞ control theory, as readily imple-
mented in the robust control toolbox of Matlab, cannot be
applied due to the existence of time delays in P0(s). In what
follows, we would like to investigate the mixed sensitivity
optimization problem (7) using the robust control theory for
infinite dimensional systems developed in [6], [19] based
on frequency domain techniques. For time delay systems
considered here state-space based design methods are also
available, [12], [23].

First, define

P̃0(s) = P0(s) ∗ T̄−1
s (s) ≈ K0e

−hs

(s+ ϵ)2

C̃(s) = C(s) ∗ T̄s(s), (8)

where ϵ > 0 is sufficient small. With this, the original H∞

optimization (7) can be written as:

inf
C̃stab.P̃0

∥∥∥∥[ W1(s)(1 + P̃0(s)C̃(s))−1

W2(s)P̃0(s)C̃(s)(1 + P̃0(s)C̃(s))−1

]∥∥∥∥
∞
,

(9)
where the optimal H∞ controller, denoted by C̃opt(s), yields:∥∥∥∥[ W1(s)(1 + P̃0(s)C̃opt(s))

−1

W2(s)P̃0(s)C̃opt(s)(1 + P̃0(s)C̃opt(s))
−1

]∥∥∥∥
∞

= γo.

We define W1(s) = K1/s
2 to meet the design specifica-

tion of HDD servo loop on low frequency roll-off around
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40dB/dec for disturbance attenuations. The multiplicative
uncertainty weight is chosen as a second order polynomial
W2(s) = a+ bs+ cs2 to accommodate model uncertainties
(see Figure 2). Observe that P̃0(s) admits the coprime
inner/outer factorization P̃0(s) = mnNo, where mn =
e−hs ∈ H∞(C+) is inner and No = K0/(s+ϵ)2 ∈ H∞(C+)
is outer.

Applying the formulae of [6], [19], the optimal solution
to (9) is given in the form:

C̃opt(s) =
1

K0
Eγo(s)

s2 Fγo(s) L(s)

1 + e−hsFγo(s) L(s)
(10)

where
Eγo(s) =

nE(s)

dE(s)
=

K2
1 − γ2

os
4

γ2
os

4

Fγo(s) =
nF (s)

dF (s)
=

s2

f4s4 + f3s3 + f2s2 + f1s+ f0
(11)

with coefficients f0, . . . , f4 depending on γo

L(s) =
nL(s)

dL(s)
=

1 + aLs

1− aLs

with aL and γo are determined from two interpolation
conditions, see [19].

A. Controller Structure and Implementation

It is noticed that the H∞ controller (10) has unstable zero-
pole cancelations due to interpolation conditions. However
the exact cancelations for the factorization terms are not
possible because of the infinite dimensional term of the
time delay in the controller [7], [12], [23]. We would like
to rearrange the terms in the controller to eliminate the
unstable zero-pole cancelations such that the above controller
structure is implementable.

In fact, C̃opt(s) can be rewritten as:

C̃opt(s) =
1

K0f4

(
1

1 +H(s)

)
, (12)

where
H(s) = H1(s) +HFIR(s), (13)

with

H1(s) =
QH1

1 + aLs
, QH1 =

2

f4

dF (−1/aL)

nE(−1/aL)
, (14)

It can be further shown that HFIR(s) is an FIR filter defined
as:

HFIR(s) = L{hFIR(t)} (15)

with
hFIR(t) =

{
C0e

A0tB0 0
0 t > h

(16)

where

C0(sI −A0)
−1B0 =

h0(s)

(s+ 1/aL)nE(s)
,

and

h0(s) =
1

f4
(1/aL − s) dF (s)

− (1/aL + s)nE(s)−QH1
nE(s).

1
K0f4

T̄−1
s (s)

H1

HFIR

+

C(s)

+

+

-

Fig. 3. Controller structure.

From (8), (12) and (13), we can derive the optimal H∞

controller

Copt(s) =
1

K0f4
T̄−1
s (s)

(
1

1 +H1(s) +HFIR(s)

)
, (17)

which has the structure as depicted in Figure 3. It is worth
noting that the controller structure (17) facilitates non-fragile
digital implementations due to the FIR feature of HFIR(s)
and the low order representation of H1(s).

B. Padé Approximation Methods

Most of the existing results on HDD servo loop shaping
employ low order Padé approximations (18) to simplify the
problem to a finite dimensional system, with which the
closed form solutions of H∞ controllers to the problem (7)
can be synthesized by standard 2-block H∞ optimization
[24].

e−hs ≈ Tm
h (s) :=

1− k1s+ k2s
2 + · · · ± kmsm

1 + k1s+ k2s2 + · · ·+ kmsm
, (18)

where Tm
h (s) is the mth order Padé approximation.

Now that an important open problem is the conservative-
ness of this method using various Padé approximations and
how they are compared with the direct method discussed
above. For this purpose, we consider the mixed sensitivity
optimization (7) by Padé approximations with e−hs ≈
Tm
h (s), m = 1, 2, 3, respectively. We denote

Pm
0 (s) =

K0

s2
Tm
h (s)T̄s(s), , m = 1, 2, 3 (19)

and

W̃1(s) :=
K1

(s+ ϵ1)2
≈ W1(s), ϵ1 > 0

W̃2(s) :=
a+ bs+ cs2

(ϵ2s+ 1)2
≈ W2(s), ϵ2 > 0.

A standard mixed sensitivity optimization problem can for-
mulated for finite dimensional models Pm

0 (s), m = 1, 2, 3:

inf
Cmstab.Pm

0

∥∥∥∥[ W̃1(1 + Pm
0 Cm)−1

W̃2P
m
0 Cm(1 + Pm

0 Cm)−1

]∥∥∥∥
∞
,m = 1, 2, 3.

(20)
Note that low order Padé approximations result in inaccu-

racies at high frequency, while higher order approximations
lead to high order controller dynamics and undesired ze-
roes/poles which could cause transient problem. We will use
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K0 h ξ̄z,0 ξ̄p,0 ω̄nz,0 ω̄np,0

5.2269× 108 6× 10−5 0.99 0.018 1.244× 105 5.29× 104

ϵ K1 a b c
0.01 2× 107 0.3125 9.4211× 10−6 8.772× 10−11

TABLE I
MODEL COEFFICIENTS.
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Fig. 4. Time response of FIR HFIR(s).

a design example to compare the direct method for infinite
dimensional systems and the Padé approximation methods.

IV. A DESIGN CASE STUDY

In this section, we apply the control algorithm derived
in the above section to an industry design case, where an
enterprize class 2.5-inch form factor HDD is considered. The
HDD has 15kRPM rotation speed for high performance
purpose, which requires challenging design specifications
on the servo control system. The nominal plant model (4)
and the weighting functions are defined in Table I. The
nominal model (blue line) of the HDD VCM structures and
the uncertainty bounds are depicted in Figure 2.

To begin with, we determine the optimal H∞ performance
γo = 0.48336 using the computational procedure of [19].
That leads to the following numerical values for the compo-
nents of the optimal H∞ controller in Section III:

Ēγo(s) =
nĒ

dĒ
=

−0.2336 s4 + 4× 1014

0.2336 s4
,

L̄(s) =
nL̄

dL̄
=

1 + aLs

1− aLs
, aL = 2.5124× 10−4,

and f4 = 1.81 × 10−10, f3 = 2.127 × 10−5, f2 = 0.8467,
f1 = 7294, f0 = 3.156 × 107 in (11). From (13) to (17),
we have the optimal H∞ controller written as (21) where
the FIR term HFIR(s) is determined by (15) and (16), with
time domain response depicted in Figure 4.

For comparison purpose, we also synthesize H∞ con-
trollers based on (20) using various Padé approximations. As
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Fig. 5. Sensitivity comparisons.

depicted in Figure 5, the proposed direct method significantly
improves the closed loop bandwidth compared to Padé
approximation methods: 0 dB crossing occurs at 1701 Hz
with the direct design, whereas the same occurs at 1565 Hz,
1517 Hz and 1549 Hz, for the 1st, 2nd and 3rd order Padé
approximation based designs, respectively. The direct design
has the added advantage of lower sensitivity peaking, see
Table II.

Method Sensitivity Peak Peak Frequency
Direct 6.61 dB 5091 Hz
Pade 1 8.55 dB 4138 Hz
Pade 2 6.66 dB 4918 Hz
Pade 3 7.24 dB 4643 Hz

TABLE II
SENSITIVITY PEAK COMPARISONS

It is also obvious that the proposed controller has more
attenuation for disturbances below 6 kHz due to lower
sensitivity magnitude.

V. HDD TMR ANALYSIS

In this section, we would like to investigate the tracking
TMR and tracking TPI capability of the designed servo loop,
by applying the disturbances measured from the target HDD.
In HDD industries, the major RRO (Repeatable Runout)
components of PES (Position Error Signal) are usually
treated separately. Therefore the TMR analysis is based on
the NRRO components of PES data. Due to the industry-
specific modulation/demodulation methods, it is usually very
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Copt(s) =
10.57s2 + 2.01× 104s+ 2.96× 1010

s2 + 2.46× 105s+ 1.55× 1010

(
1

1 + 4.4×105

s+3.98×103 +HFIR(s)

)
, (21)
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Fig. 6. Frequency components of NRRO: the proposed method.

difficult to get industry PES data for academic research. Most
of the existing research results are based on PES data from
spin stand environments, which could not fully reflect the
actual TMR for servo tracking. In the present paper, we use
actual PES data collected from an industry partner.

Figure 6 shows the NRRO components (using 1k HZ
frequency bins) with the H∞ controller proposed in present
paper and similar NRRO spectrum plots are also provided
for the case of 1st order, 2nd order, and 3rd orderPadé
approximation methods, respectively (as depcited in Fig-
ures 7, 8, and 9). It is very clear that the NRRO disc
modes from 2kHz to 5kHz are better attenuated with the
proposed controller, which agrees well with the loop shape
comparisons in Figure 5.

A more detailed comparison is given in Table III, where
TMR statistics of Mean NRRO value and Mean+3σ NRRO
are provided, with the corresponding tracking TPI capabili-
ties. It is shown that 2nd order and 3rd order Padé approxi-
mation methods outperform 1st order one by more than 6%
TPI improvement. But higher order Padé approximations will
not help further. Note that major issues with higher order
Padé approximations are 1) higher order controllers resulted
from the models, and 2) undesired zeros/poles introduced
by Padé approximations. As a matter of fact, a common
practice in industry HDD servo control is still 1st order Padé
approximation based method. The data in Table III clearly
demonstrates the improvement using the H∞ control method
for infinite dimensional systems, developed in present paper,
where more than 10% TPI improvement can be achieved.

VI. CONCLUDING REMARKS
In this paper, we have developed a robust control algo-

rithm for HDD servo loop shaping, where the time delay
of the model was treated as an infinite dimensional block
directly, as opposite to the Padé approximation methods of
existing results. The explicit form of the H∞ controller was
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Fig. 7. Frequency components of NRRO: 1st order Padé approximation.
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Fig. 8. Frequency components of NRRO: 2nd order Padé approximation.

provided and a internal feedback structure of the controller
was also given, which consists of a low order IIR and an
FIR. TMR analysis showed significant improvement using
the proposed method, with more than 10% tracking TPI
capability achieved.
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