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Abstract: In this paper, we present the discrete version of the Adaptive Posicast Controller
(APC) that deals with parametric uncertainties in systems with input time-delays. The
continuous-time APC is based on the Smith Predictor and Finite Spectrum Assignment
with time-varying parameters adjusted online. Although the continuous-time APC showed
dramatic performance improvements in experimental studies with internal combustion engines,
the full benefits could not be realized since the finite integral term in the control law had
to be approximated in computer implementation. It is shown in the literature that integral
approximation in time-delay compensating controllers degrades the performance if care is
not taken. In this work, we present a development of the APC in the discrete-time domain,
eliminating the need for approximation. In essence, this paper attempts to present a unified
development of the discrete-time APC for systems that are linear with known/unknown input
time-delays. Performances of the continuous-time and discrete-time APC, as well as conventional
Model Reference Adaptive Controller (MRAC) for linear systems with known time-delay are
compared in simulation studies. It is shown that discrete-time APC outperforms its continuous-
time counterpart and MRAC. Further simulations studies are also presented to show the
performance of the design for systems with uncertain time-delay.

Keywords: discrete time systems, time-delay systems, adaptive control, robust control,
Lyapunov stability.

1. INTRODUCTION

Adaptive Posicast Controller (APC) Yildiz et al. (2010) is
a model reference adaptive controller for linear time invari-
ant plants with known input time delays. Basic building
blocks of this controller are the celebrated Smith Predictor
Smith (1959) the finite spectrum assignment controller
(FSA) Wang et al. (1999) and Manitius & Olbrot (1979)
and the adaptive controller developed by Ortega & Lozano
(1988) and Niculescu & Annaswamy (2003). APC has
proved to be a powerful candidate for time-delay systems
control both in simulation and experimental works. Suc-
cessful experimental implementations include spark igni-
tion engine idle speed control Yildiz et al. (2007) and fuel-
to-air ratio control Yildiz et al. (2008) while simulation im-
plementation on flight control is presented in Yildiz (2010).
Recently, an extension of APC using combined/composite
model reference adaptive control is presented Dydek et
al. (2010). Although APC has successfully been imple-
mented in various domains with considerable performance
improvements, the premise of time-delay compensation
using future output prediction, as proven by the theory,
had to be approximately realized in these applications.
The main reason behind this was that the APC had to
be implemented using a microprocessor and therefore all
the terms in the control laws had to be digitally approx-
imated. This is a conventional approach in many control

implementations and in most of the cases works perfectly
well as long as the sampling is fast enough. One exception
to this rule is the implementation of the finite spectrum
assignment (FSA) controller. It is shown in Wang et al.
(1999) that, as the sampling frequency increases, the phase
margin of the FSA controller decreases. A remedy to this
problem is provided in Mondie & Michiels (2003). Since
APC is based on FSA controller, fast sampling to achieve
good approximation of the continuous control laws may
degrade the system performance.

To eliminate the need for approximation and, therefore,
to exploit the full benefits of APC, a fully discrete time
APC design is provided in this paper. A Lyapunov stability
proof is given and the discrete APC is compared with its
continuous counterpart in the simulation environment. A
comparison with a conventional model reference adaptive
controller is also provided. As expected, simulation results
verify the advantage of developing the controller in the dis-
crete domain over a continuous-time development followed
by a discrete approximation.

There are already many successful methods proposed in
the literature to compensate the effect of time-delays in
continuous-time control systems. Among them, the very
recent ones are presented in Mazenc & Niculescu (2011)
and Krstic (2010). To see an analysis of robustness of
nonlinear predictive laws to delay perturbations and a
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comprehensive list of delay-compensating controllers see
Bekiaris-Liberis & Krstic (2013). Also, Krstic (2009) is a
very recent important contribution to the field presenting
predictive feedback in delay systems with extensions to
nonlinear systems, delay-adaptive control and actuator
dynamics modeled by PDEs.

In the discrete time domain, there are various solutions
to model reference adaptive control problem with the
natural inclusion of time delay Goodwin et al. (1980),
Kokotovic (1991), and Akhtar & Bernstein (2004). The
main contribution of the discrete time APC is that in
the controller development, future state estimation, i.e.
predictor feedback, is explicit, which helped the extension
of the method to the control of uncertain input time-delay
cases, in the discrete-time domain. It is noted that recently,
uncertain input delay case is solved for the continuous
time systems without approximating the delay in Bresch-
Pietri & Krstic (2009). A preliminary result of this work is
presented in Abidi & Yildiz (2011) without the extension
to the uncertain time-delay problem. In Abidi & Xu
(2015), an extension to nonlinear systems is presented
along with more detailed proofs.

The organization of this paper is as follows: Section 2
gives the Problem Statement. Section 3 gives the Discrete-
Time Adaptive Posicast Controller Design. Section 4 gives
the Extension to Uncertain Upper Bounded Time-Delay.
Section 5 gives the Simulation Examples. Section 6 gives
the Conclusion.

2. PROBLEM STATEMENT

Consider a continuous-time plant given as

ẋ(t) = Ax(t) + BnΛu(t− τ )

y(t) = CTx(t) (1)

where x ∈ �n is the state vector, A ∈ �n×n is a constant
uncertain matrix, Bn ∈ �n×m is a constant known matrix,
Λ ∈ �m×m is a constant uncertain positive definite matrix,
u ∈ �m is the vector of the control inputs, τ ≥ 0 is the
input time-delay, and y ∈ �m is the plant output and
C ∈ �n×m is the output matrix. For the plant (1), the
following assumptions are made:

Assumption 1. Input time-delay τ is known.

Assumption 2. Plant (1) is minimum-phase.

Suppose that the reference model is given as

ẋm(t) = Amxm + Bmr(t − τ ) (2)

where Am ∈ �n×n is a constant Hurwitz matrix, Bm ∈
�n×m is a constant matrix and r is the desired reference
command. The control problem is finding a bounded
control input u such that limt→∞ ‖x(t)−xm(t)‖ = 0, while
keeping all the system signals bounded.

3. DISCRETE-TIME ADAPTIVE POSICAST
CONTROLLER DESIGN

In this section the discrete-time design of the APC will be
presented. Consider the sampled-data form of (1) given by

xk+1 = Φxk + Γuk−p

yk = CT xk (3)

where the matrices Φ ∈ �n×n, Γ ∈ �n×m are uncertain
and p is selected such that τ = pT where T is the sampling
interval.

Assumption 3. The time-delay p is known.

Assumption 4. The plant (3) is minimum-phase.

Assumption 5. The matrix CTΓn is non-singular.

Consider the sampled-data form of the reference model (2)

xm,k+1 = Φmxm,k + Γmrk−p

ym,k = CT xm,k. (4)

As in the continuous-time problem, the objective is to
force the plant (3) to track the reference model (4) and
thereby achieve limk→∞ xk = xm,k. The reference model
(4) is designed by using the nominal values of the plant
parameters. In other words, assuming that there exists a
Φn and Γn that are equal to Φ and Γ without uncertainty.

Consider initially that Φ and Γ are known, in order to
derive the controller, subtract (4) from (3) to obtain

xk+1 − xm,k+1 = Φxk − Φmxm,k + Γuk−p − Γmrk−p. (5)

Further, the term Φmxk is added and subtracted on the
right hand side of (5) to obtain

ek+1 = Φmek + (Φ − Φm)xk + Γuk−p − Γmrk−p. (6)

where ek = xk − xm,k. The goal is to have limk→∞ xk =
xm,k or in other words limk→∞ ek = 0, therefore, assuming
that there exists a Θ ∈ �m×n and a positive-definite
Θγ ∈ �m×m such that

Φ − ΓnΘ = Φm & Γ = ΓnΘγ (7)

it is possible to construct a control law

uk = −Θ−1
γ (Θxk+p − Θrrk) (8)

where the known matrix Θr ∈ �m×m is selected such that
Γm = ΓnΘr. Since the controller (8) is non-causal, the
future xk+p is computed as

xk+p = Φpxk +
(

Φp−1Γuk−p + Φp−2Γuk−p+1 + · · ·

+ Γuk−1

)

. (9)

Substituting (9) in (8) leads to a controller of the form

uk = −Θ−1
γ (Θxxk + Θuξk − Θrrk) (10)

where Θx = ΘΦp ∈ �m×n, Θu = Θ
[

Γ ΦΓ · · · Φp−1Γ
]

∈

�m×pm and ξ
T
k =

[

uT
k−1 · · · uT

k−p

]

∈ �pm.

Consider (6), using (7) and (9) it is obtained that

ek+1 = Φmek + Γn

(

Θxxk−p + Θuξk−p

)

+ ΓnΘγuk−p

− ΓnΘrrk−p. (11)

Substitution of the control law (10) in the tracking error
(11) it is obtained that

ek+1 = Φmek (12)

which is stable.

Proceeding now with uncertain Φ and Γ, the parameters
Θx, Θu and Θγ become uncertain. The control law (10) is
then modified to the form

uk = −Θ̂−1
γ,k

(

Θ̂x,kxk + Θ̂u,kξk − Θrrk

)

(13)

where Θ̂x,k, Θ̂u,k and Θ̂γ,k are the estimates of Θx, Θu and

Θγ respectively. To derive the estimation law for Θ̂x,k, Θ̂u,k

and Θ̂γ,k it is necessary to derive the closed-loop system.
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Consider the system (11), adding and subtracting the term

ΓnΘ̂γ,k−puk−p it is obtained that

ek+1 = Φmek + Γn

(

Θxxk−p + Θuξk−p + Θγuk−p

)

(14)

− ΓnΘ̂γ,k−puk−p + ΓnΘ̂γ,k−puk−p − ΓnΘrrk−p.

Define the estimation errors as Θ̃x,k = Θx − Θ̂x,k, Θ̃u,k =

Θu − Θ̂u,k and Θ̃γ,k = Θγ − Θ̂γ,k. Using these definitions
the system (14) can be simplified to the form

ek+1 = Φmek + Γn

(

Θxxk−p + Θuξk−p

)

(15)

+ΓnΘ̃γ,k−puk−p + ΓnΘ̂γ,k−puk−p − ΓnΘrrk−p.

Further, substitution of (13) into (16) it is obtained that

ek+1 = Φmek + Γn

(

Θ̃x,k−pxk−p + Θ̃u,k−pξk−p

+ Θ̃γ,k−puk−p

)

(16)

which is the closed-loop dynamics of the system in terms of
the parameter estimation errors. It is convenient to rewrite
the error dynamics (16) in the augmented form

ek+1 = Φmek + ΓnΨ̃T
k−pζk−p (17)

where Ψ̃T
k =

[

Θ̃x,k Θ̃u,k Θ̃γ,k

]

∈ �m×(n+m(p+1)) and

ζ
T
k =

[

xT
k ξ

T
k uT

k

]

∈ �n+m(p+1). In order to proceed

with the formulation of the adaptation law define zk+1 =

CT
γ (ek+1 − Φmek) ∈ �m where CT

γ =
(

CT Γn

)−1
CT and

substitute (17) to obtain

zk+1 = Ψ̃T
k−pζk−p. (18)

The adaptation laws must be formulated with the objec-
tive of minimizing zk+1 so that the tracking error would
follow the dynamics ek+1 = Φmek. Therefore, the adapta-
tion laws are formulated as follows

Ψ̂k+1 =

{

Ψ̂k−p + εkPk+1ζk−pz
T
k+1, k ∈ [p,∞)

Ψ̂0, k ∈ [0, p)
(19)

Pk+1 =











Pk−p − εk

Pk−pζk−pζ
T
k−pPk−p

1 + εkζ
T
k−pPk−pζk−p

, k ∈ [p,∞)

P0 > 0, k ∈ [0, p)

(20)

where εk ∈ � is a positive coefficient used to prevent a sin-
gular Θ̂γ,k and the matrix Pk ∈ �(n+m(p+1))×(n+m(p+1))

is a symmetric, positive-definite covariance matrix, Koko-
tovic (1991).

Remark 1. Note that, in order for Θ̂γ,k not to be singular

then ε−1
k must be selected such that it is not an eigenvalue

of −Θ̂−1
γ,k−pSPk+1ζk−pz

T
k+1 where S = [0 · · · 0 I] ∈

�m×(n+m(p+1)).

Theorem 1. The plant (3) and the adaptive laws (19) and

(20) results in a closed-loop system with a bounded Ψ̃k

and limk→∞ ‖ek‖ = 0 if εk > 0.

Proof. To proceed with the proof, note that z�k =

[z1,k z2,k · · · zm,k]
�

and Ψ̃�

k =
[

ψ̃1,k ψ̃2,k · · · ψ̃m,k

]�

,

where ψ̃j,k ∈ �(n+m(p+1))×1 and j = 1, . . . , m. Now
consider the following positive function

Vk =

m
∑

j=1

(

p
∑

i=0

ψ̃
�

j,k−iP
−1
k−iψ̃j,k−i

)

. (21)

The forward difference of (21) is given by

∆Vk = Vk+1 − Vk (22)

=

m
∑

j=1

[

ψ̃
�

j,k+1P
−1
k+1ψ̃j,k+1 − ψ̃

�

j,k−pP
−1
k−pψ̃j,k−p

]

.

Consider the update law (19), subtracting both sides from
ψj it is possible to obtain

ψj − ψ̂j,k+1 = ψj − ψ̂j,k−p − εkPk+1ζk−pzj,k+1 (23)

and defining ψ̃j,k = ψj − ψ̂j,k we obtain

ψ̃j,k+1 = ψ̃j,k−p − εkPk+1ζk−pzj,k+1 (24)

substitute (24) in (22) to obtain

∆Vk =

m
∑

j=1

[

(

ψ̃j,k−p − εkPk+1ζk−pzj,k+1

)�

P−1
k+1

(

ψ̃j,k−p

−εkPk+1ζk−pzj,k+1

)

− ψ̃
�

j,k−pP
−1
k−pψ̃j,k−p

]

(25)

Grouping similar terms with each other leads to

∆Vk =

m
∑

j=1

[

ψ̃
�

j,k−p

(

P−1
k+1 − P−1

k−p

)

ψ̃j,k−p (26)

−2εkψ̃
�

k−pζk−pzj,k+1 + ε2kζ
�

k−pPk+1ζk−pz
2
j,k+1

]

.

Substituting P−1
k+1 = P−1

k−p + εkζk−pζ
T
k−p into (27) and,

since, εk > 0 it is obtained

∆Vk ≤

m
∑

j=1

[

εkψ̃
�

j,k−pζk−pζ
�

k−pψ̃j,k−p (27)

−2εkψ̃
�

j,k−pζk−pzj,k+1 + ε2kζ
�

k−pPk+1ζk−pz
2
j,k+1

]

.

Further, note that zj,k+1 = ψ�

j,k−pζk−p. Using this substi-
tution in (71) results in

∆Vk ≤

m
∑

j=1

εkz2
j,k+1

[

− 1 + εkζ
�

k−pPk+1ζk−p

]

. (28)

Using ζT
k−pPk+1ζk−p =

ζT
k−pPk−pζk−p

1+εkζT
k−pPk−pζk−p

in (28), ∆Vk be-

comes

∆Vk = −

m
∑

j=1

[

εkz2
j,k+1

1 + εkζ
�

k−pPk−pζk−p

]

, (29)

which can be rewritten in the form

∆Vk = −
εkz

�

k+1zk+1

1 + εkζ�

k−pPk−pζk−p

. (30)

The result (30) implies that Vk is non-increasing and, thus,

Ψ̃k is bounded. Consequently it is concluded that

lim
k→∞

εkz
�

k+1zk+1

1 + εkζ
�

k−pPk−pζk−p

= 0. (31)

Following the steps in Abidi & Xu (2015), it is obtained
that limk→∞ ‖ek‖ = 0.
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4. EXTENSION TO UNCERTAIN UPPER-BOUNDED
TIME-DELAY

Consider the system (3), but, with an uncertain input
delay d such that

xk+1 = Φxk + Γuk−d

yk = CT xk (32)

and the uncertain time-delay is assumed to have a known
upper-bound such that d ≤ p for a known p. Subtracting
(4) from (32) and deriving the error dynamics as

ek+1 = Φmek + ΓnΘxk + ΓnΘγuk−d − ΓnΘrrk−p (33)

where ek = xk − xm,k. Note that xk+p can be written as

xk+p = Φpxk +
(

Φp−1Γuk−d + Φp−2Γuk−d+1 + · · ·

+ Γuk+p−d−1

)

(34)

Substituting a p time steps delayed form of (34) into (33)

ek+1 = Φmek + ΓnΘΦpxk−p + ΓnΘ
(

Φp−1Γuk−p−d

+ Φp−2Γuk−p−d+1 + · · ·+ Γuk−d−1

)

+ ΓnΘγuk−d − ΓnΘrrk−p. (35)

Let ξ
T
k =

[

uT
k−1 · · · uT

k−p

]

∈ �pm and rewrite (35) as

ek+1 = Φmek + ΓnΘΦp
xk−p + Γn(0 · uk−2p + . . .

+0 · uk−p−d−1) + ΓnΘ
(

Φp−1Γuk−p−d (36)

+ Φp−2Γuk−p−d+1 + · · · + Γuk−d−1

)

+ ΓnΘγuk−d

+ Γn(0 · uk−d+1 + . . . + 0 · uk−1) − ΓnΘrrk−p.

It is possible to simplify (36) further to the form

ek+1 = Φmek + ΓnΘxxk−p + ΓnΘuξk−p − ΓnΘrrk−p

+ ΓnΘpuk−p + ΓnΩuξk (37)

where Θx ∈ �m×n, Θp = ΘΦp−d−1Γ ∈ �m×m, Θu =
[

[0]m×m(p−d) | ΘΦp−1Γ · · · ΘΦp−dΓ
]

∈ �m×m and Ωu =
[

ΘΦp−d−2Γ · · · ΘΓ | [0]m×md

]

∈ �m×pm are the matrices
of uncertain parameters and note that some of the ele-
ments of Θu and Ωu the matrices are zero as in (36).

The reason (35) is rewritten in the form (36) is to eliminate
the dependency on the uncertain delay d. From (37) it seen
that the system is written in terms of the known upper-
bound p rather than the uncertain delay d. Proceeding
further, assume a controller of the form

uk = −Θ̂−1
p,k

(

Θ̂x,kxk + Θ̂u,kξk − Θrrk

)

. (38)

Substitution of (38) into (37) and after performing some
simplifications it is obtained that

ek+1 = Φmek + ΓnΘ̃x,k−pxk−p + ΓnΘ̃u,k−pξk−p

+ Γn

(

Θp − Θ̂p,k−p

)

uk−p + ΓnΩuξk

= Φmek + ΓnΘ̃x,k−pxk−p + ΓnΘ̃u,k−pξk−p

+ ΓnΘ̃p,k−puk−p + ΓnΩuξk. (39)

Including the terms Γn · 0 ·xk +Γn · 0 ·uk in (39) such that

ek+1 = Φmek + ΓnΘ̃x,k−pxk−p + ΓnΘ̃u,k−pξk−p

+ ΓnΘ̃p,k−puk−p + Γn · 0 · xk

+ Γn · 0 · uk + ΓnΩuξk. (40)

and let ζT
k =

[

xT
k ξT

k uT
k

]

∈ �n+m(p+1), Ψ̃T
k =

[

Θ̃x,k Θ̃u,k

Θ̃p,k

]

∈ �m×(n+m(p+1)) and ΩT = [[0] Ωu [0]] ∈

�m×(n+m(p+1)) then it is possible to obtain the compact
error dynamics of the form

ek+1 = Φmek + ΓnΨ̃
T
k−pζk−p + ΓnΩ

T ζk. (41)

Note that the error dynamics (41) is similar to (17) with
the only difference being the extra term ΓnΩ

T ζk which
exists due to the uncertainty in the delay. If the delay d
is known and d = p then Ω would be a null matrix. Using
zk+1 = (CT Γn)−1CT (ek+1 − Φmek) to obtain

zk+1 = Ψ̃T
k−pζk−p + ΩT ζk, (42)

where zk+1 ∈ �m. The adaptation law will be formulated
in such a way as to be robust to the term ΩT ζk. Based on
(42) and using an approach similar to Abidi (2014), the
adaptation law is proposed as

Ψ̂k+1 =







Ψ̂k−p + εk

βk

ϕk

Qζk−pz
T
k+1, k ∈ [p,∞)

Ψ̂0, k ∈ [0, p)
(43)

where the scalar function ϕk = 1 + εkζT
k−pQζk−p +

εkγλ2‖ζk‖
2, the matrix Q is a constant positive definite

matrix of dimension n +m(p +1), γ, λ are positive tuning
constants, βk is a positive scalar weighing coefficient and

εk > 0 is a coefficient used to ensure a nonsingular Θ̂p,k.

Consider the constant uncertainty Ω and assume that
‖Ω‖ = λρ where ρ is an uncertain positive constant, it is
easy to see that ‖ΩT ζk‖ ≤ λρ‖ζk‖. Further, the weighing
coefficient βk can be defined as,

βk =







1 −
λρ̂k‖ζk‖

‖zk+1‖
, if ‖zk+1‖ ≥ λρ̂k‖ζk‖

0, if ‖zk+1‖ < λρ̂k‖ζk‖
(44)

where ρ̂k is the estimate of ρ and λ can be chosen as any
constant as long as it satisfies 0 < λ < λmax, with λmax

being defined later. The estimation law for ρ is given as

ρ̂k+1 = ρ̂k + εk

βkλγ‖ζk‖ · ‖zk+1‖

ϕk

. (45)

From (44) if ‖zk+1‖ ≥ λρ̂k‖ζk‖ it is obtained that

β2
kz

T
k+1zk+1 = βkz

T
k+1zk+1 − λρ̂kβk‖ζk‖ · ‖zk+1‖. (46)

The validity of the above adaption law is verified by the
following theorem.

Theorem 2. Under the adaptation law (43) and the closed-
loop dynamics (42) the tracking error ek is bounded.

A procedure similar to that in Theorem 1 can be used to
verify the boundedness of ‖ek‖.

5. SIMULATION EXAMPLES

To illustrate the advantages of the discrete-time APC, a
flight control example with the longitudinal dynamics of
a four-engine jet transport aircraft, Blakelock (1991) was
used. The aircraft flies straight and level flight at 40,000 ft
with a velocity of 600 ft/sec. Under these conditions, the
nominal short period dynamics is given by

[

α̇(t)
q̇(t)

]

=

[

−0.323 1
−1.169 −0.480

][

α(t)
q(t)

]

+

[

−0.018
−1.379

]

σe(t − τ )

where α is the angle of attack in radians, q is the pitch rate
in radians per second and σe is the elevator deflection also
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in radians. The time-delay value used in the simulation is
given as τ = 0.4s. Eigenvalues are −0.4017±1.0785i, giving
a nominal short period natural frequency of ωn = 1.1423
rad/s and a nominal damping ratio of ζ = 0.3517.

To obtain a challanging scenerio, control effectiveness
uncertainty was introduced resulting in a 30% decrease
in elevator effectiveness. In addition, by adding further
uncertainty to the state matrix, proximity of the open loop
poles to the imaginary axis was halved and the damping
ratio was reduced by 48%. The resulting plant becomes
[

α̇(t)
q̇(t)

]

=

[

−0.323 1.005
−1.176 −0.077

] [

α(t)
q(t)

]

+

[

−0.009
−0.689

]

σe(t − τ ). (47)

In order to implement the controller (10) the reference
model needs to be computed in discrete-time. To do this
the nominal plant (47) will be sampled at Ts = 0.02s
resulting in the sampled-data plant

[

αk+1

qk+1

]

=

[

0.993 0.0198
−0.023 0.990

][

αk

qk

]

+

[

−0.0006
−0.027

]

σe,k−p (48)

where p = τ/Ts = 20. The reference model is designed
using the LQR method ignoring the delay. The feedback
matrix is calculated by selecting Qx = diag(10, 10) and
R = 1 resulting in a reference model of the form
[

αm,k+1

qm,k+1

]

=

[

0.9924 0.0179
−0.0622 0.9078

][

αm,k

qm,k

]

+

[

0.0021
0.0905

]

rk−p. (49)

5.1 Discrete-Time Adaptive APC vs Discrete Approximation
of Continuous-Time APC

The adaptive gains of the continuous-time APC are cal-
culated as Ψx = diag(3.7, 8.3) × 103 and Ψr = 8.4 × 103.
The gains used in the integral approximation are tuned to
get the best performance. As for the discrete-time APC,
the parameter values for P0 = diag(Px,0, Pu,0 Pγ,0) where
Px,0 = diag(44, 105), Pu,0 = 5.1Ip×p, Pγ,0 = 0.10. The
performance of the two controllers is shown in Fig.1. In
Fig.1 it is seen that the continuous-time APC is oscillatory
while the discrete-time APC has a short oscillatory period
after which it is smooth throughout.
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Fig. 1. Performance of the approximate continuous-time
APC vs discrete-time APC with τ = 0.4s

5.2 Discrete-Time Adaptive APC vs MRAC

The structure of the MRAC in discrete-time is similar to
that of the discrete-time APC with the main difference
being that the term Θ̂u,kξk is absent from the controller
(13). Fig.2 shows that the MRAC is very oscillatory
when an input-delay of 0.4s is introduced to the system.

Even though it is well known that MRAC works well
when there is no delay in the system its performance
degrades considerably in the presence of delay. On the
other hand the discrete-time APC is stable similar to
the previous example. This example clearly presents the
advantages discrete-time APC has over the conventional
MRAC design.
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Fig. 2. Performance of the discrete-time APC vs MRAC
with τ = 0.4s

5.3 Uncertain upper-bounded time delay

Consider the system (47) where the time-dealy is as-
sumed to be τp = 0.4s while the actual time-delay is
τd = 0.3s. Selecting λ = 0.015, γ = 100 and Q =
diag(300, 150, 60, Ip×p). The system is simulated under
these conditions and the results can be seen in Fig.3. The
results show that the system converges within a reasonable
error bound around the desired trajectory. Furthermore,
the actual time is changed to τd = 0.2s while the remaining
parameters remain unchanged and the system is simulated
once more. The results from Fig.4 show that inspite of a
50% uncertainty in the time-delay, very good performance
is still possible using this approach.
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Fig. 3. Performance with τd = 0.3s and τp = 0.4s

6. CONCLUSION

In this paper, a discrete-time Adaptive Posicast Control
(APC) method for time-delay systems has been derived.
The method is extended to nonlinear systems and linear
systems with uncertain upper bounded time-delay. The
method is simulated and compared to a discrete-time
approximation of the continuous-time APC and a MRAC
by applying each method to a flight control problem,
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Fig. 4. Performance with τd = 0.2s and τp = 0.4s

where the short period dynamics of a jet transport aircraft
were used as the plant model. Further simulation results
are shown for nonlinear and unknown upper bounded
time-delay cases. A potential for the discrete-time APC
to outperform both the continuous-time APC and the
conventional MRAC is highlighted. The stability of the
closed loop system under different scenarios is discussed.
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