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Abstract—In this paper, spectrum sensing in cognitive radio
systems is studied for non-Gaussian channels in the presence
of prior distribution uncertainty. In most practical cases, some
amount of prior information about signals of primary users is
available to secondary users but that information is never perfect.
In order to design optimal spectrum sensing algorithms in such
cases, we propose to employ the restricted Neyman-Pearson (NP)
approach, which maximizes the average detection probability
under constraints on the worst-case detection and false-alarm
probabilities. We derive a restricted NP based spectrum sensing
algorithm for additive Gaussian mixture noise channels, and
compare its performance against the generalized likelihood ratio
test (GLRT) and the energy detector. Simulation results show that
the proposed spectrum sensing algorithm provides improvements
over the other approaches in terms of minimum (worst-case)
and/or average detection probabilities.

Index Terms– Cognitive radio, spectrum sensing, detection,
Neyman-Pearson, Gaussian mixture, likelihood ratio.

I. INTRODUCTION

Cognitive radio has emerged as a promising approach to

solve the conflicts between spectrum under-utilization and

spectrum scarcity [1]. In cognitive radio systems, secondary

users are allowed to access and communicate over the fre-

quency bands assigned to primary users as long as they do not

cause any (significant) interference to primary users. There-

fore, secondary users should be able to detect the presence

of primary users reliably. Hence, spectrum sensing is a very

crucial task in cognitive radio systems.

Common spectrum sensing methods are based on matched

filtering, energy detection, and cyclostationary detection [2]-

[5]. Usually energy detection is preferred in the absence of

prior information about signals of primary users [6]. Although

there are various approaches in the literature, a complete statis-

tical framework, which considers uncertainties in the knowl-

edge of prior distributions of any unknown system parameters,

is not available. In [7], fundamental bounds on detection

performance are obtained for low signal-to-noise ratio (SNR)

scenarios in the presence of noise uncertainty. Specifically, the

noise is modeled to be white, and its distribution is known only

within a particular set. A spectrum sensing method based on

the eigenvalues of the covariance matrix of the received signal

is proposed in [8]. The ratio of the maximum eigenvalue to

the minimum eigenvalue is used to detect signals of primary

users. In [9], generalized likelihood ratio tests (GLRTs) are

developed for the spectrum sensing problem. Iterative and

simple non-iterative GLRT based algorithms are developed for

slow and fast fading channels, respectively. In [10], the concept

of soft sensing is considered, which employs the decision

test statistic in the spectrum sensing problem as a confidence

measure. Detailed surveys on spectrum sensing can be found

in [11] and [12].

In this paper, we propose an optimal spectrum sensing

approach in the presence of prior distribution uncertainty (i.e.,

imperfect prior information) based on the restricted Neyman-

Pearson (NP) approach [13]-[15]. Specifically, a composite

hypothesis-testing problem in the NP framework is formulated,

and uncertainties in prior distributions are taken into account

via the restricted NP approach. A restricted NP based spectrum

sensing algorithm is obtained for additive Gaussian mixture

noise channels in the presence of imperfect prior information

about signals of primary users. In addition, the proposed

algorithm is compared against the GLRT and energy detection

approaches, and its advantages are illustrated in terms of the

minimum (worst-case) and/or average detection probabilities.

This paper is organized as follows. We describe the system

model and present the problem formulation of the restricted

NP approach for spectrum sensing in Section II. Numerical

results are provided and discussed in Section III. Finally, some

conclusions are drawn in Section IV.

II. SPECTRUM SENSING VIA RESTRICTED NP

Spectrum sensing in cognitive radio systems can be for-

mulated as a binary hypothesis-testing problem [19] in which

hypothesis H0 and hypothesis H1 correspond to the absence

and presence of primary users, respectively. Assuming that M
observations are available to the secondary user, the following

hypothesis-testing problem can be stated:

H0 : x = n

H1 : x = θ + n (1)

where x is an M -dimensional vector representing the mea-

surements (observations) for spectrum sensing, θ denotes the

unknown parameter due to primary users, and n is the noise

that is assumed to consist of independent and identically
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distributed components. For the probability distribution of

the noise components, a generic Gaussian mixture model

is employed; that is, each element of n has the following

probability density function (PDF):

pn(n) =
L∑

i=1

νi√
2π εi

exp

(
− (n− μi)

2

2ε2i

)
(2)

where L is the number of components in the mixture, and

μi, ε2i , and νi are the mean, variance, and weight of each

component, respectively.1 It is noted that the noise model in

(2) is quite generic since it can approximate various noise

PDFs by suitable selection of its parameters [20]. In addition,

as mentioned in [21]-[23], the received signal in a cognitive

radio receiver can be corrupted by non-Gaussian noise as a

result of man-made impulsive noise and interference, and the

noise can be modeled as Gaussian mixture noise as in (2).

In practice, some prior information about the probability

distribution of θ in (1) is available to secondary users. This

prior knowledge is usually obtained by using previous mea-

surements and/or by utilizing pilot signals. However, that prior

information is never perfect and can include certain errors.

Therefore, the aim in this study is to perform optimal spectrum

sensing in the presence of uncertainties in the prior distribution

of the unknown parameter related to the primary users. To

achieve this aim, we adopt the restricted NP approach [13],

[15] for this problem.

In the restricted NP framework, there exists some imperfect

prior information about the unknown parameter. For the model

in (1), let w(θ) denote the imperfect PDF of parameter

θ, which does not necessarily correspond to the true prior

distribution; i.e., can include certain errors. A restricted NP

decision rule maximizes the average detection probability,

which is obtained based on the imperfect PDF w(θ), under

constraints on the worst-case detection and false-alarm prob-

abilities. Mathematically stated, it is obtained as the solution

of the following optimization problem [15]:

maximize
φ

∫
Λ

PD(φ;θ)w(θ)dθ (3)

subject to PD(φ;θ) ≥ β, ∀θ ∈ Λ (4)

PF (φ) ≤ α (5)

where Λ is the parameter space for θ, PD(φ;θ) is the detection

probability of the decision rule φ for a given parameter value

θ, PF (φ) is the false-alarm probability of the decision rule,

α is the false-alarm constraint, and β is the design parameter

to compensate for the uncertainties in w(θ). It is noted that

parameter β is adjusted according to the amount of uncertainty

in w(θ). In particular, as the amount of uncertainty decreases

(increases), a smaller (larger) value of β is employed.

1For simplicity of expressions, the parameters of the noise are assumed
to be known. However, any uncertainties in the noise parameters can also be
incorporated into the proposed restricted NP based spectrum sensing algorithm
by considering the generic formulation in [15].

Alternatively, the problem in (3)-(5) can be expressed as

maximize
φ

λ

∫
Λ

PD(φ;θ)w(θ)dθ + (1− λ)min
θ∈Λ

PD(φ;θ)

subject to PF (φ) ≤ α (6)

where λ ∈ [0, 1] is a design parameter that is set according to

β [15].

Based on (1), the detection probability and the false-alarm

probability in (6) are given by

PD(φ;θ) =

∫
Γ

φ(x)pn(x− θ)dx , for θ ∈ Λ (7)

PF (φ) =

∫
Γ

φ(x)pn(x)dx (8)

where Γ represents the observation space, pn(x) is the PDF of

noise n, and φ(x) denotes the decision rule that maps x into a

real number in [0, 1], representing the probability of selecting

H1 [19].

The optimal solution to the problem in (3)-(5) is in the form

of an NP decision rule corresponding to the least-favorable

distribution [13]-[15]. The least-favorable distribution can be

obtained by combining the uncertain PDF w(θ) with another

PDF μ(θ) as v(θ) = λw(θ) + (1− λ)μ(θ), and by obtaining

the PDF v(θ) that corresponds to the minimum average

detection probability [15]. Based on the NP lemma [19], the

solution of (3)-(5) is then in the form of a likelihood ratio test

(LRT) as follows:

φ∗(x) =

{
1 ,

∫
Λ
pn(x− θ)v(θ)dθ ≥ η pn(x)

0 ,
∫
Λ
pn(x− θ)v(θ)dθ < η pn(x)

(9)

where the threshold η is chosen such that the false-alarm rate is

equal to α, that is, PF (φ
∗) = α. In addition, v(θ) is calculated

as described before; i.e., v(θ) = λw(θ)+ (1−λ)μ(θ), where

μ(θ) is obtained for the least-favorable distribution [15].

The following algorithm proposed in [15] can be employed

to obtain the optimal restricted NP decision rule for the

spectrum sensing problem:

1) From (7), calculate PD(φ∗
θ1
;θ) for all θ1 ∈ Λ, where

φ∗
θ1

represents the α-level NP decision rule correspond-

ing to v(θ) = λw(θ) + (1− λ)δ(θ − θ1) as in (9).

2) Obtain θ∗
1 = argmin

θ1∈Λ
f(θ1), where

f(θ1) = λ

∫
Λ

w(θ)PD(φ∗
θ1
;θ)dθ

+ (1− λ)PD(φ∗
θ1
;θ1). (10)

3) If PD(φ∗
θ∗
1
;θ∗

1) = minθ∈Λ PD(φ∗
θ∗
1
;θ), φ∗

θ∗
1

is the solu-

tion of the restricted NP problem. Otherwise, no solution

exists.

Detailed explanations about this algorithm and its modifi-

cations for more generic scenarios can be found in [15]. As

discussed in [15], the solution exists and it is unique in all

practical cases.

Based on (9) and the algorithm above, the proposed decision
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rule for the spectrum sensing problem can be expressed as

λ
∫
Λ
pn(x− θ)w(θ)dθ + (1− λ)pn(x− θ∗

1)

pn(x)

H1

�
H0

η (11)

where θ∗
1 is obtained as described above, and η is selected

such that the false-alarm probability is equal to α.

As observed from (11), the proposed spectrum sensing

algorithm is in the form of an LRT in which the PDF in the

numerator corresponds to the mixture of the observation PDF

for a specific (least-favorable) parameter value and the obser-

vation PDF averaged over the imperfect prior distribution. As

a special case, if the prior distribution is perfect, λ = 1 is

employed and the test reduces to the classical LRT. However,

for imperfect prior distribution, the use of nonzero λ can be

more advantageous, as discussed in the next section.

Although the decision rule in (11) is generic for any noise

PDF and any prior distribution of the parameter, we can obtain

specific expressions for it in the case of the Gaussian mixture

model in (2) and a uniform prior distribution. In particular, we

assume that the components of parameter θ are independent

and the kth component, θk, is uniformly distributed between

ak and bk for k = 1, . . . ,M ; that is, θk ∼ U [ak, bk] [16].

Then, the decision rule in (11) becomes

λ

∏M
k=1

1
bk−ak

∫ bk
ak

∑L
i=1

νi√
2π εi

exp
(
− (xk−θk−μi)

2

2ε2i

)
dθk∏M

k=1

∑L
i=1

νi√
2π εi

exp
(
− (xk−μi)2

2ε2i

)

+ (1− λ)

∏M
k=1

∑L
i=1

νi√
2π εi

exp
(
− (xk−θ∗

1,k−μi)
2

2ε2i

)
∏M

k=1

∑L
i=1

νi√
2π εi

exp
(
− (xk−μi)2

2ε2i

) H1

�
H0

η

(12)

where θ∗1,k is the kth element of θ∗
1 in (11).

In order to compare the performance of the proposed

spectrum sensing algorithm in (12) against the other common

algorithms in the literature, we consider the GLRT and energy

detection approaches [17], [18]. In the GLRT, the maximum

likelihood estimate of the unknown parameter is calculated

and an LRT is formed based on that estimate [19]. From (1)

and (2), the GLRT for the spectrum sensing problem can be

obtained as follows:

max
θ

∏M
k=1

∑L
i=1

νi√
2π εi

exp
(
− (xk−θk−μi)

2

2ε2i

)
∏M

k=1

∑L
i=1

νi√
2π εi

exp
(
− (xk−μi)2

2ε2i

) H1

�
H0

ηg (13)

where θk is the kth element of θ, and ηg is chosen such that

the false alarm probability is equal to α.

On the other hand, the energy detector compares the total

energy of the observations against a threshold; i.e,

‖x‖2
H1

�
H0

ηe (14)

where the threshold ηe is chosen such that the false alarm
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Fig. 1. Probabilities of detection versus θ for the restricted NP, GLRT, and
energy detection approaches, where the parameters of the Gaussian mixture
noise are set to L = 3, ν1 = ν3 = 0.25, ν2 = 0.5, μ1 = −μ3 = 1,
μ2 = 0, and εi = 0.2 ∀i.

probability is equal to α; that is,

Pr
{‖x‖2 > ηe

∣∣H0

}
= α . (15)

III. PERFORMANCE EVALUATION

In this section, simulation results are presented in order to

illustrate the accuracy and robustness of the proposed restricted

NP based spectrum sensing algorithm in various scenarios. For

comparison purposes, performance of the GLRT and energy

detection approaches is evaluated as well. In the simulations,

the false alarm constraint in (5) is set to α = 0.1. In addition,

parameter θ is modeled as a scalar random variable that lies in

the interval Λ = [a, b], where a = 1 and b = 2. The imperfect

prior distribution for θ is specified by a uniform distribution

over Λ; that is, w(θ) = 1 for θ ∈ [1, 2], and w(θ) = 0
otherwise. In other words, the secondary user has the prior

distribution information about θ as θ ∼ U [1, 2]; however,

this information is not perfect and can include certain errors.

Such a scenario can be encountered in practice for example

when there is some information about the value of parameter θ
(which can be obtained from previous measurements or based

on the knowledge of a pilot signal transmitted by the primary

user) and the uncertainty around this value is modeled by a

uniform distribution [16]. Although a uniform distribution is

considered in this example, the theoretical analysis in Section

II can also be employed for any other distribution.

For the first set of simulations, the parameters of the Gaus-

sian mixture noise in (2) are set to L = 3, ν1 = ν3 = 0.25,

ν2 = 0.5, μ1 = −μ3 = 1, μ2 = 0, and εi = 0.2 ∀i.
This mixture noise can correspond to the sum of zero-mean

Gaussian noise and interference which is due to two users that

result in signal values of ±0.5 with equal probabilities at the
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Fig. 2. Probabilities of detection versus λ for the restricted NP, GLRT, and
energy detection approaches, where the parameters of the Gaussian mixture
noise are set to L = 3, ν1 = ν3 = 0.25, ν2 = 0.5, μ1 = −μ3 = 1,
μ2 = 0, and εi = 0.2 ∀i.

receiver. In Fig. 1, detection probabilities are plotted versus θ
for the energy detector, the GLRT, and the proposed restricted

NP based algorithm with various values of λ. It is observed

that the energy detector has the worst performance for all

parameter values. On the other hand, the restricted NP based

approach provides higher and lower detection probabilities

than the GLRT approach depending on the value of the param-

eter. In order to compare the performance of the algorithms

in more detail, Fig. 2 illustrates the average and minimum

detection probabilities versus λ for all the approaches, where

λ is the design parameter in the restricted NP based approach

(see (6)). It is observed that the restricted NP based spectrum

sensing algorithm provides a tradeoff between the average

and the minimum (i.e., worst-case) detection probabilities.

For example, in order to achieve a larger minimum (average)

detection probability, the restricted NP based approach with a

smaller (larger) value of λ can be employed. Such a tradeoff is

not present in the GLRT and the energy detection approaches.

Since the prior distribution information is imperfect, the av-

erage detection probabilities shown in Fig. 2 may not be the

true average detection probabilities; hence, the robustness of

the restricted NP based approach (i.e., having larger minimum

detection probabilities) can be crucial in practice.

Next, the parameters of the Gaussian mixture noise are set

to L = 2, ν1 = ν2 = 0.5, μ1 = μ2 = 0, ε1 = 0.5, and ε2 = 2.

The noise model employed in this scenario is practically

important since the mixture of zero-mean Gaussian random

variables with different variances is often used to model man-

made noise, impulsive phenomena, and certain sorts of ultra-

wideband interference [21]. In Fig. 3 and Fig. 4, the detection

probabilities are plotted versus θ and λ, respectively. It is

observed in this scenario that the restricted NP approach can
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Fig. 3. Probabilities of detection versus θ for the restricted NP, GLRT, and
energy detection approaches, where the parameters of the Gaussian mixture
noise are L = 2, ν1 = ν2 = 0.5, μ1 = μ2 = 0, ε1 = 0.5, and ε1 = 2.

outperform the GLRT approach in terms of both the minimum

and average detection probabilities. After approximately λ =
0.55, both the minimum and average detection probabilities of

the restricted NP approach are larger than those of the GLRT

approach. For example, when λ = 0.6, the average detection

probability of the restricted NP test is slightly larger than that

of the GLRT, and its minimum detection probability (0.353) is

significantly larger than that of the GLRT (0.293). Therefore,

the restricted NP based approach provides improved accuracy

and robustness in this scenario.

IV. CONCLUDING REMARKS

The restricted NP approach has been employed to solve

the spectrum sensing problem in cognitive radio systems in

the presence of imperfect prior information about unknown

parameters of primary users. A restricted NP based spectrum

sensing algorithm has been proposed for Gaussian mixture

noise, which is encountered in cognitive radio systems in

the presence of man-made noise and interference. It has

been shown that the proposed approach can provide improve-

ments over the GLRT approach in terms of the minimum

(worst-case) detection probability and/or the average detection

probability depending on the amount of uncertainty in the

prior information. Since prior information is imperfect in all

practical scenarios, the proposed approach is well-suited for

the spectrum sensing problem in order to provide robust and

accurate detection of primary users.
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