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Abstract—Signal and image reconstruction from Fourier 
Transform magnitude is a difficult inverse problem.  Fourier 
transform magnitude can be measured in many practical 
applications, but the phase may not be measured. Since the 
autocorrelation of an image or a signal can be expressed as 
convolution of ࢞ሺ࢔ሻ with ࢞ሺെ࢔ሻ, it is possible to formulate the 
inverse problem as a non-negative matrix factorization 
problem. In this paper, we propose a new algorithm based on the 
sparse non-negative matrix factorization (NNMF) to estimate the 
phase of a signal or an image in an iterative manner. 
Experimental reconstruction results are presented. 

I. INTRODUCTION 
Magnitude of the Fourier transform of a desired signal or an 

image can be measured or calculated in many practical 
problems ranging from astronomical imaging to 
crystallography. However, it may not be possible to measure 
the phase information. This inverse signal reconstruction 
problem is a difficult one and a wide range of algorithms have 
been proposed in the literature [1]-[12]. The inverse problem is 
especially difficult when the magnitude values are corrupted by 
noise.  

It is well known that when the desired signal ݔሾ݊ሿ is one 
dimensional and it consists of ܰ  samples the phase retrieval 
problem has 2 to the ܰ solutions. When the signal has two or 
more dimensions the solution is unique in almost all cases [12]. 
The main reason for this difference between the 1-D and higher 
dimensional problems are that the fundamental theorem of 
algebra cannot be extended to higher dimensions.  

In this article we assume that the desired signal is a discrete 
signal and its Fourier Transform is available for all frequency 
values. We also assume that: (i) the signal is non-negative, (ii) 
sparse in time or spatial domain, and (iii) finite-extent, i.e., it 
consists of N samples in 1-D, and it consists of N×N samples. 
Sparsity is also assumed by Eldar et al. [15] Non-negativity of 
the signal samples were used by Fienup and his co-workers. In 
almost all image processing problems pixel values are positive 
therefore the non-negativity assumption is not a restrictive 
assumption. 

In this article, the nonnegative matrix factorization 
(NNMF) algorithm and its sparsified version [13], [14] are used 
to solve the phase retrieval problem. Since the inverse Fourier 
Transform of the squared magnitude is the autocorrelation 
sequence of the desired signal it is possible to formulate the 
phase retrieval problem as a non-negative matrix factorization 
problem. In Section 2, the NNMF based algorithm is described. 
In Section 3, simulation examples are presented. 

 

II. PHASE RETRIEVAL PROBLEM 
Let ݔሾ݊ሿ, ݊ ൌ 0, 1, 2, . . . , ܰ െ 1be the signal to estimated. 

The Discrete Fourier Transform (DFT) of the signal is given by  ܺሺ߱ሻ ൌ ∑ ሾ݊ሿ݁ି௝ఠ௡ேିଵ௡ୀ଴ݔ .             (1) 

The Fourier Transform magnitude |ܺሺ߱ሻ|  information is 
equivalent to the autocorrelation sequence ݎሾ݊ሿ of the signal. 
This is because   ݎሾ݊ሿ ൌ ሾ݊ሿݔ  כ  ሾെ݊ሿݔ   ൌ  ଵ ሼ|ܺሺ߱ሻ|ଶሽ,                       (2)ିܨ

where * is the convolution operator and  ିܨଵ ሼ. ሽdenotes the 
inverse Fourier Transform. This also can be represented using 
matrix multiplication as 

൦ ሾܰݎڭሾ1ሿݎሾ0ሿݎ െ 1ሿ൪ ൌ ൦ݔሾ0ሿ ሾ1ሿݔ ڮ ሾܰݔ െ 2ሿ ሾܰݔ െ 1ሿ0 ሾ0ሿݔ ڮ ሾܰݔ െ 3ሿ ሾܰݔ െ 2ሿڭ ڭ ڰ ڭ 0ڭ 0 ڮ 0 ሾ0ሿݔ ൪ ൦ ሾܰݔڭሾ1ሿݔሾ0ሿݔ െ 1ሿ൪,         (3) 

where ࢘ ൌ ሾݎሾ0ሿ ሾ1ሿݎ ڮ ሾܰݎ െ 1ሿሿ்is the autocorrelation 
sequence and ࢞ ൌ ሾݔሾ0ሿ ሾ1ሿݔ ڮ ሾܰݔ െ 1ሿሿ்  is the input 
signal. As a result the autocorrelation sequence can be 
represented as: 
࢘           ൌ  (4)               ,࢞ࢄ
where ࢄ and ࢞ are defined in Eq. (3), respectively. In phase 
retrieval problems, it is assumed that the autocorrelation 
vector r is known but ࢄ  and ࢞ are unknowns.  
Therefore it is possible to apply the NNMF algorithms to 
estimate ࢄ and ࢞. 
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III. NON-NEGATIVE MATRIX FACTORIZATION ALGORITHM 
Non-negative matrix factorization (NNMF) algorithms [13], 

[14] estimate the non-negative matrices ࢃ א ࢖ܠࡹࡾ  and ࡴ א ࡭ from the matrixࡺܠ࢖ࡾ א  by minimizing the norm  ࡺܠࡹࡾ
of ԡ࡭ െ    .ԡிࡴࢃ

The error function has a convex behavior once  W or H is 
known. However, there may be many local minima in the 
general matrix factorization problem. 

The NNMF algorithm proposed by Lee and Seung [13] 
starts with an initial solution. First one of the matrices is 
estimated. Once this matrix is fixed this matrix is used to 
update the second matrix. The iterative algorithm is described 
below: 
଴ࢃ  ൌ randሺM, ଴ࡴ   ሻ݌ ൌ randሺ݌, Nሻ   
iteration  

{ሺࡴ௞ାଵሻ௜௝ ൌ ሺࡴೖሻ೔ೕ൫ࢃೖ೅࡭൯೔ೕ൫ࢃೖ೅ࢃೖࡴೖ൯೔ೕ   

ሺࢃ௞ାଵሻ௜௝ ൌ ሺࢃೖሻ೔ೕ൫ࡴ࡭ೖ೅൯೔ೕ൫ࢃೖࡴೖࡴೖ೅൯೔ೕ  },                             (5) 

 

     This algorithm by its nature continuously generates non-
negative matrices when it is started with matrices with non-
negative entries. But if one of the entries of one of the 
matrices happens to be zero iterations stop.  Another update 
method is the “Alternative Least Squares (ALS)” method. The 
ALS algorithm is summarized as follows: 
଴ࢃ  ൌ randሺM,      ሻ݌
iteration  
௞ାଵࡴ} ൌ ሺࢃ௞் ࢃ௞ሻିଵࢃ௞ࡴ      ࡭௞ାଵሺࡴ௞ାଵ ൏ 0ሻ ൌ ௞ାଵࢃ  0 ൌ ௞ାଵ்ࡴ࡭ ሺࡴ௞ାଵ் ௞ାଵࢃ௞ାଵሺࢃ  ௞ାଵሻିଵࡴ  ൏ 0ሻ ൌ 0},                                           (6) 

 

Here, there could be a problem due to the matrix inversions 
in the first and third lines of the algorithm if some elements of 
the matrices are below zero. Those negative entries are 
thresholded to zero. Also, sparsity assumption can be imposed 
into this method by simply making small valued entries to 
zero. This is done at the second and fourth lines of the ALS 
algorithm (6). Furthermore, ALS method assumes that the 
matrices to be inverted are non-singular at each iteration. 
There are other sparsified nonnegative matrix factorization 
algorithms exist in the literature [14]. 

IV. APPLYING NNMF ALGORITHM TO AUTOCORRELATION 
FUNCTION 

One of the key points to keep in mind while estimating the 
desired signal is that both matrices ࢄ and ࢞ are dependent to 

each other in autocorrelation factorization problem. This 
dependency should be maintained during the update steps of 
the iterative NNMF algorithms. Another important issue is 
that the ALS method given in (6) cannot be applied directly to 
our problem because ்࢞࢞ has a rank of 1 and its inverse does 
not exist. 

However, due to the dependency between the variables and 
the sparse nature of the signal, a new update method can be 
developed as follows: 

଴࢞  ൌ ሾ1 1 ڮ 1ሿ்  ࢄ଴ ൌ  ܿݎݎ݋ሺ࢞଴ሻ 
iteration  
௞ାଵ࢞ } ൌ ௞࢞ ൅ ࢘௞் ሻିଵሺࢄ௞ࢄ௞்ሺࢄ െ ௞ାଵ࢞௞ାଵሺ࢞      ௞ሻ࢞௞ࢄ ൏ 0ሻ ൌ ௞ାଵ࢞  0 ൌ ඥݎሾ0ሿ࢞௞ାଵ/ԡ࢞௞ାଵԡଶ  ࢄ௞ାଵ ൌ  ௞ାଵሻ }                                                      (7)࢞ሺݎݎ݋ܿ

 

     As pointed above our algorithm described in (7) is different 
from the ALS algorithm (6). One can start with different initial 
condition vectors. Iterates may converge to different solutions 
depending on the initial estimate. 

Extension of this algorithm to two- or higher dimensions is 
straightforward. 

 

V. SIMULATIONS AND RESULTS 
In order to test the performance of the algorithm, a 1-

dimensional example is provided in Table I. The signal to be 
reconstructed from its spectrum is assumed to be of length ܰ ൌ16. 

 

TABLE I. EXAMPLE 1 ࢞ ࢞ෝ ࢘ ࢘ො 
12.00 12.00 189.00 189.00 
0.00 0.00 0.00 0.00 
0.00 0.00 8.00 8.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 20.00 20.00 
0.00 0.00 0.00 0.00 
0.00 0.00 10.00 10.00 
5.00 5.00 60.00 60.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
4.00 4.00 48.00 48.00 
0.00 0.00 0.00 0.00 
2.00 2.00 24.00 24.00 
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In example 1, it is clear that the original signal and 
its autocorrelation sequence are successfully reconstructed. In 
general, there are 2ே  solutions for a given autocorrelation 
sequence in 1-D case but it is possible to recover the original 
signal in a perfect manner by imposing sparsity in this toy 
example. 

Fig. 1 shows the convergence curve of the aforementioned 

example. The error is measured as
ˆ

100err
−

=
r r

r
.  

 
Figure 1. Convergence behavior of the proposed algorithm for 

example 1. 
 

       
                             (a)                                            (b) 

 
(c) 

Figure 2. (a) Original image, (b) autocorrelation image, 
(c) Reconstructed image. 

 
In order to test the performance of the proposed algorithm 

in two-dimensional case, 1 experiment without noise and 2 
experiments with different noise variances were conducted 
using the sparse images given in Fig. 2(a), Fig. 3(a) and Fig. 

4(a).  All the images used in the experiments are of size 
(136 ൈ 136). 

 
Fig. 2(a) shows the original sparse image, Fig. 2(b) shows 

the autocorrelation function of the noisy image and Fig. 2(c) 
shows the reconstructed image from the spectrum of the 
original image. It is clear that the main details of the original 
image can be reconstructed from its spectrum using the 
proposed algorithm.  

 

     
                               (a)                                            (b) 

     
                              (c)                                            (d) 

Figure 3. (a) Original image, (b) Image with AWGN noise ሺߪଶ ൌ0.001ሻ, (c) Image autocorrelation, (d) Estimated image. 
 

     
                          (a)                                                (b) 

     
                             (c)                                             (d) 

Figure 4.  (a) Original image, (b) Image with AWGN noise ሺߪଶ ൌ0.005ሻ, (c) Image autocorrelation, (d) Estimated image. 
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In Fig. 4, the AWGN is assumed to be with zero mean and 
normalized variance ሺߪଶ ൌ 0.005ሻ.  Even though the noise 
variance is high compared to the first experiment, but the 
algorithm is still capable of reconstructing the main details of 
the original image.  

 
Figure 5. Convergence behavior of the proposed algorithm for images 

in Figs. 2, 3 and 4. 
 

Fig. 5 shows the convergence curves for the experiments in 
Figs. 2, 3 and 4. It shows that the performance of the 
experiments for Figs. 2 and 3 have fast convergence and lower 
error than that of the one in Fig. 4. This is due to the nature of 
the image and its sparsity. On the other hand, the convergence 
of Fig. 2 to steady state is faster than that of Fig. 3. This shows 
the effect of the noise on the performance.  

    As it can be seen from the above examples, a sparse signal 
can be estimated to some extent from its Fourier Transform 
magnitude or from its autocorrelation using the NNMF 
methods. It is well-known that the phase retrieval problem is 
an ill-posed inverse problem in nature therefore the 
reconstruction results are not perfect even in noise-free cases. 

    The proposed phase retrieval algorithm is a convergent 
algorithm because the NNMF algorithm is also a convergent 
algorithm but it may converge to a local minimum.  

 

VI. CONCLUSIONS 
In this paper, a new class of phase retrieval algorithms 

using iterative NNMF algorithms is introduced. The phase 
retrieval problem can be formulated using a matrix 
factorization problem with the help of the autocorrelation 
function of the desired signal. Any NNMF algorithm can be 
used to solve the phase retrieval problem. However the 

problem is an ill-posed problem therefore noise or numerical 
inaccuracies may lead the iterations to a local minimum. 
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